Notice. New forum software under development. It's going to miss a few functions and look a bit ugly for a while, but I'm working on it full time now as the old forum was too unstable. Couple days, all good. If you notice any issues, please contact me. |

Forum Index : Microcontroller and PC projects : Sunrise Sunset times

Author | Message | ||||

TassyJim Guru Joined: 07/08/2011 Location: Australia Posts: 3176 |
To continue with another post, I have blown the dust of a QuickBasic suntimes program I found a few years ago. The only changes I have made are to the print routines to format the time. When inputting location information, latitude is negative for South and in decimal degrees. Longitude is Positive for East and in decimal degrees. Time zone is -11 for Eastern Summer time. 'code 5 DIM A(2), D(2) 10' Sunrise-Sunset 20 GOSUB 300 30 INPUT "Lat-deg="; B5 32 INPUT "Long-deg="; L5 40 INPUT "Time zone-hrs="; H 50 L5 = L5 / 360: Z0 = H / 24 60 GOSUB 1170: T = (J - 2451545) + F 70 TT = T / 36525 + 1 ' TT = centuries 80 ' from 1900.0 90 GOSUB 410: T = T + Z0 100 ' 110 ' Get Sun's Position 120 GOSUB 910: A(1) = A5: D(1) = D5 130 T = T + 1 140 GOSUB 910: A(2) = A5: D(2) = D5 150 IF A(2) < A(1) THEN A(2) = A(2) + P2 160 Z1 = DR * 90.833 ' Zenith dist. 170 S = SIN(B5 * DR): C = COS(B5 * DR) 180 Z = COS(Z1): M8 = 0: W8 = 0: PRINT 190 A0 = A(1): D0 = D(1) 200 DA = A(2) - A(1): DD = D(2) - D(1) 210 FOR C0 = 0 TO 23 220 P = (C0 + 1) / 24 230 A2 = A(1) + P * DA: D2 = D(1) + P * DD 240 GOSUB 490 250 A0 = A2: D0 = D2: V0 = V2 260 NEXT 270 GOSUB 820 ' Special msg? 280 END 290 ' 300 ' Constants 320 P1 = 3.14159265 322 P2 = 2 * P1 330 DR = P1 / 180 332 K1 = 15 * DR * 1.0027379 340 S$ = "Sunset at " 350 R$ = "Sunrise at " 360 M1$ = "No sunrise this date" 370 M2$ = "No sunset this date" 380 M3$ = "Sun down all day" 390 M4$ = "Sun up all day" 400 RETURN 410 ' LST at 0h zone time 420 T0 = T / 36525 430 S = 24110.5 + 8640184.812999999 * T0 440 S = S + 86636.6 * Z0 + 86400 * L5 450 S = S / 86400: S = S - INT(S) 460 T0 = S * 360 * DR 470 RETURN 480 ' 490 ' Test an hour for an event 500 L0 = T0 + C0 * K1: L2 = L0 + K1 510 H0 = L0 - A0: H2 = L2 - A2 520 H1 = (H2 + H0) / 2 ' Hour angle, 530 D1 = (D2 + D0) / 2 ' declination, 540 ' at half hour 550 IF C0 > 0 THEN 570 560 V0 = S * SIN(D0) + C * COS(D0) * COS(H0) - Z 570 V2 = S * SIN(D2) + C * COS(D2) * COS(H2) - Z 580 IF SGN(V0) = SGN(V2) THEN 800 590 V1 = S * SIN(D1) + C * COS(D1) * COS(H1) - Z 600 A = 2 * V2 - 4 * V1 + 2 * V0: B = 4 * V1 - 3 * V0 - V2 610 D = B * B - 4 * A * V0: IF D < 0 THEN 800 620 D = SQR(D) 630 IF V0 < 0 AND V2 > 0 THEN PRINT R$; 640 IF V0 < 0 AND V2 > 0 THEN M8 = 1 650 IF V0 > 0 AND V2 < 0 THEN PRINT S$; 660 IF V0 > 0 AND V2 < 0 THEN W8 = 1 670 E = (0-B + D) / (2 * A) 680 IF E > 1 OR E < 0 THEN E = (0-B - D) / (2 * A) 690 T3 = C0 + E + 1 / 120 ' Round off 700 H3 = INT(T3): M3 = INT((T3 - H3) * 60) 705 Hr$=str$(H3):Hr$=right$("0"+Hr$,2):Mn$=str$(M3):Mn$=right$(" 0"+Mn$,2) 710 PRINT Hr$;":";Mn$; 720 H7 = H0 + E * (H2 - H0) 730 N7 =0 -COS(D1) * SIN(H7) 740 D7 = C * SIN(D1) - S * COS(D1) * COS(H7) 750 AZ = ATN(N7 / D7) / DR 760 IF D7 < 0 THEN AZ = AZ + 180 770 IF AZ < 0 THEN AZ = AZ + 360 780 IF AZ > 360 THEN AZ = AZ - 360 782 PRINT ", azimuth "; 790 PRINT AZ 800 RETURN 810 ' 820 ' Special-message routine 830 IF M8 = 0 AND W8 = 0 THEN 870 840 IF M8 = 0 THEN PRINT M1$ 850 IF W8 = 0 THEN PRINT M2$ 860 GOTO 890 870 IF V2 < 0 THEN PRINT M3$ 880 IF V2 > 0 THEN PRINT M4$ 890 RETURN 900 ' 910 ' Fundamental arguments 920 ' (Van Flandern & 930 ' Pulkkinen, 1979) 940 L = .779072 + .00273790931 * T 950 G = .993126 + .0027377785 * T 960 L = L - INT(L): G = G - INT(G) 970 L = L * P2: G = G * P2 980 V = .39785 * SIN(L) 990 V = V - .01 * SIN(L - G) 1000 V = V + .00333 * SIN(L + G) 1010 V = V - .00021 * TT * SIN(L) 1020 U = 1 - .03349 * COS(G) 1030 U = U - .00014 * COS(2 * L) 1040 U = U + .00008 * COS(L) 1050 W = -.0001 - .04129 * SIN(2 * L) 1060 W = W + .03211 * SIN(G) 1070 W = W + .00104 * SIN(2 * L - G) 1080 W = W - .00035 * SIN(2 * L + G) 1090 W = W - .00008 * TT * SIN(G) 1100 ' 1110 ' Compute Sun's RA and Dec 1120 S = W / SQR(U - V * V) 1130 A5 = L + ATN(S / SQR(1 - S * S)) 1140 S = V / SQR(U): D5 = ATN(S / SQR(1 - S * S)) 1150 R5 = 1.00021 * SQR(U) 1160 RETURN 1165 ' 1170 ' Calendar --> JD 1180 INPUT "Year= "; Y 1183 INPUT "Month= "; M 1186 INPUT "Day= "; D 1190 G = 1: IF Y < 1583 THEN G = 0 1200 D1 = INT(D): F = D - D1 - .5 1210 J =0 -INT(7 * (INT((M + 9) / 12) + Y) / 4) 1220 IF G = 0 THEN 1260 1230 S = SGN(M - 9): A = ABS(M - 9) 1240 J3 = INT(Y + S * INT(A / 7)) 1250 J3 =0 -INT((INT(J3 / 100) + 1) * 3 / 4) 1260 J = J + INT(275 * M / 9) + D1 + G * J3 1270 J = J + 1721027 + 2 * G + 367 * Y 1280 IF F >= 0 THEN 1300 1290 F = F + 1: J = J - 1 1300 RETURN 1310 ' 1320 ' This program by Roger W. Sinnott calculates the times of sunrise 1330 ' and sunset on any date, accurate to the minute within several 1340 ' centuries of the present. It correctly describes what happens in the 1350 ' arctic and antarctic regions, where the Sun may not rise or set on 1360 ' a given date. Enter north latitudes positive, west longitudes 1370 ' negative. For the time zone, enter the number of hours west of 1380 ' Greenwich (e.g., 5 for EST, 4 for EDT). The calculation is 1390 ' discussed in Sky & Telescope for August 1994, page 84. This program appears to agree with most on-line calculators. Jim It all started with the ZX81.... VK7JH http://www.c-com.com.au/MMedit.htm |
||||

Gizmo Admin Group Joined: 05/06/2004 Location: Australia Posts: 4736 |
Hi Jim Works fine. Glenn "Treat the earth well, it was not given to you by your parents, it was lent to you by your children" JAQ Software |
||||

DuinoMiteMegaAn Senior Member Joined: 17/11/2011 Location: Australia Posts: 231 |
Comparison Results of Sunrise / Sunset Algorithms
My last posted algorithm: Sydney, Australia Lat: -33 deg 53' South Long: -151 deg 10 East Latitude and Longitude --> south and east ARE negative <------- Results Expected Results Date of "location test" for sunrise/sunset in Sydney = December 18,2011 ============================================================ ========= Internet calculated sunrise/sunset for the date = Sunrise 5:39 AM Sunset 8:04 PM - LinkB (below) ============================================================ ========= Actual Results DECLINATION OF SUN:-22.5491 DEGREES EQUATION OF TIME: 3.11609 MINUTES AZIMUTH OF SUNRISE: 62.4889 DEGREES AZIMUTH OF SUNSET: 297.511 DEGREES Sydney, Austalia SUNRISE= 5:5 SUNSET= 19:9 Hit CR To Continue ? Support Links: Link A: http://andrew.hedges.name/experiments/convert_lat_long/ Link B: http://www.timeanddate.com/worldclock/astronomy.html?n=240 ======================= TassyJim sunrise sunset ======================= Sydney, Australia Lat: -33 deg 53' South Long: 151 deg 10 East Posted: 13 December 2011 at 8:50am | IP Logged latitude is negative for South and in decimal degrees. Longitude is Positive for East and in decimal degrees. <---------- Decimal Latitude = -33.88333 Link A: (above) Decimal Longittude = 151.16667 Link A: (above) Time zone -11 Eastern summer time. Actual Results \> run Lat-deg=? -33.88333 Long-deg=? 151.16667 Time zone-hrs=? -11 Year= ? 2011 Month= ? 12 Day= ? 18 Sunrise at 05:39, azimuth 119.16 Sunset at 20:04, azimuth 240.814 Internet calculated sunrise/sunset for the date = Sunrise 5:39 AM Sunset 8:04 PM - LinkB (above) The only comment I have is "Spot On" TassyJim! |
||||

Print this page |

To reply to this topic, you need to log in.

© JAQ Software 2020