
Rev. 0.1 2/12 Copyright © 2011 by Silicon Laboratories AN633

AN633

Si446X PROGRAMMING GUIDE AND SAMPLE CODES

1. Introduction

This document provides an overview of configuring the Si446x for transmitter, receiver, and transceiver operation
using simple software example codes.

The following examples are covered in this programming guide:

How to transmit a packet in simple Packet Handler mode (Sample Code 1)

How to receive a packet in simple Packet Handler mode (Sample Code 1)

How to transmit a packet in Packet Handler mode using a FIELD (Sample Code 2)

How to receive a packet in Packet Handler mode using a FIELD (Sample Code 2)

How to implement bidirectional packet-based communication (Sample Code 3)

How to use variable packet length (Sample Code 3)

How to use 4(G)FSK modulation (Sample Code 4)

Please contact the Wireless Support Team for the latest example source codes.

2. Hardware Options

The source code is provided for the Si4460-B0, Si4461-B0, Si4463-B0, and Si4464-B0 devices.

A separate Silicon Labs IDE* workspace is provided for each example on the UDP platform.

*Note: Use IDE 4.40 or higher.

2.1. Test Card Options
The power amplifier and the LNA are not connected together inside the Si446x devices. Several different test cards
are introduced to provide examples for main connection schemes.

On test cards using direct-tie connection, the TX and RX pins are directly connected externally, eliminating the
need for an RF switch.

On test cards using an RF switch, separate transmit and receive pins on the RFIC are connected to an antenna via
an SPDT RF switch for single antenna operation. The radio device assists with control of the RF switch. By routing
the RX State and TX State signals to any two GPIOs, the radio can automatically control the RF switch. The GPIOs
will disable the RF switch if the radio is not in active mode.

On test cards using split connection, the TX and RX pins are routed to different antenna connectors.

Test cards with external PA (FEM or FET type) are also provided by Silabs.

AN633

2 Rev. 0.1

Figure 1. Direct Tie Si4461 Test Card Schematic

The example source code can be compiled for various test cards and radios. The following compiling option
(located at the beginning of the ezrp_next_api.h file) selects the proper configuration (#define
EZRP_NEXT_TestCard TestCard_4463_TCE20C915). The selection has to be made based on the marketing
number of the test card.

TestCard_4463_TSQ20D169

TestCard_4463_TSQ27F169

TestCard_4461_TCE14D434

TestCard_4460_TCE10D434

TestCard_4463_TCE20B460

TestCard_4463_TCE20C460

TestCard_4460_TSC10D868

TestCard_4460_TCE10D868

TestCard_4461_TSC14D868

TestCard_4461_TCE16D868

TestCard_4463_TCE20B868

TestCard_4463_TCE20C868

TestCard_4463_TCE27F868

TestCard_4463_TCE20B915

TestCard_4463_TCE20C915

��������	
��
������
�������

����	�����	����������

��������
�������
����� ���!� �"

��

���#$�����

%�&&'�(���%)*+���"��	��� �	�$���#�
,�
���-����./

0����1�2���#$��3�45
0��6�7�1�2���#$��3 45

08����#$��99�:6&8�;

��+����1�<���$=�����>::=�""?*��>'&

0�&�6��1�2&�6<��#$�

*�

<<�;

*:
����;

*<

���
;

*&

:6:+;

*
:<

���
;

���

����

�&

����

��

�6;6

*�

�6;6

%
@�

%
@8

%
@A%
@:

� :
< &
� '
A 8
- ��

�� �:
�< �&
�� �'
�A �8
�- :�
:� ::
:< :&
:� :'
:A :8
:- <�
<� <:
<< <&
<� <'
<A <8
<- &�

*%�

*��&��

� *%: %�< ��& B�" �%�

'%*7

A.�C"

8D**

!:

:�??�8�*

� :
E:

<:6A'8�./
 F���'?

B�"

<

 �<

4
�
!

� %"�: �4�< �4�& 4� �*

'
D
�
?
 ?

A
 4

�
?
�
�

8
D
�
?
 "

-
B
��
�
(�

��
B
��
�
(�

�����E

�:%*C7

�<%"�

�&%"�

���%�C

�'
4
�
!

�A
4
��

�8
B
�
"
4

�-
B
��
�
(:

:�
B
��
�
(<

��
��

!� %�&&'�

 4�?��

� <

: &

E�

<��./
 F�&<�?

%
@<

�

:

<
%
@&

%@�

*
A

�6;6

& � ' A 8

�@�G?
:@�G�

�� �� �:

C;

��

*�:

<6-�;

*��

�6��;

*�:

�6��;

*��
<6��;

*�

<-�;

C*

���
.

C��

�'
.

C��
�8
.

 �4

%�?G�?

**:

�'�;

C�:

�:
.

C�:

::
.

*-

����;

C�<

��

-
*�:

�:�;

*�<

�:�;

*��

���
;

*�<

�9;

��

����

1�D

1�D
���"(�%�C

���"(%*7
���"(��%�

1�D

���"(��%�
���"(��%�
���"(%*7
���"(�%�C

���"(��%�

D""

%
*
C7

%
"
�

%
"
�

�
%
�C

%
"
�

�
��
E

B
��
�
�

B
��
�
�

B
��
�
:

B
��
�
<

D""

D""

D""

�4�
�4�

 4

B�"

AN633

Rev. 0.1 3

TestCard_4463_TCE30E915

TestCard_4464_TCE20B420
Note: The transmit output of Si446x devices must be terminated properly before output power is enabled. This is accomplished

by using a proper antenna or connecting the power amplifier to an RF instrument that provides 50  termination to
ensure proper operation and protect the device from damage.

2.2. UDP Platform
The example source codes run on the Universal Development Platform (UDP). The UDP consists of several
boards. Both the MCU card and the test card are plugged into the UDP Motherboard (UP-BACKPLANE-01EK). It
provides power supply and USB connectivity for the development system. The MCU card (UPMP-F960-EMIF-EK)
has several peripherals for simple software development (e.g. LEDs, Push Buttons, etc.), and it has a socket for
various MCU selections. UPPI-F960-EK MCU Pico board is used for software development, which has a
Si8051F960 MCU on it. It controls the radio on the test card using the SPI bus. The test card is connected to the
40-pin connector (J3) on the UDP Motherboard where the following signals are used (UDP_MB refers to UDP
Motherboard, MCU refers to the MCU of the UPMP-F960-EMIF card):

For more info on the UDP platform, refer to the “UDP Motherboard User's Guide”.

Table 1. Si446x Pin Assignments

Si446x UDP Platform

Pin Number Pin Name Pin Function Pin Name

Exposed pad, 18 GND Ground Ground

6, 8 VDD Supply input PWR_RADIO through UDP_MB –J21

11 NIRQ Interrupt output, active low MCU / P1.6

1 SDN Shutdown input, active high MCU / P1.7

15 NSEL SPI select input MCU / P2.3

12 SCLK SPI clock input MCU / P2.0

14 SDI SPI data input MCU / P2.2

13 SDO SPI data output MCU / P2.1

AN633

4 Rev. 0.1

2.2.1. Setting up the Development Board

Before downloading example code into the MCU, the UDP platform must be configured according to the following
instructions:

1. Connect the Si446x test card to the 40-pin (J3) connector.

2. Connect the antenna(s) to the SMA connector(s) of the test card.

3. Set S5 to OFF to disable the 6.5 V voltage on pin 36 of the test card connector.

4. Set SW5 to UDP on the MCU card.

5. Set SW7 and SW12 to VBAT on the MCU card.

6. Short JP19 and JP21 jumpers as shown in Figure 2 to provide VDD for the radio (the current consumption
of the radio can be measured through these jumpers).

Figure 2. Jumper Positions (JP19, JP21)

2.2.2. Downloading and Running the Example Codes

1. Connect the USB debug adapter to the 10-pin J13 connector of the MCU card.

2. To power the board, connect a 9 V dc power supply to J20 (UDP_MB), or connect the development board
to a PC over USB cable (J16 on UDP_MB).

3. Turn on S3 on UDP_MB (Power switch).

4. Start Silicon Labs IDE on your computer.

5. Connect the IDE to the C8051F960 MCU of the development board by pressing the Connect button on the
toolbar or by invoking the menu Debug  Connect menu item.

6. Erase the FLASH of the C8051F960 MCU in the Debug  Download object code  Erase all code space
menu item.

7. Download the desired example HEX file either by hitting the Download code (Alt+D) toolbar button or from
the Debug  Download object code menu item.

8. Hit the Disconnect toolbar button or invoke the Debug  Disconnect menu item to release the device from
halt and let it run.

Figure 3. J13 Connector on the MCU Card

AN633

Rev. 0.1 5

2.3. Using the Resources of the Development Board
The example programs are written in “C”. General headers and code files are provided to ease the programming of
the development board.

The file called compiler_defs.h contains macro definitions to accommodate 8051 compiler differences and
declaring special function registers and other 8051-specific features. Using these macros allows the example code
to be compiled with several common C compilers, such as Keil, SDCC, Raisonance, etc.

2.3.1. Initialization

The file called C8051F960_defs.h contains the register/bit definitions for the C8051F96x MCU family.

The file called hardware_defs.h contains the UDP platform-specific definitions.

The following macros in the hardware_defs.h file assign a label to the given IO port, so they can be more easily
referenced in the source code. For example, the SBIT(EZRP_PWRDN, SFR_P1, 7); line assigns the
EZRP_PWRDN label to P1.7 (refer to Table 1), which the SDN pin of the radio is connected to:

The void MCU_Init(void) function in the main.c file initializes all the peripherals necessary for the example
programs.

UDP platform provides an own SPI interface for the test card connected to J3 connector, other SPI devices should
not conflict with the test card. SPI interface connected to the radio test card are referred as SPI “0” in the sample
codes.

2.3.2. LED and Push Buttons

The LED control and push button reading functions can be found in the control_IO.c file:

void SetLed(U8 number)

void ClearLed(U8 number)

bit GetPB(U8 number)

Reading the push buttons is not trivial, as a button and an LED share the same pin of the MCU. During the short
period of reading a push button, the pin is set high and its direction is changed to input. This change may cause a
brief but unnoticeable LED state change. After the push button is checked, the original LED status is restored.

SBIT(MCU_SDA, SFR_P0, 6);
SBIT(MCU_SCL, SFR_P0, 7);

SBIT(MCU_SCK, SFR_P2, 0);
SBIT(MCU_MISO,SFR_P2, 1);
SBIT(MCU_MOSI,SFR_P2, 2);
SBIT(MCU_NSEL, SFR_P2, 3);

SBIT(EZRP_NIRQ, SFR_P1, 6);
SBIT(EZRP_PWRDN, SFR_P1, 7);

SBIT(PB1, SFR_P3, 0);
SBIT(PB2, SFR_P3, 1);
SBIT(PB3, SFR_P3, 2);
SBIT(PB4, SFR_P3, 3);
SBIT(LED1, SFR_P3, 0);
SBIT(LED2, SFR_P3, 1);
SBIT(LED3, SFR_P3, 2);
SBIT(LED4, SFR_P3, 3);

AN633

6 Rev. 0.1

3. Using the Si446x Radios

This chapter describes the details of how to operate the Si446x radios. As mentioned above, there are four
software example codes provided; these are referred to as Sample Codes 1–4 later in this document. Many
features are common in all of these sample codes such as controlling the radio (Control the Radio), using the
application programming interface (API), initializing the MCU, while others are only used in certain examples, like
using the Packet Handler mode, or the so called FIELDs.

3.1. Controlling the Radio
The Si446x radios have several pins to interface the host MCU.

Four pins, SDI, SDO, SCLK, NSEL, are used to control the radio over the SPI bus. The user has access to an
Application Programming Interface (API) via the SPI bus, which is described in detail in the Application
Programming Interface section below.

The SDN (Shutdown) pin is used to completely disable the radio (when the pin is pulled high) and put the device
into the lowest power consumption state. After the SDN pin is pulled low the radio wakes up and performs a Power
On Reset. It takes a maximum of 5 ms until the chip is ready to receive commands on the SPI bus (GPIO1 pin goes
high when the radio is ready for receiving SPI commands). When SDN is high and the radio is in shutdown state,
the GPIOs are set to drive an output low level.

The radio has an interrupt output pin, NIRQ, which can be used to promptly notify the host MCU of multiple events.
The NIRQ pin is active low, and goes back to high if the pending interrupt flag is cleared by reading the appropriate
Interrupt Pending registers.

3.2. Application Programming Interface
The Si446x radios can be controlled over the SPI interface. For efficient communication, the API (Application
Programming Interface) is implemented to interact with the radio. To invoke the API, a power-up command must be
sent to the radio after the POR is complete (it takes TPower_on = 5 ms + 6..10 ms to complete the entire power on
sequence (POR + invoke API)).

The programming interface allows the user to do the following:

Send commands to the radio.

Read status information.

Set and get radio parameters.

Handle the transmit and receive FIFOs.

The following two sections describe the SPI transactions of sending commands and getting information from the
chip.

3.2.1. Sending Commands

The behavior of the radio can be changed by sending commands to the radio (e.g. changing the power states, start
packet transmission, etc.). The radio can be configured through several so called “properties”. The properties hold
radio configuration settings, such as interrupt settings, modem parameters, packet handler settings, etc. The
properties can be set and read via API commands.

Most of the commands are sent from the host MCU to the radio, and the host MCU does not expect any response
from the chip. There are other commands that are used to read back a property from the chip, such as checking
the interrupt status flags, reading the transmit/receive FIFOs, etc. This paragraph gives a detailed overview about
the simple commands (commands with no response); the Get response to a command paragraph describes the
SPI transactions of getting information from the radio (commands with response).

All the commands that are sent to the radio should have the same structure. After pulling down the NSEL pin of the
radio, the command ID should be sent first. The commands may have up to 15 input parameters with the exception
of START_RX and START_TX, which may have 64 bytes input. The number of input parameters varies depending
on the actual command. The NSEL pin must be pulled high when the transaction finishes.

AN633

Rev. 0.1 7

Figure 4. Send Command SPI Transaction

The command IDs are listed in Table 2.

Table 2. Commands

Command ID Name Input Parameters

0x02 POWER_UP Power-up device and mode selection. Modes include operational
function.

0x04 PATCH_IMAGE Loads image from NVM/ROM into RAM

0x00 NOP No operation command

0x01 PART_INFO Reports basic information about the device

0x10 FUNC_INFO Returns the Function revision information of the device

0x11 SET_PROPERTY Sets the value of a property

0x12 GET_PROPERTY Retrieve a property's value

0x13 GPIO_PIN_CFG Configures the GPIO pins

0x15 FIFO_INFO Provides access to transmit and receive FIFO counts and reset

0x17 IRCAL Calibrate IR

0x20 GET_INT_STATUS Returns the interrupt status byte

0x33 REQUEST_DEVICE_STATE Request current device state

0x34 CHANGE_STATE Update state machine entries

0x14 GET_ADC_READING Retrieve the results of possible ADC conversions

0x16 GET_PACKET_INFO Returns information about the last packet received

0x18 PROTOCOL_CFG Sets the chip up for specified protocol

0x21 GET_PH_STATUS Returns the packet handler status

0x22 GET_MODEM_STATUS Returns the modem status byte

0x23 GET_CHIP_STATUS Returns the chip status

0x36 RX_HOP Fast RX to RX transitions for use in frequency hopping systems

Command ID Param Byte 0 Param Byte n

NSEL

SDO

SDI

SCLK

AN633

8 Rev. 0.1

After the radio receives a command, it processes the request. During this time, the radio is not capable of receiving
a new command. The host MCU has to poll the radio and identify when the next command can be sent. The CTS
(Clear to Send) signal shows the actual status of the command buffer of the radio. It can be monitored over the SPI
port or on GPIOs, or the chip may generate an interrupt if it is ready to receive the next command. These three
options are detailed below.

3.2.1.1. CTS Ready via SPI

In order to make sure that the radio is ready to receive the next command, the host MCU has to pull down the
NSEL pin to monitor the status of CTS over the SPI port. The 0x44 command ID has to be sent, and eight clock
pulses have to be generated on the SCLK pin. During the additional eight clock cycles, the radio clocks out the
CTS as a byte on the SDO pin. When complete, the NSEL should be pulled back to high. If the CTS byte is 0xFF, it
means that the radio processed the command successfully and is ready to receive the next command; in any other
case, the CTS read procedure has to be repeated from the beginning as long as the CTS byte is not 0xFF. Note
that commands without any input parameters require a dummy byte for proper CTS responses.

Figure 5. CTS Read over SPI after a Command is Sent

3.2.1.2. CTS Ready via GPIOs

Any of the GPIOs can be configured for monitoring the CTS. GPIOs can be configured to go high or low if the chip
completes the command. The function of the GPIOs can be changed by the GPIO_PIN_CFG command. By
default, GPIO1 is set as “High when command completed, low otherwise” after Power On Reset. Therefore, this pin
can be used for monitoring the CTS right after Power On Reset to know when the chip is ready to boot up.

0x50 FRR_A Returns Fast response register A

0x51 FRR_B Returns Fast response register B

0x53 FRR_C Returns Fast response register C

0x57 FRR_D Returns Fast response register D

0x44 READ Command buffer Returns Clear to send (CTS) value and the result of the previous
command

0x66 TX_FIFO_WRITE Writes TX data buffer (max. 64 bytes)

0x77 RX_FIFO_READ Reads RX data buffer (max. 64 bytes)

0x31 START_TX Switches to TX state and starts packet transmission.

0x32 START_RX Switches to RX state.

Table 2. Commands (Continued)

Command ID Name Input Parameters

0x44

NSEL

SDO

SDI

SCK

CTS

AN633

Rev. 0.1 9

3.2.1.3. CTS Ready via Interrupts

The radio asserts the CHIP_READY interrupt flag if a command is completed. The interrupt flag can be monitored
by either the GET_CHIP_STATUS, or the GET_INT_STATUS command. In addition to this, the CHIP_STATUS and
CHIP_INT_STATUS_PEND bytes can be assigned to one of the Fast Response Registers which provides faster
access to them (more details can be found about the Fast Response registers in "3.2.4. Using the Fast Response
Registers" on page 11). Apart from monitoring the interrupt flags, the radio may pull down the NIRQ pin if this
feature is enabled.

If a new command is sent while the CTS is asserted, then the radio ignores the new command. The Si446x can
generate an interrupt about this to communicate the error to the MCU: CMD_ERROR interrupt flag in the
CHIP_STATUS group. The interrupt flag has to be read (by issuing a GET_CHIP_STATUS or
GET_INTERRUPT_STATUS command) to clear the pending interrupt and release the NIRQ pin. No other action is
needed to reset the command buffer of the radio, but, after a CMD_ERROR, the host MCU should repeat the new
command after the radio has processed the previous one.

3.2.2. Get Response to a Command

Reading from the radio requires several steps to be followed. The host MCU should send a command with the
address it requests to read. The radio holds the CTS while it retrieves the requested information. Once the CTS is
set (0xFF), the host MCU can read the answer from the radio.

Figure 6. Read Procedure

After sending the command, the NSEL pin has to be pulled high, as described in "3.2.1. Sending Commands" on
page 6. There are several ways to decide if the Si446x is ready with the response.

If the CTS is polled on the GPIOs, or the radio is configured to provide interrupt if the answer is available; then, the
response can be read out from the radio with the following SPI transaction:

Figure 7. Read the Response from the Radio

If the CTS is polled over the SPI bus, the host MCU should pull the NSEL pin low. This should be followed by
sending out the 0x44 Read command ID and providing an additional eight clock pulses on the SCLK pin. The radio
will provide the CTS byte on its SDO pin during the additional clock pulses. If the CTS byte is 0x00, then the
response is not yet ready and the host MCU should pull up the NSEL pin and repeat the procedure from the
beginning as long as the CTS becomes 0xFF. If CTS is 0xFF, then the host MCU should keep the NSEL pin low
and provide as many clock cycles on the SCLK pin as the data to be read out requires. The radio will clock out the
requested data on its SDO pin during the additional clock pulses.

Send Command Read CTS Retrieve
Response

CTS Value

Not
0xFF

0xFF

0x44

NSEL

SDO

SD I

SCLK

CTS = 0xFF Response Byte 0 Response Byte n

AN633

10 Rev. 0.1

Figure 8. Monitor CTS and Read the Response on the SPI Bus

Reading the response from the radio can be interrupted earlier. For example, if the host MCU asked for five bytes
of response, it may read fewer bytes in one SPI transaction. As long as a new command is sent, the radio keeps
the response for the last request in the command buffer. The host MCU can read the response several times in a
new SPI transaction. In such a case, the response is always provided from the first byte.

Notes:
1. Up to 16 bytes of response can be read from the radio in one SPI transaction. If more bytes are read, the radio will

provide the same 16 bytes of response in a circular manner.
2. If the command says that the host MCU expects N bytes of response, but, during the read sequence, the host MCU

provides less than N bytes of clock pulses, it causes no issue for the radio. The response buffer is reset if a new
command is issued.

3. If the command says that the host MCU expects N bytes of response, but, during the read sequence, the host MCU
provides more than N bytes of clock pulses, the radio will provide unpredictable bytes after the first N bytes. The host
MCU does not need to reset the SPI interface; it happens automatically if NSEL is pulled low before the next command
is sent.

3.2.3. Write and Read the FIFOs

There are two 64-byte FIFOs for RX and TX data in the Si446x.

To fill data into the transmit FIFO, the host MCU should pull the NSEL pin low and send the 0x66 Transmit FIFO
Write command ID followed by the bytes to be filled into the FIFO. Finally, the host MCU should pull the NSEL pin
high. Up to 64 bytes can be filled into the FIFO during one SPI transaction.

Figure 9. Transmit FIFO Write

0x44

N SEL

SDO

SDI

SCLK

N SEL

SDO

SDI

SCLK

Re ad CTS

Re tr ievin g Re spo nse

CTS

Re sp onse Byte 0 Re sp onse Byte n

CT S Value

Not
0 xFF

0xFF

NSE L

SD O

SDI

SCLK

0x66 Byte 0 Byte n

NSEL

SDO

SDI

SCLK

AN633

Rev. 0.1 11

If the host MCU wants to read the receive FIFO, it has to pull the NSEL pin low and send the 0x77 Receive FIFO
Read command ID. The MCU should provide as many clock pulses on the SCLK pin as necessary for the radio to
clock out the requested amount of bytes from the FIFO on the SDO pin. Finally, the host MCU should pull up the
NSEL pin.

Figure 10. Receive FIFO Read

If more than 64 bytes are written into the Transmit FIFO, then a FIFO overflow occurs. If more bytes are read from
the Receive FIFO than it holds, then FIFO underflow occurs. In either of these cases, the
FIFO_UNDERFLOW_OVERFLOW_ERROR interrupt flag will be set. The radio can also generate an interrupt on
the NIRQ pin if this flag is enabled. The interrupt flag has to be read, by issuing a GET_CHIP_STATUS or
GET_INTERRUPT_STATUS command, to clear the pending interrupt and release the NIRQ pin.

3.2.4. Using the Fast Response Registers

There are several types of status information that can be read out from the radio faster than the method defined in
"3.2.2. Get Response to a Command" on page 9. Four Fast Response Registers are available for this purpose.
The FRR_CTL_x_MODE (where x can be A, B, C or D) properties define what status information is assigned to a
given Fast Response Register (FRR).

The actual value of the registers can be read by pulling down the NSEL pin, issuing the proper command ID, and
providing an additional eight clock pulses on the SCLK pin. During these clock pulses, the radio provides the value
of the addressed FRR. The NSEL pin has to be pulled high after finishing the register read.

Figure 11. Reading a Single Fast Response Register

It is also possible to read out multiple FRRs in a single SPI transaction. The NSEL pin has to be pulled low, and
one of the FRRs has to be addressed with the proper command ID. Providing an additional 8 x N clock cycles will
clock out an additional N number of FRRs. After the fourth byte is read, the radio will provide the value of the
registers in a circular manner. The reading stops by pulling the NSEL pin high.

0x77

NSEL

SDO

SDI

SCLK

Byte 0 Byte 1 Byte n

0x51

Fast Response R. B

AN633

12 Rev. 0.1

Figure 12. Reading More Fast Response Registers in a Single SPI Transaction

Note: If the pending interrupt status register is read through the FRR, the NIRQ pin does not go back to high. The pending
interrupt registers have to be read by a Get response to a command sequence in order to release the NIRQ pin.

3.2.5. Using the API in the Sample Codes

The API functions and definitions can be found in ezrp_next_api.c and ezrp_next_api.h.

Transmitting a command can be initiated by the U8 bApi_SendCommand(U8 bCmdLength, U8 *pbCmdData)
function. The actual command to be sent to the chip has to be stored in a byte array. The pbCmdData pointer is an
input parameter, which points to the beginning of the array. The number of bytes sent as a command has to be
defined by the bCmdLength input parameter.

The U8 vApi_WaitforCTS(void) function polls the status of the CTS over the SPI bus. It is used to decide whether
the radio processed the command. If the radio processed the command, the function returns with 0x00. Otherwise,
it checks the CTS up to 2500 times and returns with 0x01. It can be considered an error, and the radio needs to be
reset.

0x51

Fast Response R. B Fast Response R. C Fast Response R. D Fast Response R. A Fast Response R B

y y g p p
U8 bApi_SendCommand(U8 bCmdLength, U8 *pbCmdData) // Send a command + data to the chip
{

SpiClearNsel(0); // select radio IC by pulling its nSEL pin low
bSpi_SendDataNoResp(bCmdLength, pbCmdData); // Send data array to the radio IC via SPI
SpiSetNsel(1); // de-select radio IC by putting its nSEL pin high
return 0;

}

U8 vApi_WaitforCTS(void)
{
 SEGMENT_VARIABLE(bCtsValue, U8, SEG_XDATA);
 SEGMENT_VARIABLE(bErrCnt, U16, SEG_XDATA);

 bCtsValue = 0;
 bErrCnt = 0;

 while (bCtsValue!=0xFF) // Wait until radio IC is ready with the data
 {
 SpiClearNsel(0); // select radio IC by pulling its nSEL pin low
 bSpi_SendDataByte(0x44); // Read command buffer; send command byte
 bSpi_SendDataGetResp(1, &bCtsValue); // Read command buffer; get CTS value
 SpiSetNsel(1); // If CTS is not 0xFF, put NSS high and stay in waiting
 if (++bErrCnt > MAX_CTS_RETRY)
 {
 return 1; // Error handling; if wrong CTS reads exceeds a limit
 }
 }
 return 0;
}

AN633

Rev. 0.1 13

The U8 bApi_GetResponse(U8 bRespLength, U8 *pbRespData) function waits for the chip to process the read
command by polling the CTS over the SPI bus. If the response is available, the function keeps the NSEL pin low
and reads bRespLength number of bytes from the radio. The result bytes are stored in the memory location defined
by the pbRespdata pointer, and the function returns with 0x00. The function returns with 0x01 if the radio is not
ready with the response after 2500 attempts. It can be considered an error, and the radio needs to be reset.

The Transmit FIFO is filled by the U8 bApi_WriteTxDataBuffer(U8 bTxFifoLength, U8 *pbTxFifoData) function. A
byte array has to be created and the data needs to be stored in that prior to calling the function. The number of
bytes to be filled into the FIFO is defined by the bTxFifoLength input parameter, while the pbTxFifoData pointer has
to point to the beginning of the byte array.

The Receive FIFO can be accessed by the U8 bApi_ReadRxDataBuffer(U8 bRxFifoLength, U8 *pbRxFifoData)
function. The bRxFifoLength input parameter defines how many bytes the function needs to read from the FIFO.
The result is stored in the memory location defined by the pbRxFifoData pointer.

U8 bApi_GetResponse(U8 bRespLength, U8 *pbRespData) //Get response from the chip (used after a
command)
{
 SEGMENT_VARIABLE(bCtsValue, U8, SEG_XDATA);
 SEGMENT_VARIABLE(bErrCnt, U16, SEG_XDATA);

 bCtsValue = 0;
 bErrCnt = 0;

 while (bCtsValue!=0xFF) // Wait until radio IC is ready with the data
 {
 SpiClearNsel(0); // select radio IC by pulling its nSEL pin low
 bSpi_SendDataByte(0x44); // Read command buffer; send command byte
 bSpi_SendDataGetResp(1, &bCtsValue);
 if(bCtsValue != 0xFF)
 {
 SpiSetNsel(1);
 }
 }
 if(bErrCnt++ > MAX_CTS_RETRY)
 {
 return 1;
 }
 bSpi_SendDataGetResp(bRespLength, pbRespData); // CTS value ok, get the response data from the radio
IC
 SpiSetNsel(1); // de-select radio IC by putting its nSEL pin high

return 0;
}

U8 bApi_WriteTxDataBuffer(U8 bTxFifoLength, U8 *pbTxFifoData) // Write Tx FIFO
{
 SpiClearNsel(0); // select radio IC by pulling its nSEL pin low
 bSpi_SendDataByte(0x66); // Send Tx write command
 bSpi_SendDataNoResp(bTxFifoLength, pbTxFifoData); // Write Tx FIFO
 SpiSetNsel(1); // de-select radio IC by putting its nSEL pin high

 return 0;
}

AN633

14 Rev. 0.1

The U8 bApi_GetFastResponseRegister(U8 bStartReg, U8 bNmbrOfRegs, U8 * pbRegValues) function reads the
Fast Response Registers. The bStartReg input parameter defines the first register to be read. The name of the
Fast Response Registers is defined in the Si446x_B0_defs.h header file:

The number of register to be read is defined by the bNmbrOfRegs input parameter. The function stores the actual
value of the FRR from the memory location defined by the pbRegValues pointer.

U8 bApi_ReadRxDataBuffer(U8 bRxFifoLength, U8 *pbRxFifoData)
{
 SpiClearNsel(0); // select radio IC by pulling its nSEL pin low
 bSpi_SendDataByte(0x77); // Send Rx read command
 bSpi_SendDataGetResp(bRxFifoLength, pbRxFifoData); // Write Tx FIFO
 SpiSetNsel(1); // de-select radio IC by putting its nSEL pin high

 return 0;
}

#define CMD_FAST_RESPONSE_REG_A 0x50
#define CMD_FAST_RESPONSE_REG_B 0x51
#define CMD_FAST_RESPONSE_REG_C 0x53
#define CMD_FAST_RESPONSE_REG_D 0x57

U8 bApi_GetFastResponseRegister(U8 bStartReg, U8 bNmbrOfRegs, U8 * pbRegValues)
{
 if((bNmbrOfRegs == 0) || (bNmbrOfRegs > 4))
 {
 return 1;
 }

 SpiClearNsel(0);
 bSpi_SendDataByte(bStartReg);
 bSpi_SendDataGetResp(bNmbrOfRegs, pbRegValues);
 SpiSetNsel(1);
 return 0;
}

AN633

Rev. 0.1 15

3.3. Packet Transmitting Using the Packet Handler (Sample Code 1)
The software example uses push buttons on the hardware platform to initiate a packet transmission. After power on
reset and invocation of the API, the firmware initializes the MCU and the radio IC. The radio is set to low power
SLEEP mode. If any of the push buttons are pressed on the Motherboard, the host MCU wakes up the radio IC,
sends a packet, then sends the radio IC back to low power SLEEP mode and returns to polling the push buttons.

The flowchart of the Sample Code 1 (TX side) is shown in Figure 13.

Figure 13. Transmitter Side Flowchart

Set TX/TRX parameters
from modem_params.h

(generated by WDS)

Configure Packet Handler,
Preamble, Sync word,

GPIOs, Fine tune XTAL

Button
pushed?

Send radio IC to
SPI active state

Put the payload to
TX FIFO

Issue START_TX
command

Packet sent
interrupt arrived?

Clear radio IC
Interrupts

Send radio IC to
Sleep mode

N

Y

N

Y

MCU Init,
Start radio IC

RF Init

AN633

16 Rev. 0.1

The EZRadioPRO devices provide a flexible packet handler that supports a wide range of packet configuration
options including the following:

Programmable preamble length and pattern (up to 255 bytes)

Programmable synchronization word length and pattern (up to four bytes)

Automatic header generation and qualification (packet length, CRC)

Fixed and variable length packets

Packet fields to assign individual properties to different parts of the payload

Payload data of up to 255 bytes (using the built-in Transmit, Receive FIFOs)

Automatic CRC calculation and verification (different polynomials, up to 32 bits CRC)

In Sample Code 1, the packet handler uses fixed packet length with standard preamble and 2 bytes of
synchronization word. The packet configuration used for the transmission is shown in Figure 14.

Figure 14. Packet Configuration

The payload of the packet depends on the push button that was pressed.

In order for the receiver to detect that a valid packet is present, the transmitted packet should start with a preamble
and a synchronous pattern.

The preamble is a continuous 1010 sequence; it is used to synchronize the transmitter and receiver. The
preamble is a known sequence with continuous edge changes in the data so that the demodulator and
clock recovery circuit of the receiver can be settled correctly. The minimum required preamble length is
application-dependent.

After the transmitter and receiver have synchronized, the receiver has to determine where the payload data
in the packet starts. The transmitter includes a known bit pattern to help identify the payload data; this is
called the synchronous word.

The receiver also needs to know how long the transmitted packet is going to be. There are several options to
indicate the length of the packet:

Send a special end character at the end of the packet.

Always transmit a fixed length packet.

Include the length information in the transmitted packet.

In this example code, fixed packet lengths are used; therefore, the length of the payload is not included in the
packet.

3.3.1. Start the Radio

The EZRadioPRO radio has a built-in FIFO for packet transmission. Once the basic radio parameters are
configured, only the payload data needs to be sent to the transmit FIFO of the radio; the packet transmission has to
be started, and the radio will transmit the data and go back to the selected power state. The radio can optionally
generate an interrupt when the packet transmission finishes.

This section describes how the EZRadioPRO can be configured to send the packet shown in Figure 14. Sample
Code 1 example project is used to demonstrate packet transmission. The code segments used in this chapter are
copied from the main.c file.

The radio IC has to be started or restarted in the following cases:

A reset event occurs

The power-down pin of the radio is pulled low (radio enabled)

Figure 15 shows how to start the radio.

Preamble Sync word Payload: `BUTTON1` + CR
AA AA AA AA AA 2D D4 42 55 54 54 4F 4E 31 0D

5 bytes 2 bytes 8 bytes

AN633

Rev. 0.1 17

Figure 15. Start the Radio IC

The power-down reset cycle of the EZRadioPRO devices takes about 1 ms. During this reset period, the radio
cannot accept any SPI command. There are two ways to determine if the chip is ready to receive SPI commands
after a reset event:

Use a timer in the host microcontroller to wait at least 1 ms.

Connect the GPIO1 pin of the radio to the host MCU, and poll the status of this pin. During power on reset,
it remains low. Once the reset is finished, the radio sets its state to high.

MCU Init

Issue POWER_UP
command over SPI

(GPIO1=)

Clear all interrupts
(GPIO1=)

Wait for max delay of
POR (~5ms)

HW reset

 CTS ready
over SPI?

 nIRQ = ?

 GPIO1 = ? N

Y

Optional

Optional

N NN

YY Y

 CTS ready
over SPI?

 GPIO1 = ?

 GPIO1 = ?

Y Y

N N

Optional

Start radio IC

 SDN =

AN633

18 Rev. 0.1

Note: The IO pins status of the host MCU is not guaranteed before they got initialized in the MCU_Init() function. Therefore the
power-down pin of the radio is set to high then low to perform a complete power on reset.

After a power on reset, the EZRadioPRO devices have to be sent to active mode by issuing a POWER_UP
command via the SPI interface. It takes approximately 14 ms to complete the command (boot time), and can be
monitored in three ways:

GPIO1 pin of the radio goes low by issuing the command and the radio sets it to high if the command is
completed

The nIRQ pin is asserted if the command is completed

The host MCU can monitor CTS over the SPI port to check when the command is completed:

Note: CTS is polled after sending the POWER_UP API command. If CTS does not arrive within 2500 attempts, the program
stops.

When the boot is complete, the radio asserts the CHIP_READY_PEND interrupt flag, and the NIRQ pin is set to
low. The flag can be cleared and NIRQ released if the interrupt flag is read by the GET_CHIP_STATUS or
GET_INT_STATUS commands.

 //Initialize the MCU:
 // - set IO ports for the Software Development board
 // - set MCU clock source
 // - initialize the SPI port
 MCU_Init();

 // Reset the radio
 EZRP_SDN = 1;
 // Wait ~300us (SDN pulse width)
 for(wDelay=0; wDelay<330; wDelay++);
 // Wake up the chip from SDN
 EZRP_SDN = 0;

 // Wait for POR (power on reset); ~5ms
 for(wDelay=0; wDelay<5500; wDelay++);

// Start the radio
abApi_Write[0] = CMD_POWER_UP; // Use API command to power up the radio IC
abApi_Write[1] = 0x01; // Write global control registers
abApi_Write[2] = 0x00; // Write global control registers
bApi_SendCommand(3,abApi_Write); // Send command to the radio IC
// Wait for boot

 if (vApi_WaitforCTS()) // Wait for CTS
{

while (1) {} //Stop if PRO NG power-up error
}

// Read ITs, clear pending ones
 abApi_Write[0] = CMD_GET_INT_STATUS; // Use interrupt status command
 abApi_Write[1] = 0; // Clear PH_CLR_PEND
 abApi_Write[2] = 0; // Clear MODEM_CLR_PEND
 abApi_Write[3] = 0; // Clear CHIP_CLR_PEND
 bApi_SendCommand(4,abApi_Write); // Send command to the radio IC
 bApi_GetResponse(8,abApi_Read); // Make sure that CTS is ready, then get the response

AN633

Rev. 0.1 19

3.3.2. Set RF Parameters

The following code sections set the basic RF parameters, such as center frequency, transmit data rate ,and
transmit deviation.

There are a couple properties that must be set accurately for the radio to exhibit the desired RF behavior. These
properties are in the MODEM and FREQUENCY property groups. Silicon Labs provides a PC tool (WDS - Si446x
Radio Control Panel), which calculates the RF setting properties for Transmit and Receive operations. WDS can
generate a header file for the proper property settings; it is called modem_params.h.

Figure 16. Generating modem_params.h header file in WDS

The modem_params.h header file contains definitions for the properties. Many properties are declared as
definitions to minimize the SPI communication between the host MCU and the radio. The format of the definition is
as follows:

The name of the definition is the name of the first property of the given definition sets.

The name of the definition ends with a number, which is the number of total bytes defined by the given
definition.

The first byte is the command ID of the SET_PROPERTY command.

The following three bytes follows the SET_PROPERTY command requirements: the address of the first
property and the number of properties set in the given command.

Finally, the values of the properties set by the command.

FREQ_CONTROL_INTE property setting from modem_params.h: SET_PROPERTY command is 0x11. The
property address is 0x4000; eight bytes are to be set, which are 0x1B, 0x0F...0xFF.

Figure 17. Center Frequency Definition in the modem_params.h

#define FREQ_CONTROL_INTE_12 0x11, 0x40, 0x08, 0x00, 0x1B, 0x0F, 0x8B, 0xF2, 0x00, 0x00, 0x20, 0xFF

AN633

20 Rev. 0.1

To utilize the definitions, a byte array has to be defined in the C file. The array has to be filled up with the content of
the given definition. The following code section shows how they are referenced at the beginning of the main.c
example code:

Finally, the byte array (the properties) should be sent as-is by the bApi_SendCommand() function to initialize the
radio as the following code section shows:

Note: Some of the definitions in the modem_params.h are adequate for Transmit or Receive operation only (those are marked
as “//all for TX in this section:” or “//all for RX below:” comments and should be used only for Transmit and Receive oper-
ation initialization). However, the properties defined in the section marked as “//all for general parameters in both TRX”
have to be set for all the operation modes.

Several test cards are supported by the sample codes. The desired test card can be selected in ezrp_next_api.h
(see "2.1. Test Card Options" on page 1). The desired operation mode can be set by the void vSetPAMode(U8
bPaMode, U8 bModType); function.

// Set up modem parameters database; data is retrieved from modem_params.h header file which is
// automatically generated by the WDS (Wireless Development Suite)
code U8 ModemTrx1[] = {7, MODEM_MOD_TYPE_7};
code U8 ModemTrx2[] = {5, MODEM_CLKGEN_BAND_5};
code U8 ModemTrx3[] = {11, SYNTH_PFDCP_CPFF_11};
code U8 ModemTrx4[] = {12, FREQ_CONTROL_INTE_12};

code U8 ModemTx1[] = {14, MODEM_DATA_RATE_2_14};
code U8 ModemTx2[] = {5, MODEM_TX_RAMP_DELAY_5};

// Set TRX parameters of the radio IC; data retrieved from the WDS-generated modem_params.h header
file

bApi_SendCommand(ModemTrx1[0],&ModemTrx1[1]); // Send API command to the radio IC
bApi_WaitforCTS(); // Wait for CTS
bApi_SendCommand(ModemTrx2[0],&ModemTrx2[1]);
bApi_WaitforCTS();
bApi_SendCommand(ModemTrx3[0],&ModemTrx3[1]);
bApi_WaitforCTS();
bApi_SendCommand(ModemTrx4[0],&ModemTrx4[1]);
bApi_WaitforCTS();

// Set TX parameters of the radio IC
bApi_SendCommand(ModemTx1[0],&ModemTx1[1]); // Send API command to the radio IC
bApi_WaitforCTS(); // Wait for CTS
bApi_SendCommand(ModemTx2[0],&ModemTx2[1]);
bApi_WaitforCTS();

AN633

Rev. 0.1 21

The function automatically gets its inputs by properly selecting the desired test card in ezrp_next_api.h and having
the desired modulation in modem_params.h.

3.3.3. Set Packet Content

The EZRadioPRO devices support four modes of operation:

FIFO mode

Packet handler mode

Direct mode

RAW data mode

Sample Code 1 uses Packet Handler mode. The preamble and sync word are configurable; both the length and the
pattern are defined by the user. After configuring them, they are controlled automatically by the radio IC. The only
thing the user application has to do with the packet (after the settings) is to put the payload into the transmit FIFO.

To configure packet parameters, such as preamble length and pattern, sync word length and pattern, fix packet
length, and the bit order of the payload, properties must be written as shown below:

void vSetPAMode(U8 bPaMode, U8 bModType)
{
 abApi_Write[0] = CMD_SET_PROPERTY;
 abApi_Write[1] = PROP_PA_GROUP;
 abApi_Write[2] = 4;
 abApi_Write[3] = PROP_PA_MODE;
 abApi_Write[4] = PaSettings[bPaMode][0];
 abApi_Write[5] = PaSettings[bPaMode][1];
 abApi_Write[6] = PaSettings[bPaMode][2];

if (bModType == MOD_OOK)
{
abApi_Write[7] = PaSettings[bPaMode][4];
}
else
{

 abApi_Write[7] = PaSettings[bPaMode][3];
}

 bApi_SendCommand(8, abApi_Write);
 vApi_WaitforCTS();
}

��������	
���	��
�������
� �����
������������������������������� !"#$%&��������������� �����'�(��)��)�������(�����������
'������

AN633

22 Rev. 0.1

The actual packet content has to be filled into the Transmit FIFO each time before packet transmission:

 // Set packet content
 // Set preamble length
 abApi_Write[0] = CMD_SET_PROPERTY; // Use property command
 abApi_Write[1] = PROP_PREAMBLE_GROUP; // Select property group
 abApi_Write[2] = 1; // Number of properties to be
written
 abApi_Write[3] = PROP_PREAMBLE_TX_LENGTH; // Specify property
 abApi_Write[4] = 0x05; // 5 bytes Tx preamble
 bApi_SendCommand(5,abApi_Write); // Send command to the radio IC
 vApi_WaitforCTS(); // Wait for CTS
 // Set preamble pattern
 abApi_Write[0] = CMD_SET_PROPERTY; // Use property command
 abApi_Write[1] = PROP_PREAMBLE_GROUP; // Select property group
 abApi_Write[2] = 1; // Number of properties to be
written
 abApi_Write[3] = PROP_PREAMBLE_CONFIG; // Specify property

 abApi_Write[4] = 0x31; // Use `1010` pattern, length defined in bytes
 bApi_SendCommand(5,abApi_Write); // Send command to the radio IC
 vApi_WaitforCTS(); // Wait for CTS
 // Set sync word
 abApi_Write[0] = CMD_SET_PROPERTY; // Use property command
 abApi_Write[1] = PROP_SYNC_GROUP; // Select property group
 abApi_Write[2] = 3; // Number of properties to be written
 abApi_Write[3] = PROP_SYNC_CONFIG; // Specify property
 abApi_Write[4] = 0x01; // 2 bytes synch word: 0x2DD4
 abApi_Write[5] = 0xB4; // 1st sync byte: 0x2D; NOTE: LSB transmitted first!
 abApi_Write[6] = 0x2B; // 2nd sync byte: 0xD4; NOTE: LSB transmitted first!
 bApi_SendCommand(7,abApi_Write); // Send command to the radio IC
 vApi_WaitforCTS(); // Wait for CTS
 // General packet config (set bit order)
 abApi_Write[0] = CMD_SET_PROPERTY; // Use property command
 abApi_Write[1] = PROP_PKT_GROUP; // Select property group
 abApi_Write[2] = 1; // Number of properties to be written
 abApi_Write[3] = PROP_PKT_CONFIG1; // Specify property
 abApi_Write[4] = 0x00; // payload data goes MSB first
 bApi_SendCommand(5,abApi_Write); // Send command to the radio IC
 vApi_WaitforCTS(); // Wait for CTS

// Put the payload to Tx FIFO
abApi_Write[0] = 0x42; // write 0x42 ('B')
abApi_Write[1] = 0x55; // write 0x55 ('U')
abApi_Write[2] = 0x54; // write 0x54 ('T')
… …
abApi_Write[7] = 0x0D; //write 0x0D (CR)

bApi_WriteTxDataBuffer(0x08, &abApi_Write[0]); // Write data to Tx FIFO
bApi_WaitforCTS(); // Wait for CTS

AN633

Rev. 0.1 23

3.3.4. Select Modulation

EZRadioPRO supports three different modulation types:

Frequency shift keying (FSK)

Gaussian frequency shift keying (GFSK)

On-off keying (OOK)

This example uses GFSK modulation, but the following sections provide an overview of the different modulation
types. Setting the modulation type can be performed via a property, MODEM_MOD_TYPE. In the sample codes,
this setting is included in the definition of the modem_params.h header file generated by WDS.

Note: The EZRadioPRO devices can also be set to provide non-modulated carrier signals or PN9 random data modulated sig-
nals for test purposes.

3.3.4.1. Frequency Shift Keying

FSK modulation uses a change in the frequency of the signal to transmit digital data.

Without modulation, the radio transmits a continuous wave signal (called the CW signal) on the center
frequency.

To send a 0 bit, the CW signal is decreased in frequency by an amount equal to the deviation, resulting in
a frequency of f0 – fFSK, where f0 is the center frequency, and fFSK is the deviation.

To send a 1 bit, the CW signal is increased in frequency by an amount equal to the deviation, resulting in a
frequency of f0 + fFSK.

Figure 18. FSK Modulation

FSK modulation is resistant to interference; however, the performance depends on the accuracy of the frequency
reference and thus on the crystal used with the radio.

A crystal of 10–20 ppm accuracy is recommended.

Crystals with looser tolerances can be used but require an increase in TX deviation and receiver bandwidth
to ensure that the signal frequency falls within the receiver's filter bandwidth. Increasing the signal
bandwidth results in a decrease in system sensitivity.

AN633

24 Rev. 0.1

3.3.4.2. Gaussian Frequency Shift Keying

GFSK modulation works like FSK modulation except that the data bits are filtered with a Gaussian filter. This
filtering reduces the sharp edges of the TX bits resulting in reduced spectral spreading and a narrower occupied
bandwidth.

Figure 19. FSK and GFSK Modulation Differences (Time Domain and Spectrum)

GFSK modulation offers robust link performance providing the highest performance in the narrowest occupied
bandwidth. Like FSK, the radio performance and link parameters are dependent on the selected crystal or TCXO.

3.3.4.3. On-Off Keying

OOK modulation encodes the data by switching the power amplifier on and off:

When no data is present, the power amplifier is switched off.

To send a 0 bit, the power amplifier is switched off during the bit period.

To send a 1 bit, the power amplifier is switched on during the bit period.

OOK modulation consumes less current compared to FSK and GFSK modulation since the power amplifier is
switched off when transmitting a logic “0”. However, OOK modulation provides less link robustness than FSK or
GFSK modulation and requires more frequency bandwidth. As a result, OOK modulation is typically used if
compatibility with an existing product is required.

3.3.5. Crystal Oscillator Tuning Capacitor

The accuracy of the radio center frequency is affected by several parameters of the crystal used with the radio,
such as load capacitance, crystal accuracy, and the parasitic of the PCB associated with the crystal circuit.

EZRadioPRO provides several features to reduce the impact of these crystal parameters:

By using a wide transmit deviation and wide receiver bandwidth, the link will be less sensitive to any
frequency offset, but the link budget will be reduced compared to an ideal case.

By using the built-in Auto-frequency calibration, the radio will adjust its center frequency to align with the
transmitter center frequency. This approach has the limitation of requiring a longer preamble.

Crystal inaccuracy can be compensated through the API by tuning the capacitance bank of the crystal
internally.

The crystal capacitance bank can be used to compensate for crystal mismatch by tuning it to the proper
capacitance value. Assuming that the same PCB and type of crystal is used during the entire life cycle of the
product, the crystal load capacitance value can be measured once and programmed. On the Silicon Labs demo
boards, the same type of crystal is used. The proper crystal load capacitance was measured, and is set in the
sample codes per the examples below.

AN633

Rev. 0.1 25

3.3.6. Send a Packet

After the MCU and the radio are initialized for packet transmission, the firmware sets the radio into SLEEP mode by
issuing a CHANGE_STATE command. It is very important to avoid any SPI activity after issuing the command;
otherwise, the radio wakes up from SLEEP mode automatically.

The firmware continuously monitors the status of the push buttons in the main loop. Once a button is pressed, the
software wakes up the radio from SLEEP mode, fills the appropriate payload into the transmit FIFO, starts the
packet transmission, and waits for the packet sent interrupt. During packet transmission, one of the LEDs is turned
on. In order to actually transmit, the START_TX command must be sent to the radio IC. Only the packet sent
interrupt is enabled; so, it is enough to monitor the NIRQ pin to determine when the packet is sent. After packet
transmission, the interrupt status registers are read to release the NIRQ pin, and the radio is set to SLEEP mode.

Note: In simple Packet Handler mode, the TX_LEN input parameter of the START_TX command defines the number of trans-
mitted bytes after the synchron word.

The following code section shows how a button press is captured and how the packet is transmitted:

#define CAP_BANK_VALUE 0x48 // Capacitor bank value for adjusting the XTAL
frequency
… …
// Adjust XTAL clock frequency
abApi_Write[0] = CMD_SET_PROPERTY; // Use property command
abApi_Write[1] = PROP_GLOBAL_GROUP; // Select property group
abApi_Write[2] = 1; // Number of properties to be written
abApi_Write[3] = PROP_GLOBAL_XO_TUNE; // Specify property
abApi_Write[4] = CAP_BANK_VALUE; // Set cap bank value to adjust XTAL clock frequency
bApi_SendCommand(5,abApi_Write); // Send command to the radio IC
vApi_WaitforCTS(); // Wait for CTS

//Put the Radio into SLEEP state
abApi_Write[0] = CMD_CHANGE_STATE; // Change state command
abApi_Write[1] = 0x01; // SLEEP state
bApi_SendCommand(2,abApi_Write); // Send command to the radio IC

AN633

26 Rev. 0.1

if (bButtonPushTrack) // Check if any of the buttons was pushed
{

while((GetPB(1)==0) || (GetPB(2)==0) || (GetPB(3)==0) || (GetPB(4)==0)); // Wait until released

//wake up the radio from SLEEP mode
abApi_Write[0] = CMD_CHANGE_STATE; // Change state command
abApi_Write[1] = 0x02; // SPI active state
bApi_SendCommand(2,abApi_Write); // Send command to the radio IC
vApi_WaitforCTS();

// Put the payload to Tx FIFO
abApi_Write[0] = 0x42; // write 0x42 ('B')
abApi_Write[1] = 0x55; // write 0x55 ('U')
abApi_Write[2] = 0x54; // write 0x54 ('T')
abApi_Write[3] = 0x54; // write 0x54 ('T')
abApi_Write[4] = 0x4F; // write 0x4F ('O')
abApi_Write[5] = 0x4E; // write 0x4E ('N')
switch (bButtonPushTrack) // write button nmbr and switch off the corresponding LED
{

case 1:
abApi_Write[6] = 0x31;
SetLed(1);

break;
case 2:

abApi_Write[6] = 0x32;
SetLed(2);

break;
case 4:

abApi_Write[6] = 0x33;
SetLed(3);

break;
case 8:

abApi_Write[6] = 0x34;
SetLed(4);

break;
}
abApi_Write[7] = 0x0D; //write 0x0D (CR)
bApi_WriteTxDataBuffer(0x08, &abApi_Write[0]); // Write data to Tx FIFO
vApi_WaitforCTS(); // Wait for CTS

// Start Tx
abApi_Write[0] = CMD_START_TX; // Use Tx Start command
abApi_Write[1] = 0; // Set channel number
abApi_Write[2] = 0x10; // Sleep state after Tx, start Tx immediately
abApi_Write[3] = 0x00; // 8 bytes to be transmitted (fix packet length, no packet field used)
abApi_Write[4] = 0x08; // 8 bytes to be transmitted (fix packet length, no packet field used)
bApi_SendCommand(5,abApi_Write); // Send command to the radio IC

// Wait for packet sent interrupt
while(EZRP_NIRQ == 1);

// Read ITs, clear pending ones
abApi_Write[0] = CMD_GET_INT_STATUS; // Use interrupt status command
abApi_Write[1] = 0; // Clear PH_CLR_PEND
abApi_Write[2] = 0; // Clear MODEM_CLR_PEND
abApi_Write[3] = 0; // Clear CHIP_CLR_PEND

AN633

Rev. 0.1 27

���������������*
)��������������+��*
)��,����%&� � ��������(�����������-��������.��
� *
)��/�����)�����0��*
)������%&�� � �����1���
����-��������������2��-���	����-�����)�����
�
� ���
���-��������������3����������
� �*
)��,����"4$�5���6��7
�/����
��&�� ����-��	��������(�������
� �*
)��,����"!$�5�4 4!&� � � � ����3����������
� *
)��������������8��*
)��,����%&� � ��������(�����������-��������.��
� �
� �����96�'�254&�96�'�2:;4444&�96�'�2<<%&� ���,��������-�9�3�6�(��*��������
�
� �9��(-��*=
�����
�-���(1%� � ��� (-�(1� 9�(-� *
����� 9���)������� ����� -��� ('���� �-��)��)���
3�6�
� >�
� � (����!?�
� � � �'���3���!%&�
� � *���1&�
� � (����8?�
� � � �'���3���8%&�
� � *���1&�
� � (����+?�
� � � �'���3���;%&�
� � *���1&�
� � (����0?�
� � � �'���3���+%&�
� � *���1&�
� @�
� *=
�����
�-���(1�5�4&� � � � ����'����*
�����)
�-����(1������*'��
@

AN633

28 Rev. 0.1

3.4. Packet Reception Using the Packet Handler(Sample Code 1)
The software example works as a continuous receiver node. After the MCU and the EZRadioPRO receiver device
are configured, the firmware sets the radio into continuous receiving mode and waits for packets. Once a packet
arrives with the same packet configuration shown in Figure 14 on page 16, it blinks the appropriate LED. If a packet
is received with a payload “Button1”, the software blinks LED1 on the development board (LED2 for “Button2”,
etc.). After a successful packet reception, the software restarts the receiver and waits for the next packet. Figure 20
shows the flowchart of the receive side of Sample Code 1.

Figure 20. Receiver Side Flowchart

As described earlier, Sample Code 1 uses the chip in Packet Handler mode. From a receiver point of view, this
means that the radio recognizes the preamble and the sync word automatically. After detecting the synchron word,
the radio stores the predefined number of bytes in the Receive FIFO. The MCU can read the payload by the
RX_FIFO_READ command.

Initialization of the radio IC when set as a receiver node is the same as when it is set as a transmitter node. First,
the MCU needs to be initialized. This is followed by resetting the radio IC and waiting for the device to turn on.
Then, the very first command, POWER_UP, should be sent to the radio IC to invoke the API. For more details,
about the initialization see "3.3.1. Start the Radio" on page 16.

3.4.1. Preamble Detection

It is mandatory to start every packet with a preamble; the only exception is when the device is used in raw data
mode. The role of the preamble is to allow the receiver to properly lock to the received signal prior to the arrival of
the data payload. Ideally, the preamble is alternating ones and zeroes (“0101”). To enable the easy replacement of
existing solutions, the Si446x family supports any non-standard preamble pattern up to four bytes and, optionally,
may allow bit errors.

The EZRadioPRO receivers have a built-in Preamble Detector. After settling the receiver, the radio compares the
received bits to the previously-set preamble bit pattern. If the preamble detector finds the predefined length of
consecutive preamble bits in the received data, the radio IC reports a valid preamble and generates a “preamble
detect” interrupt for the host MCU.

RF Init

Set RX/TRX parameters
from modem_params.h

(generated by WDS)

Configure Packet Handler,
Preamble, Sync word,

GPIOs, Fine tune XTAL

Packet received
interrupt arrived?

Valid packet
content?

Clear radio IC
Interrupts

Issue START_RX
command

N

Y

Blink an LED

Show invalid
packet error

Y

N

MCU Init,
Start radio IC

AN633

Rev. 0.1 29

The preamble detection threshold is programmable. The required preamble length depends on several factors
including the duration of the radio on-time, antenna diversity, and AFC. If the receiver on-time relative to the length
of the packet is long, then a short preamble threshold may result in false preamble detection. This condition can
arise since the receiver will receive long periods of random noise between packets, and there is a probability that
the noise (which is random data) contains a short preamble bit pattern. In this case, a longer preamble threshold
(e.g., 20 bits) is recommended. If the receiver is enabled synchronously just before the packet is transmitted, a
short preamble detection threshold (e.g. eight bits) can be used.

When antenna diversity is enabled, the receiver must make additional measurements during the preamble stage,
and thus a longer preamble must be used. It is recommended to set the preamble detection threshold to at least
20 bits when using antenna diversity. Likewise, when using the AFC in the receiver, additional measurements are
required during the preamble reception resulting in a longer required preamble length. For recommended transmit
preamble length and preamble detection threshold, refer to the data sheet.

The radio can raise the PREAMBLE_DETECT interrupt flag if the preamble is successfully detected. If it is
enabled, the radio pulls low the NIRQ pin, which can be released by reading the MODEM_STATUS pending
register.

3.4.2. Sync Word Detection

After the preamble is detected, the radio looks for the sync word. This known pattern can be up to four bytes and
fully configurable. If the radio does not find the sync word within timeout, it goes into a state defined by the
RXTIMEOUT_STATE input parameter of the START_RX command. The timeout is defined in bit timing and is as
long as the length of the sync word plus four bit times.

Note: The sync word is always transmitted LSB first.

//Set packet content
//Set preamble length
abApi_Write[0] = CMD_SET_PROPERTY; // Use property command
abApi_Write[1] = PROP_PREAMBLE_GROUP; // Select property group
abApi_Write[2] = 1; // Number of properties to be written
abApi_Write[3] = PROP_PREAMBLE_CONFIG_STD_1; // Specify property
abApi_Write[4] = 20; // 20 bits preamble detection threshold
bApi_SendCommand(5,abApi_Write); // Send API command to the radio IC
vApi_WaitforCTS(); // Wait for CTS

// Set preamble pattern
abApi_Write[0] = CMD_SET_PROPERTY; // Use property command
abApi_Write[1] = PROP_PREAMBLE_GROUP; // Select property group
abApi_Write[2] = 1; // Number of properties to be written
abApi_Write[3] = PROP_PREAMBLE_CONFIG; // Specify property
abApi_Write[4] = 0x31; // Use `1010` pattern, length defined in bytes
bApi_SendCommand(5,abApi_Write); // Send API command to the radio IC
vApi_WaitforCTS(); // Wait for CTS

// Set sync word
abApi_Write[0] = CMD_SET_PROPERTY; // Use property command
abApi_Write[1] = PROP_SYNC_GROUP; // Select property group
abApi_Write[2] = 3; // Number of properties to be written
abApi_Write[3] = PROP_SYNC_CONFIG; // Specify property
abApi_Write[4] = 0x01; // 2 bytes synch word: 0x2DD4
abApi_Write[5] = 0xB4; // 1st sync byte: 0x2D; NOTE: LSB transmitted first!
abApi_Write[6] = 0x2B; // 2nd sync byte: 0xD4; NOTE: LSB transmitted first!
bApi_SendCommand(7,abApi_Write); // Send command to the radio IC
vApi_WaitforCTS(); // Wait for CTS

AN633

30 Rev. 0.1

If the sync word is detected, the radio can generate SYNCH_DETECT interrupt and pull low NIRQ if it is enabled.

After the sync word is detected the radio receives the predefined amount of bytes and fills them into the Receive
FIFO. In simple Packet Handler mode, when no FIELD is used, the RX_LEN parameter of the START_RX
command defines how many bytes the radio need to receive after the sync word.

3.4.3. Receiving the Payload

After configuring the MCU and the radio, the example code goes into a continuous loop and waits for packet
reception. It then reads the contents of the Receive FIFO and compares the received payload to the expected data.
If a button press is initiated, one of the LEDs blinks on the transmit side, and the same LED should blink on the
receiver side. If a corrupted packet is received, all four LEDs turns on.

The MCU clears all pending interrupts and sets the radio into receive mode.

The radio is capable of measuring the signal strength (RSSI) of the incoming signal. It is also capable of saving the
RSSI upon predefined events, like preamble, sync word detection, etc. The fastest way to read the latched RSSI is
to use the FRRs (Fast Response Registers). The code example configures the radio to latch the actual RSSI after
detecting the sync word, and the MCU reads the value right after the packet is received using the FRRs.

// Wait for detect interrupt
if(EZRP_NIRQ == 0)
{

// Read PH IT registers to see the cause for the IT
abApi_Write[0] = CMD_GET_PH_STATUS; // Use packet handler status command
abApi_Write[1] = 0x00; // dummy byte
bApi_SendCommand(2,abApi_Write); // Send command to the radio IC
bApi_GetResponse(1,abApi_Read); // Get the response
if((abApi_Read[0] & 0x10) == 0x10) // Check if packet received
{//Packet received

// Get RSSI
bApi_GetFastResponseRegister(CMD_FAST_RESPONSE_REG_C,1,abApi_Read);
// Read the FIFO
bApi_ReadRxDataBuffer(8,abApi_Read);
fValidPacket = 0;
// Check the packet content
if ((abApi_Read[0]=='B') && (abApi_Read[1]=='U') && (abApi_Read[2]=='T') &&

(abApi_Read[3]=='T') && (abApi_Read[4]=='O') && (abApi_Read[5]=='N'))
{

bButtonNumber = abApi_Read[6] & 0x07; // Get button info
if((bButtonNumber > 0) && (bButtonNumber < 5))
{

SetLed(bButtonNumber); // Turn on the appropriate LED
for(wDelay=0; wDelay<30000; wDelay++); // Wait to show LED
ClearLed(bButtonNumber); // Turn off the corresponding LED
fValidPacket = 1;

}
}
// Packet content is not what was expected
if(fValidPacket == 0)

AN633

Rev. 0.1 31

� >�
� � � ���3���!%&� � � � � ���='��1��''�3�6��
� � � ���3���8%&�
� � � ���3���;%&�
� � � ���3���+%&�
� � � ����96�'�254&�96�'�2:;4444&�96�'�2<<%&�
� � � �'���3���!%&� �
� � � �'���3���8%&�
� � � �'���3���;%&�
� � � �'���3���+%&�
� � @�
� @�
�
� ��������.����('����)�����	������
� �*
)��,����"4$�5���6�/���.�����
�A�&� ���A���������
)������
��(������� �
� �*
)��,����"!$�5�4&� � � � ����'�����7��3�����6�
� �*
)��,����"8$�5�4&� � � � ����'�����B6����3�����6�
� �*
)��,����";$�5�4&� � � � ����'�����7.���3�����6�
� *
)��������������+��*
)��,����%&� � ��������(�����������-��������.��
� *
)��/�����)�����0��*
)������%&�� � �����1���
����-��������������2��-���	����-�����)�����
�
� ���������� �
� �*
)��,����"4$�5���6���
�����&� � � ���A���������� �(������� � �
� �*
)��,����"!$�5�4&� � � � � �������(-����'��
�*���
� �*
)��,����"8$�5�4 44&� � � � � ���������� ����������'2�
� �*
)��,����";$�5�4 44&� � � � � ���0�*2���������(�����
� �*
)��,����"+$�5�4 40&� � � � � ���0�*2���������(�����
� �*
)��,����"#$�5�4 44&� � � � � ������(-��	������ ������
��
� �*
)��,����"C$�5�4 4;&� � � � � �������2�������������� �
� �*
)��,����"D$�5�4 4;&� � � � � �������2����� �����'����
� *
)��������������0��*
)��,����%&� � � ��������
�.�(�����������-��������.�� �
� �
)��,����������%&� � � � � ���,������������
@�

AN633

32 Rev. 0.1

3.5. Using the FIELDs (Sample Code 2)
This section focuses on how to use the packet fields when using the packet handler in the Si446x. Packet fields
can be used to assign individual properties either to certain parts or to the entire payload. Maximum five fields can
be defined; it is up to the user how to split up the payload for these fields. The payload may consist of one field or
more; each of them may have different configurations, such as CRC calculation, data whitening, or Manchester
coding. The transmit/receive FIFOs are a maximum of 64 bytes long; the length of a field is a maximum of 255
bytes. It is possible to use a field that is larger than the FIFO. In such a case, the FIFO writing/reading should be
performed in multiple cycles using the FIFO almost full/empty interrupts.

Figure 21. Flowchart of Sample Code 2 (Transmitter Side)

RF Init

Set TX/TRX parameters
from modem_params.h

(generated by WDS)

Configure Packet Handler,
Preamble, Sync word,

FIELD, CRC, GPIOs, Fine
tune XTAL

Button
pushed?

Send radio IC to
SPI active state

Put the payload to
TX FIFO

Issue START_TX
command

Packet sent
interrupt arrived?

Clear radio IC
Interrupts

Send radio IC to
Sleep mode

N

Y

N

Y

MCU Init,
Start radio IC

AN633

Rev. 0.1 33

Figure 22. Flowchart of Sample Code 2 (Receiver Side)

Sample Code 2 has the same functionality as Sample Code 1 except that it uses CRC check and therefore a
FIELD. The FIELD covers the whole 8-byte payload, and two CRC bytes are attached to the end of the field in the
packet. Note that even though preamble, sync word, and CRC are also included in the packet, the user only has to
write/read the receive/transmit FIFO to send/get the actual payload. The packet handler takes care of everything
else, such as synchronizing the clock frequencies with the preamble, recognizing the packet start with the sync
word, and calculating and checking for CRC error. The CRC calculation starts at the beginning of the field, and it is
transmitted (or checked) at the end of it. In the sample code, the following packet is used:

RF Init

Set RX/TRX parameters
from modem_params.h

(generated by WDS)

Configure Packet Handler,
Preamble, Sync word,

FIELD, CRC, GPIOs, Fine
tune XTAL

Packet received
interrupt arrived?

Valid packet
content?

Clear radio IC
Interrupts

Issue START_RX
command

N

Y

Blink an LED

Show invalid
packet error

Y

N

CRC error?
Show CRC

error

Y

N

MCU Init,
Start radio IC

Preamble Sync word Payload: `BUTTON1` + CR CRC
AA AA AA AA AA 2D D4 42 55 54 54 4F 4E 31 0D 7A B1

5 bytes 2 bytes 8 bytes

AN633

34 Rev. 0.1

Configuring the device to use one field is implemented as the following:

Tx side:

Rx side:

When using field(s) the packet length should be set to zero in the START_TX and START_RX commands (length
should be defined in PKT_FIELD_x_LENGTH_x_x properties instead):

// Set packet fields (use only one field out of the available five)
abApi_Write[0] = CMD_SET_PROPERTY; // Use property command
abApi_Write[1] = PROP_PKT_GROUP; // Select property group
abApi_Write[3] = PROP_PKT_FIELD_1_LENGTH_12_8; // Specify first property
abApi_Write[2] = 4; // Number of properties to be written
abApi_Write[4] = 0x00;
abApi_Write[5] = 0x08; // 8 byte long packet field
abApi_Write[6] = 0x00; // No 4GFSK/whitening/Manchester coding for this
field
abApi_Write[7] = 0xA2; // Start CRC calc. from this field, check CRC at the
end
bApi_SendCommand(8,abApi_Write); // Send command to the radio IC
vApi_WaitforCTS(); // Wait for CTS

// Set packet fields (use only one field out of the available five)
abApi_Write[0] = CMD_SET_PROPERTY; // Use property command
abApi_Write[1] = PROP_PKT_GROUP; // Select property group
abApi_Write[2] = 4; // Number of properties to be written
abApi_Write[3] = PROP_PKT_FIELD_1_LENGTH_12_8; // Specify first property
abApi_Write[4] = 0x00;
abApi_Write[5] = 0x08; // 8 byte long packet field
abApi_Write[6] = 0x00; // No 4GFSK/whitening/Manchester coding for this
field
abApi_Write[7] = 0x8A; // Start CRC calc. from this field, check CRC at the
end
bApi_SendCommand(8,abApi_Write); // Send command to the radio IC
vApi_WaitforCTS(); // Wait for CTS

// Start Tx
abApi_Write[0] = CMD_START_TX; // Use Tx Start command
abApi_Write[1] = 0; // Set channel number
abApi_Write[2] = 0x30; // READY state after Tx, start Tx immediately
abApi_Write[3] = 0x00; // packet fields used, do not enter packet length here
abApi_Write[4] = 0x00; // packet fields used, do not enter packet length here
bApi_SendCommand(5,abApi_Write); // Send command to the radio IC
vApi_WaitforCTS(); // Wait for CTS

AN633

Rev. 0.1 35

With the packet fields feature, the packet structure is quite flexible. For instance, if four fields are used, it is possible
that the CRC calculation starts at the beginning of the first field; for the second field, it is completely disabled, and it
is continued in the third field. At the end of the third field, the CRC check sum is transmitted/checked; for the fourth
field, even a separate CRC check may be applied. Like CRC calculation, data whitening and Manchester coding
can also be applied individually for each field.

It is also possible to use variable packet length with the Si446x. In this case, one of the fields has variable length,
while all the other fields should have a fixed length. It is important that, on the receiver side, one fixed-length field
should be used before the variable length field, where the last byte of the fixed-length field defines the actual length
of the variable field. As for the transmitter, the packet should contain the length of the packet and should be entered
“manually” as part of the payload. On the receiver side, the length is extracted from the received packet
automatically. See "3.7. Variable Packet Length (Sample Code 3)" on page 42 for detailed information on using
variable packet length.

The fields can be set up through properties. Each field has four configuration properties:

PKT_FIELD_x_LENGTH_12_8

PKT_FIELD_x_LENGTH_7_0

PKT_FIELD_x_CONGIF

PKT_FIELD_x_CRC_CONFIG

If the fields are used, the actual lengths of the transmit/receive packets are defined by the field length properties
(i.e. PKT_FIELD_x_LENGTH_12_8, PKT_FIELD_x_LENGTH_7_0), and NOT by the TX_LEN / RX_LEN input
parameters of the START_TX / START_RX commands (TX_LEN / RX_LEN must be zeroes in such cases).
Sharing these properties between transmit and receive mode operations may require changing them frequently if
the radio IC is used for bidirectional communication. In order to ensure fast switching between transmit and receive
modes, there is an option to avoid this sharing by doubling the field configuration properties in the API:

Properties starting with PKT_FIELD_ can be used only for transmit operation.

Properties starting with PKT_RX_FIELD_ can be used only for receiver operation.

To select this option, there is a control bit in the PKT_CONFIG1 property:

If the PH_FIELD_SPLIT bit is set, then the PKT_FIELD_ properties are used for Transmit operation, while
PKT_RX_FIELD_ properties are used for Receive operation. Using this method, fast turnaround time can
be achieved since both Transmit and Receive operations could fully be configured prior to entering
Receive mode or starting packet transmission.

If the PH_FIELD_SPLIT bit is cleared, then the PKT_FIELD_ properties define both the Transmit and
Receive operations. This can be useful for single way operation.

Sample Code 2 focuses on a simple field usage where one field is used with fix length (8 bytes) and CRC16
calculation. It uses only one field on both the Transmit and Receive sides; the field is configured through only
PKT_FIELD_ properties.

���������� �
�*
)��,����"4$�5���6���
�����&� � � ���A���������� �(������� � �
�*
)��,����"!$�5�4&� � � � � �������(-����'��
�*���
�*
)��,����"8$�5�4 44&� � � � � ���������� ����������'2�
�*
)��,����";$�5�4 44&� � � � � �����(1������'���
������������������)�(1���'��	�-�-����
�*
)��,����"+$�5�4 44&� � � � � �����(1������'���
������������������)�(1���'��	�-�-����
�*
)��,����"#$�5�4 44&� � � � � ���� ����������� ������
��
�*
)��,����"C$�5�4 4;&� � � � � �����
6E�������������� �
�*
)��,����"D$�5�4 4;&� � � � � �����
6E����������� �����'����
*
)��������������0��*
)��,����%&� � � ��������
�.�(�����������-��������.�� � �
�
)��,����������%&� �

AN633

36 Rev. 0.1

The transmitter code has the same functionality, and it is almost the same as the simple FIFO transmit mode
(except the field settings); therefore, it is not detailed in this chapter.

The receiver code works the same way as the simple FIFO Receiver example, except that it checks the CRC
during packet reception. After a packet is received, not only the packet valid, but the CRC error interrupt is checked
also. If CRC error occurs, then Receive FIFO is not read, but the pending interrupts are cleared, and the radio is
set to receive mode again. Also, the MCU blinks LED1 and LED4 for a short period of time to show the user the
CRC error. The radio raises the CRC2_ERROR interrupt and pulls the NIRQ pin low in case of CRC error.

If a packet is received with correct CRC, then the PACKET_RX interrupt is set and the MCU reads the payload
from the Receive FIFO. It then compares the received data with the expected packet content and blinks the LED
accordingly.

// General packet config (set bit order)
abApi_Write[0] = CMD_SET_PROPERTY; // Use property command
abApi_Write[1] = PROP_PKT_GROUP; // Select property group
abApi_Write[2] = 1; // Number of properties to be written
abApi_Write[3] = PROP_PKT_CONFIG1; // Specify property
abApi_Write[4] = 0x00; // payload data goes MSB first
bApi_SendCommand(5,abApi_Write); // Send command to the radio IC
vApi_WaitforCTS(); // Wait for CTS

// Set packet fields (use only one field out of the available five)
abApi_Write[0] = CMD_SET_PROPERTY; // Use property command
abApi_Write[1] = PROP_PKT_GROUP; // Select property group
abApi_Write[2] = 4; // Number of properties to be written
abApi_Write[3] = PROP_PKT_FIELD_1_LENGTH_12_8; // Specify first property
abApi_Write[4] = 0x00;
abApi_Write[5] = 0x08; // 8 byte long packet field
abApi_Write[6] = 0x00; // No 4GFSK/whitening/Manchester coding for this

field
abApi_Write[7] = 0x8A; // Start CRC calc. from this field, check CRC at the

end
bApi_SendCommand(8,abApi_Write); // Send command to the radio IC
vApi_WaitforCTS(); // Wait for CTS

// Configure CRC polynomial and seed
abApi_Write[0] = CMD_SET_PROPERTY; // Use property command
abApi_Write[1] = PROP_PKT_GROUP; // Select property group
abApi_Write[2] = 1; // Number of properties to be written
abApi_Write[3] = PROP_PKT_CRC_CONFIG; // Specify property
abApi_Write[4] = 0x05; // CRC seed: all `1`s, poly: No. 5, 16bit
bApi_SendCommand(5,abApi_Write); // Send command to the radio IC
vApi_WaitforCTS(); // Wait for CTS

AN633

Rev. 0.1 37

���,����
���'��.�F�	����'�9�
���������.�F�55�4%�
>�
� ���������7�.����	���������������-��(�
��������-��.��
� �*
)��,����"4$�5���6�/����7���
�A�&� ���A���)�(1���-���'�������
��(�������
� �*
)��,����"!$�5�4 44&� � � � ����
��2�*2���
� *
)��������������8��*
)��,����%&� � ��������(�����������-��������.��
� *
)��/�����)�����!��*
)������%&�� �����1���
����-��������������2��-���	����-�����)�����
�
� ����-�(1�����������
� �����*
)������"4$�G�4 4�%�H5�4 44�%�
� >�
� � ���3���!%&� � � � ����-�9�3�6�(��*����������������������
� � ���3���+%&�
� @�
� ����-�(1���(1�����'���������
)��
� �����*
)������"4$�G�4 !4%�55�4 !4%� � ����-�(1����)�(1�����(������
� >����(1�����(������
� � ���/������.�
� � *
)��/��I������)������	������I
�������B������/���!��*
)������%&�
� � ���������-��I.IB�
� � *
)������� 6���=
�����0��*
)������%&�
�
� � �J�'����(1���5�4&�
� � ����-�(1��-��)�(1���(�������
� � ��� ���*
)������"4$55K=K%� GG� ��*
)������"!$55KAK%� GG� ��*
)������"8$55K�K%� GG�
��*
)������";$55K�K%�GG���*
)������"+$55KBK%�GG���*
)������"#$55K�K%%�

AN633

38 Rev. 0.1

 {
 bButtonNumber = abApi_Read[6] & 0x07; // Get button info
 if((bButtonNumber > 0) && (bButtonNumber < 5))
 {
 SetLed(bButtonNumber); // Turn on the appropriate LED
 for(wDelay=0; wDelay<30000; wDelay++); // Wait to show LED
 ClearLed(bButtonNumber);// Turn off the corresponding LED
 fValidPacket = 1;
 }
 }
 // Packet content is not what was expected
 if(fValidPacket == 0)
 {
 SetLed(1); // Blink all LEDs
 SetLed(2);
 SetLed(3);
 SetLed(4);
 }
 }
 for(wDelay=0; wDelay<30000; wDelay++);
 ClearLed(1);
 ClearLed(2);
 ClearLed(3);
 ClearLed(4);

 // Read ITs, clear pending ones
 abApi_Write[0] = CMD_GET_INT_STATUS; // Use interrupt status command
 abApi_Write[1] = 0; // Clear PH_CLR_PEND
 abApi_Write[2] = 0; // Clear MODEM_CLR_PEND
 abApi_Write[3] = 0; // Clear CHIP_CLR_PEND
 bApi_SendCommand(4,abApi_Write); // Send command to the radio IC
 bApi_GetResponse(8,abApi_Read); // Make sure that CTS is ready then get the response

 // Start Rx
 abApi_Write[0] = CMD_START_RX; // Use start Rx command
 abApi_Write[1] = 0; // Set channel number
 abApi_Write[2] = 0x00; // Start Rx immediately
 abApi_Write[3] = 0x00; // packet fields used, do not enter packet length here
 abApi_Write[4] = 0x00; // packet fields used, do not enter packet length here
 abApi_Write[5] = 0x00; // Rx state if Rx timeout
 abApi_Write[6] = 0x03; // READY state after Rx
 abApi_Write[7] = 0x03; // READY state if Rx invalid
 bApi_SendCommand(8,abApi_Write); // Send API command to the radio IC
vApi_WaitforCTS();
}

AN633

Rev. 0.1 39

3.6. Bidirectional Communication (Sample Code 3)
Sample Code 3 demonstrates how to use the Si446x for a two-way link communication. By default, the – two –
devices are in receiver mode and waiting for either a packet reception, or a button push. When pressing PB1 on
one of them, it sends a packet to the other device, which blinks its LED1 to show packet reception. Then the
receiver device sends back an acknowledgement packet to the sender, which is indicated by LED2.

The flowchart of Sample Code 3 is shown in Figure 23.

Figure 23. Sample Code 3 Flowchart

Button
pushed?

N

Y

Start radio IC,
RF Init

Issue START_RX
command

nIRQ arrived?

Get interrupt status

CRC error
interrupt?

Y

Show CRC
error

Packet
received?

Y

N

N

Y

N

Read RX FIFO and
process payload

Valid data
packet?

Valid ACK
packet?

N

Blink LED

Set payload
(ACK)

Set payload (data)

Go to RDY mode

Show packet
invalid

Show ACK
arrived

Clear radio IC
interrupts

Clear radio IC
interrupts

Fill the payload into
TX FIFO

Set FIELD lenght

Clear radio IC
interrupts

Issue START_TX
command

Wait for packet sent
interrupt

N

MCU Init

Y

Y

AN633

40 Rev. 0.1

This sample code shows how to use the variable field length. There is no automatic operation on the Transmit side
in terms of using variable packet length; the transmitted packet has to be set up by the host MCU, and the length
field has to be placed at the proper place of the packet. Therefore, using only one field on the transmit side is
sufficient:

The packet content shall be composed by the host MCU.

The packet needs to be filled into the FIFO.

The length of the transmitted packet shall be set by the PKT_FIELD_1_LENGTH_12_8 and
PKT_FIELD_1_LENGTH_7_0 properties.

In order to send single data or acknowledgement packets, the Si446x should change its state. In the code example,
the device first goes to Ready mode by calling CHANGE_STATE command, so that it will not to receive any further
packets while transmitting or preparing for transmitting:

Receiving the data is implemented in a similar manner as in Sample Code 1 and 2. First, the latched RSSI
information is read out, then the length of the payload by using the FIFO_INFO API command, and, finally, based
on the extracted length information, the data bytes are read out from the FIFO:

For transmitting the packet, a separate function, bSendPacket(), has been written. Its input parameters are the
length of the data to be transmitted and a pointer showing the memory location where the data starts. The function
is responsible for doing the state changes from Receive  Ready  Transmit, writing the transmit FIFO,
transmitting with the START_TX command, and setting the actual packet field lengths. After packet transmission
the radio goes into Ready mode.

// Go to Ready mode
abApi_Write[0] = CMD_CHANGE_STATE; // Use change state command
abApi_Write[1] = 3; // Go to Ready mode
bApi_SendCommand(2,abApi_Write); // Send command to the radio IC
vApi_WaitforCTS(); // Wait for CTS

���/������.�
*
)��/��I������)������	������I
�������B������/���!�G*����%&�
���/���'��	�-�����-��)�(1���
�*
)��,����"4$�5���6�I.IB�.�IB&� � � ���A���I.IB������(����������	����-��'��	�-������
*
)��������������!��*
)��,����%&� � � ��������(�����������-��������.��
*
)��/�����)�����8�G�*
)������"4$%&� � � �����1���
����-��������������2��-���	����-�����)�����
���������
���-��)�2'�����������-��'��	�-�
*
)������� 6���=
������*
)������"4$�G�*
)������"8$%&�

AN633

Rev. 0.1 41

A0�*������(1���A0�*3��	�-��A0�L�*��2'���%�
>�
� ��/�����J
�.
=3��*�����A0����/��6
�
%&�
� ��/�����J
�.
=3��*� .������"0$��A0����/��6
�
%&�
�
� �*
)��,����"4$�5���6��7
�/����
��&����A���(-��	��������(������� � �
� �*
)��,����"!$�5�;&� � � � ���/���������2������ �
� *
)��������������8��*
)��,����%&� � ��������(�����������-��������.�� �
� �
)��,����������%&� � � � ���,������������
�
� *
)��,����� 6���=
�����*3��	�-���*��2'���%&� ���,�������������� �I.IB�
� �
)��,����������%&� � � � ���,������������
�
� ����������)�(1���'��	�-�
� �*
)��,����"4$�5���6�������B����E&�� ���A���)��)���2�(�������
� �*
)��,����"!$�5���B���M��/�BA�&� � �����'�(��)��)���2�	��
)�
� �*
)��,����"8$�5�!&� � � � ����
�*������)��)����������*��9�������
� �*
)��,����";$�5���B���M��I.�36�!�3��/�7�D�4&� ����)�(��2�������)��)���2� � � �
� �*
)��,����"+$�5�*3��	�-&� � � ���I��'��'��	�-�������*'��)�(1���'��	�-�����%�
� *
)��������������#��*
)��,����%&� � ��������(�����������-��������.��
� �
)��,����������%&� � � � ���,������������
�
� ��������.��
� ��������.����('����)�����	������
� �*
)��,����"4$�5���6�/���.�����
�A�&� ���A���������
)������
��(������� �
� �*
)��,����"!$�5�4&� � � � ����'�����7��3�����6�
� �*
)��,����"8$�5�4&� � � � ����'�����B6����3�����6�
� �*
)��,����";$�5�4&� � � � ����'�����7.���3�����6�
� *
)��������������+��*
)��,����%&� � ��������(�����������-��������.��
� ���/����-�����)�����
� *
)��/�����)�����0�*� .������%&� � � �����1���
����-��������������2�
�
� ���������� �
� �*
)��,����"4$�5���6���
�����&� � ���A���� �������(������� � �
� �*
)��,����"!$�5�4&� � � � �������(-����'��
�*��� �
� �*
)��,����"8$�5�4 ;4&� � � � �������2�������������� ��������� ����������'2� �
� � � � � �
� �*
)��,����";$�5�4 44&� � � � ���)�(1������'���
������������������)�(1���'��	�-�-����
� �*
)��,����"+$�5�4 44&� � � � ���)�(1������'���
������������������)�(1���'��	�-�-����
� *
)��������������#��*
)��,����%&� � ��������(�����������-��������.��
� �
)��,����������%&� � � � ���,������������
�
� ���,��������)�(1��������������
)��
� 9-�'��������.�F�55�!%�
� �
� ��������.��
� ��������.����('����)�����	������
� �*
)��,����"4$�5���6�/���.�����
�A�&� ���A���������
)������
��(������� �
� �*
)��,����"!$�5�4&� � � � ����'�����7��3�����6�
� �*
)��,����"8$�5�4&� � � � ����'�����B6����3�����6�
� �*
)��,����";$�5�4&� � � � ����'�����7.���3�����6�
� *
)��������������+��*
)��,����%&� � ��������(�����������-��������.��
��������������*
)��/�����)�����0�*� .������ �����1���
����-��������������2��-���	����-�����)�����
�
� ���
���4&�
@�

AN633

42 Rev. 0.1

3.7. Variable Packet Length (Sample Code 3)
Using variable packet lengths is very common in bidirectional communication. In Sample Code 3, the packet
structure is set up in such a way that, after the preamble and sync word, the packet length info (1 byte) is included
in the payload:

The radio can extract the length information from the received packet automatically. For this operation, it is desired
to use a minimum of two fields. A fixed length field has to precede the variable length field, and the actual length
information has to be the last byte of this fixed-length field. The variable field length operation for the Receive side
shall be configured through these properties: PKT_LEN, PKT_LEN_FIELD_SOURCE, and PKT_LEN_ADJUST.

PKT_LEN determines which field is used with variable length and whether the length info will be put in the FIFO.
PKT_OFFSET determines where in the field the length information starts. In the code example, the offset is set to
zero. The first field is used to hold the length information, while the second field has variable length, and contains
the actual data.

Preamble Sync Payload: Length + Data [`BUTTON1` + CR] CRC
AA AA AA AA AA 2D D4 0� 42 55 54 54 4F 4E 31 0D xx xx

5 bytes 2 bytes 1 + 8 bytes 2 bytes

Preamble Sync Lgth `ACK` CRC
AA AA AA AA AA 2D D4 0� 41 43 4B xx xx

5 bytes 2 bytes ����3 bytes 2 bytes

AN633

Rev. 0.1 43

� ���/�����'�)�(1���(����	������*��������%�
� �*
)��,����"4$�5���6�������B����E&�� ����A���)��)���2�(�������
� �*
)��,����"!$�5���B���M��/�BA�&� � ������'�(��)��)���2�	��
)� � � �
� �*
)��,����"8$�5�!&� � � � �����
�*������)��)����������*��9�������
� �*
)��,����";$�5���B���M���B�I./!&� � �����)�(��2�)��)���2� � � �
� �*
)��,����"+$�5�4 04&� � � ���������������������)����������������I.�36�)��)�����������
�����)�2'���������	������=�������
� *
)��������������#��*
)��,����%&� � ���������(�����������-��������.��
� �
)��,����������%&� � � �������������������,������������
�
� ������������*'��)�(1���'��	�-�
� �*
)��,����"4$�5���6�������B����E&�� ���A���)��)���2�(�������
� �*
)��,����"!$�5���B���M��/�BA�&� � �����'�(��)��)���2�	��
)� � � �
� �*
)��,����"8$�5�;&� � � � ����
�*������)��)����������*��9�������
� �*
)��,����";$�5���B���M��3��&� � ����)�(��2�)��)���2� � � �
� �*
)��,����"+$�5�4 48&� � � �����������������3��	�-����)
������-��� �I.IB��I.�36�8����
���������-��)�2'�����
� �*
)��,����"#$�5�4 4!&� � � �����������������I.�36�!����
���������-��'��	�-�������������
� �*
)��,����"C$�5�4 44&� � � ����������������������N
��������I.�36�!�������������-���(�
�'�)�2'����'��	�-%�
� *
)��������������D��*
)��,����%&� ����������������������(�����������-��������.��
� �
)��,����������%&� � � � ���,������������
�
� �������)�(1������'�������� ���������'�����
���%�
� �*
)��,����"4$�5���6�������B����E&�� ���A���)��)���2�(�������
� �*
)��,����"!$�5���B���M��/�BA�&� � �����'�(��)��)���2�	��
)�
� �*
)��,����"8$�5�+&� � � � ����
�*������)��)����������*��9�������
� �*
)��,����";$�5���B���M��I.�36�!�3��/�7�!8�0&� �����������������)�(��2�������)��)���2� � � �
� �*
)��,����"+$�5�4 44&� � � � ���6�������'������
�����*������(1���%�%�
� �*
)��,����"#$�5�4 44&� � � � ���6�������'������
�����*������(1���%�%��
� �*
)��,����"C$�5�4 44&� � � � ������+/I�M�9-������	����(-������(����	������-������'��
� �*
)��,����"D$�5�4
8&� � � � �������������(�'(O�������-������'����������������-������������
� *
)��������������0��*
)��,����%&� ����������������������(�����������-��������.��
� �
)��,����������%&� � � �����������������,������������
�
� �������)�(1������'�������� ���9�����'�������
���%�
� ��I.�36!������ �!*2���'��	�-��
���������M��3���
� �*
)��,����"4$�5���6�������B����E&�� ���A���)��)���2�(�������
� �*
)��,����"!$�5���B���M��/�BA�&� � �����'�(��)��)���2�	��
)�
� �*
)��,����"8$�5�+&� � � � ����
�*������)��)����������*��9�������
� �*
)��,����";$�5���B���M�����I.�36�!�3��/�7�!8�0&� ����)�(��2�������)��)���2� � � �
� �*
)��,����"+$�5�4 44&� � � � ����� O����'��'��	�-�������*'��)�(1���'��	�-%�
� �*
)��,����"#$�5�4 4!&� � � � ����� O����'��'��	�-�������*'��)�(1���'��	�-%�
� �*
)��,����"C$�5�4 44&� � � � ������+/I�M�9-������	����(-������(����	������-������'��
� �*
)��,����"D$�5�4 08&� � � � �������������(�'(O�������-������'������*'������(�'(O�
� *
)��������������0��*
)��,����%&� � ��������(�����������-��������.��
� ��I.�368���������*'��'��	�-��(���������-���(�
�'�)�2'����
� �
)��,����������%&� � � � ���,������������
� �*
)��,����"4$�5���6�������B����E&�� ���A���)��)���2�(�������
� �*
)��,����"!$�5���B���M��/�BA�&� � �����'�(��)��)���2�	��
)�
� �*
)��,����"8$�5�+&� � � � ����
�*������)��)����������*��9�������
� �*
)��,����";$�5���B���M�����I.�36�8�3��/�7�!8�0&� ����)�(��2�������)��)���2� � � �
� �*
)��,����"+$�5�4 44&� � � � ���!�*2����(��������	������*'��)�(1���'��	�-�����%
� �*
)��,����"#$�5��
�����3��/�7&� � ���!�*2����(��������	������*'��)�(1���'��	�-�����%�
� �*
)��,����"C$�5�4 44&� � � � ������+/I�M�9-������	����(-������(����	������-������'��
� �*
)��,����"D$�5�4 4
&� � � � �������������(�'(O�������-������'���(-�(1���������-����������*'������(�'(O�
� *
)��������������0��*
)��,����%&� ����������������������(�����������-��������.��
����������������
)��,����������%&�
�
�

AN633

44 Rev. 0.1

Packet reception is implemented exactly as shown in the Sample Code 2; the only exception being that an
acknowledgement packet is transmitted upon valid packet reception.

���,�����������������
)��
���������.�F�55�4%� �
>�
� ��������.����('����)�����	������
� �*
)��,����"4$�5���6�/���.�����
�A�&� ���A���������
)������
��(������� �
� �*
)��,����"!$�5�4&� � � � ����'�����7��3�����6�
� �*
)��,����"8$�5�4&� � � � ����'�����B6����3�����6�
� �*
)��,����";$�5�4&� � � � ����'�����7.���3�����6�
� *
)��������������+��*
)��,����%&� � ��������(�����������-��������.��
� *
)��/�����)�����0�*.�����
�%&� � � ���/����-�����)�����
�
� ��(-�(1��-��������������-��.��
� ����*.�����
�"8$�G�4 40%�55�4 40%�
� >������������
� � ���3���!%&� � � � ����-�9�3�6�(��*����������������������
� � ���3���+%&�
� @�
� ����*.�����
�"8$�G�4 !4%�55�4 !4%�
� >��)�(1�����(������
� � ���/������.�
� � *
)��/��I������)������	������I
�������B������/���!�G*����%&���/���'��	�-�����-��)�(1���
� � �*
)��,����"4$�5���6�I.IB�.�IB&� ���A���I.IB������(����������	����-��'��	�-�
� � *
)��������������!��*
)��,����%&� ��������(�����������-��������.��
� � *
)��/�����)�����8�G�*
)������"4$%&� ���/����-�����)�����
� � ���������
���-��)�2'�����������-��'��	�-�
� � *
)������� 6���=
������*
)������"4$�G�*
)������"8$%&�
�
� � ����-�(1��-��)�(1���(������?���	
����
��9-���)�(1��������(����������������(1%�
� � ��� ���*
)������"8$55K=K%� GG� ��*
)������";$55KAK%� GG� ��*
)������"+$55K�K%� GG�
��*
)������"#$55K�K%�GG���*
)������"C$55KBK%�GG���*
)������"D$55K�K%%����6����)�(1�����(������
� � >�
� � � ���3���8%&� � � ����
�������-���))��)������3�6�
� � � ����96�'�254&�96�'�2:;4444&�96�'�2<<%&� ���,��������-�9�3�6�
� � � �'���3���8%&� � � ����
��������-��(�����)�����	�3�6�
� � � ���3���!%&� � � ����
�������-���))��)������3�6�
�
� � � ����
���-��)�2'�������� �I.IB�
� � � �*��2'���"4$�5�3��/�7�BI�
�M��
E3B
6P!&� ���9������-��'��	�-����)�2'����
� � � �*��2'���"!$�5�4 +!&� � ���9�����4 +!��K
K%�
� � � �*��2'���"8$�5�4 +;&� � ���9�����4 +;��K�K%�
� � � �*��2'���";$�5�4 +=&� � ���9�����4 +=��KMK%�
�
� � � *������(1���3��/�7�BI�
�M��
E3B
6���*��2'���%&� ��������
�M�)�(1���
�
� � � ����96�'�254&�96�'�2:;4444&�96�'�2<<%&� ���,��������-�9�3�6�
� � � �'���3���!%&� � � ����
��������-��(�����)�����	�3�6�
� � @�

AN633

Rev. 0.1 45

3.8. Using 4(G)FSK Modulation (Sample Code 4)
Si446x radios can be configured to transmit packets with 4(G)FSK modulation. In such a case, one symbol
represents two bits; this is in contrast to 2(G)FSK, where one symbol represents one bit. As a result, the bit rate
can be doubled with the same symbol rate. Sample Code 4 demonstrates how to configure the radio IC using
4(G)FSK modulation.

In order for the device to operate in 4(G)FSK mode, the following must be accomplished:

Generate a new modem_params.h under WDS, where 4(G)FSK modulation is enabled; this will contain the
correct parameters for the modem.

In PKT_CONFIG1 property, enable 4(G)FSK; this setting is for the packet handler.

Use a FIELD (see "3.5. Using the FIELDs (Sample Code 2)" on page 32.), and enable 4(G)FSK modulation
in PKT_FIELD_x_CONFIG.

Configure PKT_CHIP_MAP and MODEM_FSK4_MAP properties to achieve the desired symbol map (see
Table 3, “Settings for the 24 Possible Symbol Maps,” on page 46).

Relevant segments of the sample code are shown below.

// General packet config (set bit order)
abApi_Write[0] = CMD_SET_PROPERTY; // Use property command
abApi_Write[1] = PROP_PKT_GROUP; // Select property group
abApi_Write[2] = 2; // Number of properties to be written
abApi_Write[3] = PROP_PKT_CONFIG1; // Specify property
abApi_Write[4] = 0x20; // 4FSK enabled, payload data goes MSB first

(PKT_CONFIG1)
abApi_Write[5] = PH_4FSK_MAP; // Packet handler 4(G)FSK map (PKT_CHIP_MAP)
bApi_SendCommand(6,abApi_Write); // Send command to the radio IC
vApi_WaitforCTS(); // Wait for CTS

// Set packet fields (use only one field out of the available five)
abApi_Write[0] = CMD_SET_PROPERTY; // Use property command
abApi_Write[1] = PROP_PKT_GROUP; // Select property group
abApi_Write[2] = 4; // Number of properties to be written
abApi_Write[3] = PROP_PKT_FIELD_1_LENGTH_12_8; // Specify first property
abApi_Write[4] = 0x00;
abApi_Write[5] = 0x08; // 8 byte long packet field
abApi_Write[6] = 0x10; // 4(G)FSK enabled, no whitening/Manchester coding for this field
abApi_Write[7] = 0x8A; // PKT_FIELD_1_CRC_CONFIG Start CRC calc. from this field, check CRC at the

end
bApi_SendCommand(8,abApi_Write); // Send command to the radio IC
vApi_WaitforCTS(); // Wait for CTS

// Set 4(G)FSK map
abApi_Write[0] = CMD_SET_PROPERTY; // Use property command
abApi_Write[1] = PROP_MODEM_GROUP; // Select property group
abApi_Write[2] = 1; // Number of properties to be written
abApi_Write[3] = PROP_MODEM_FSK4_MAP; // Specify property
abApi_Write[4] = MODEM_4FSK_MAP; // Modem 4(G)FSK map (MODEM_FSK4_MAP)
bApi_SendCommand(5,abApi_Write); // Send command to the radio IC
vApi_WaitforCTS(); // Wait for CTS

AN633

46 Rev. 0.1

As shown in Table 3, there are 24 possible permutations of how to map pairs of data bits into modulation level 1–4
(i.e., into the four frequency channels). Table 3 summarizes all variations, where “–3”, “–1”, “+1”, and “+3” refer to
the four modulation levels: “–3” refers to <center frequency – 3 x deviation>, “–1” refers to <center frequency – 1 x
deviation>, etc.

Note that certain symbol maps require different settings on the TX side of the link than on the RX side of the link
(e.g., symbol map No. 1 vs No. 3). This must be taken into account in case of bidirectional communication, as
MODEM_FSK4_MAP may need to be updated at every TX-RX / RX-TX state change, and this “extra” SPI
communication takes some time. The recommended preamble length in case of 4(G)FSK modulation is min. 48
bits if AFC is ON, 40 bits if AFC is OFF, while the preamble detection threshold should be at least 16 bits.

Table 3. Settings for the 24 Possible Symbol Maps

No. 4(G)FSK TX/RX TX RX

4-LEVEL CODE PKT_CHIP_MAP MODEM_FSK4_MAP MODEM_FSK4_MAP

–3 –1 +1 +3 0x1207 0x203F 0x203F

1 `00 `01 `11 `10 1E B4 B4

2 `00 `01 `10 `11 1B E4 E4

3 `00 `11 `01 `10 36 78 9C

4 `00 `11 `10 `01 39 6C 6C

5 `00 `10 `01 `11 27 D8 D8

6 `00 `10 `11 `01 2D 9C 78

7 `01 `00 `11 `10 4E B1 B1

8 `01 `00 `10 `11 4B E1 E1

9 `01 `11 `00 `10 72 72 8D

10 `01 `11 `10 `00 78 63 2D

11 `01 `10 `00 `11 63 D2 C9

12 `01 `10 `11 `00 6C 93 39

13 `11 `00 `01 `10 C6 39 93

14 `11 `00 `10 `01 C9 2D 63

15 `11 `01 `00 `10 D2 36 87

16 `11 `01 `10 `00 D8 27 27

17 `11 `10 `00 `01 E1 1E 4B

18 `11 `10 `01 `00 E4 1B 1B

19 `10 `00 `01 `11 87 C9 D2

20 `10 `00 `11 `01 8D 8D 72

21 `10 `01 `00 `11 93 C6 C6

22 `10 `01 `11 `00 9C 87 36

23 `10 `11 `00 `01 B1 4E 4E

24 `10 `11 `01 `00 B4 4B 1E

AN633

Rev. 0.1 47

NOTES:

AN633

48 Rev. 0.1

CONTACT INFORMATION

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032

Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.

Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

https://www.silabs.com/support/pages/contacttechnicalsupport.aspx

	1. Introduction
	2. Hardware Options
	2.1. Test Card Options
	Figure 1. Direct Tie Si4461 Test Card Schematic

	2.2. UDP Platform
	Table 1. Si446x Pin Assignments
	2.2.1. Setting up the Development Board
	Figure 2. Jumper Positions (JP19, JP21)
	2.2.2. Downloading and Running the Example Codes
	Figure 3. J13 Connector on the MCU Card

	2.3. Using the Resources of the Development Board
	2.3.1. Initialization
	2.3.2. LED and Push Buttons

	3. Using the Si446x Radios
	3.1. Controlling the Radio
	3.2. Application Programming Interface
	3.2.1. Sending Commands
	Figure 4. Send Command SPI Transaction
	Table 2. Commands
	Figure 5. CTS Read over SPI after a Command is Sent
	3.2.2. Get Response to a Command
	Figure 6. Read Procedure
	Figure 7. Read the Response from the Radio
	Figure 8. Monitor CTS and Read the Response on the SPI Bus
	3.2.3. Write and Read the FIFOs
	Figure 9. Transmit FIFO Write
	Figure 10. Receive FIFO Read
	3.2.4. Using the Fast Response Registers
	Figure 11. Reading a Single Fast Response Register
	Figure 12. Reading More Fast Response Registers in a Single SPI Transaction
	3.2.5. Using the API in the Sample Codes

	3.3. Packet Transmitting Using the Packet Handler (Sample Code 1)
	Figure 13. Transmitter Side Flowchart
	Figure 14. Packet Configuration
	3.3.1. Start the Radio
	Figure 15. Start the Radio IC
	3.3.2. Set RF Parameters
	Figure 16. Generating modem_params.h header file in WDS
	Figure 17. Center Frequency Definition in the modem_params.h
	3.3.3. Set Packet Content
	3.3.4. Select Modulation
	Figure 18. FSK Modulation
	Figure 19. FSK and GFSK Modulation Differences (Time Domain and Spectrum)
	3.3.5. Crystal Oscillator Tuning Capacitor
	3.3.6. Send a Packet

	3.4. Packet Reception Using the Packet Handler(Sample Code 1)
	Figure 20. Receiver Side Flowchart
	3.4.1. Preamble Detection
	3.4.2. Sync Word Detection
	3.4.3. Receiving the Payload

	3.5. Using the FIELDs (Sample Code 2)
	Figure 21. Flowchart of Sample Code 2 (Transmitter Side)
	Figure 22. Flowchart of Sample Code 2 (Receiver Side)

	3.6. Bidirectional Communication (Sample Code 3)
	Figure 23. Sample Code 3 Flowchart

	3.7. Variable Packet Length (Sample Code 3)
	3.8. Using 4(G)FSK Modulation (Sample Code 4)
	Table 3. Settings for the 24 Possible Symbol Maps

