

Pi-cromite
User

Manual

MMBasic Ver 5.05.03

This manual is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Australia license (CC BY-NC-SA 3.0)

Pi-cromite Manual Page 2

The Pi-cromite is a new addition to the Micromite family using the Raspberry Pi. The Pi-cromite
firmware implements most of the features of the standard Micromite and the Micromite Plus as
described in the Micromite User Manual and the Micromite Plus Manual. It has a number of
differences and additional features and they are described in this document.
The focus of this manual is to describe just the features that are unique to the Pi-cromite. For
general Micromite programming you should refer to the Micromite User Manual and the Micromite
Plus Manual in addition to this manual.

Contents

Introduction ... 3
Micromite Family Summary ... 4
Suitable Raspberry Pi and Installation Requirements .. 6
40-pin Pi-cromite Pinout .. 7
Unique Pi-cromite Features ... 8
Commands (Pi-cromite Only) .. 9
Functions (Pi-cromite Only) ... 18
Appendix A - Sensor Fusion ... 21
Appendix B - Socket Use ... 22
Appendix C - Code Examples .. 26
Appendix D - Using an I2S DAC with MMBasic .. 27
Appendix E - Using an HDMI Display with MMBasic .. 28
Appendix F - Sprites ... 29
Appendix G - Running a program at boot ... 31

Pi-cromite Manual Page 3

Introduction
This section provides an introduction for users who are familiar with the Micromite and the Micromite
Plus and need a summary of the extra features in the Pi-cromite.
The Pi-cromite is an extension of the standard Micromite and the Micromite Plus; most of the features
of these two versions are also in the Pi-cromite. This includes features of the BASIC language,
input/output, communications, etc. Some commands have changed slightly but for the main part
Micromite programs will run unchanged on the Pi-cromite.
The following summarises features of the Pi-cromite as compared to the standard Micromite and the
Micromite Plus:

Raspberry Pi
The Pi-cromite is based on the Raspberry Pi. The Raspberry Pi is available a number of versions
and has up to fifteen times the program space of the MX series used in the standard Micromite and is
many times faster. The Pi3 is 5x faster than even a 252MHz PIC32MZ.

High Speed Double Precision Floating Point
The Pi-cromite uses the built in hardware floating point capability of the Broadcom processor which is
much faster than floating point on the standard Micromite and uses double precision floating point.

I/O Pins
The Pi-cromite has 26 free I/O pins. The Broadcom chip does not support analogue input.
The Pi-cromite has one I2C port which can be implemented on any pair of pins, one SPI port, one
high speed PWM channel (low speed PWM and servo control can be implemented on any/all I/O
pins) and two serial COM ports.

High Speed LCD Panels
The Pi-cromite supports eleven different sized LCD display panels from 1.44" to 8

Socket I/O
The Pi-cromite can support opening a socket which allows network based applications to be
programmed directly in Basic. The TRANSMIT command will automatically create valid HTTP
headers including file lengths making web programming simple

Pi-cromite Manual Page 4

Micromite Family Summary
The Micromite Family consists of three major types, the standard Micromite, the Micromite Plus and
the Pi-cromite. All use the same BASIC interpreter and have the same basic capabilities however
they differ in the number of I/O pins, the amount of memory, the displays that they support and their
intended use.

Standard Micromite Comes in a 28-pin or 44-pin package and is designed for small embedded
controller applications and supports small LCD display panels. The 28-pin
version is particularly easy to use as it is easy to solder and can be plugged
into a standard 28-pin IC socket.

Micromite Plus This uses a 64-pin and 100-pin TQFP surface mount package and supports a
wide range of touch sensitive LCD display panels from 1.44" to 8" in addition to
the standard features of the Micromite. It is intended as a sophisticated
controller with easy to create on-screen controls such as buttons, switches,
etc.

Micromite eXtreme This comes in 64, 100-pin and 144-pin TQFP surface mount packages. The
eXtreme version has all the features of the other two Micromites but is faster
and has a larger memory capacity plus the ability to drive a VGA monitor for a
large screen display. It works as a powerful, self contained computer with its
own BASIC interpreter and instant start-up.

Pi-cromite Runs on all versions of the Raspberry Pi with a 40-pin I/O connector. No
analogue input capability but 5x faster than a Micromite eXtreme when running
on a Pi 3.

 Micromite Micromite Plus Micromite eXtreme Pi-cromite

28-pin

DIP
44-pin
SMD

64-pin
SMD

100-
pin

SMD

100-
pin

SMD

144-pin
SMD

64-pin
SMD

Raspberry

Pi

Maximum CPU Speed 48

MHz
48

MHz
120

MHz
120

MHz
252MH

z
252

MHz
252

MHz
1200MHz

Maximum BASIC
Program Size

59 KB 59 KB 100 KB 100 KB 540 KB 540 KB 540 KB 1024KB

RAM Memory Size 52 KB 52 KB 108 KB 108 KB 460 KB 460 KB 460 KB 1024KB

Clock Speed (MHz) 5 to
48

5 to
48

5 to
120

5 to
120

200 to
252

200 to
252

200 to
252

700-1200

Total Number of I/O
pins

19 33 45 77 75 115 46 26

Number of Analog
Inputs

10 13 28 28 40 48 24 0

Number of Serial I/O
ports

2 2 3 or 4 3 or 4 3 or 4 3 or 4 3 or 4 2

Number of SPI
Channels

1 1 2 2 3 3 2 1

Number of I2C
Channels

1 1 1 +
RTC

1 +
RTC

2 +
RTC

2 + RTC 1 +
RTC

1

Number of 1-Wire I/O
pins

19 33 45 77 75 115 46 26

PWM or Servo
Channels

5 5 5 5 6 6 6 26

Serial Console Native
Linux

USB Console Native
Linux

PS2 Keyboard and
LCD Console

 Native
Linux

SD Card Interface Native
Linux

Supports ILI9341 LCD
Displays

Pi-cromite Manual Page 5

Supports Ten LCD
Panels from 1.44" to 8"
(diameter)

 +

ILI9481

Supports VGA Displays

Sound Output
(WAV/tones)

 Native
Linux

Supports PS2 Mouse
Input

 Native
Linux

Floating Point Precision Single Single Double
S/W

Double
S/W

Double
H/W

Double
H/W

Double
H/W

Double
H/W

Power Requirements
3.3V

30 mA
3.3V

30 mA
3.3V

80 mA
3.3V

80 mA
3.3V
160

mA

3.3V
160 mA

3.3V
160

mA

5V
100mA –

1.6A

Pi-cromite Manual Page 6

Suitable Raspberry Pi and Installation Requirements

The Pi-cromite firmware supports any Raspberry Pi with the 40-pin I/O header. The code should work
properly on A+, B+, Pi Zero (W), Pi2B, Pi3B but not currently on Model A, B, or B (revision 2).

It is recommended that Raspbian Lite is installed on single CPU versions of the Pi. Full Raspbian can
be used on multi-CPU versions.

The code has been developed and tested on the Pi 3 Model B version 1.2 (full Raspbian) and the Pi
Zero W V1.1 (Raspbian Lite) using Netbeans IDE V8.2 running on a W10 PC.

In order for the firmware to work pigpio software version 68 must be installed see:
http://abyz.co.uk/rpi/pigpio/download.html for details of how to install this version.

Pins may be reserved for Linux use allowing devices like I2S audio DACs to be accessed. See the
command OPTION PINS for more details.

All system devices and Linux commands can be accessed from MMBasic. See the SYSTEM
command for more details.

The 3.3V rail on a Pi 3 is very noisy when the Pi is powered with the official Pi mains adapter.
Devices such as IR receivers should be powered from the 5V rail using a 3.3V linear regulator to
avoid issues.

There are known timing issues with the Pi 3 that may affect serial communications and Bitstream
output – see the OPTION WAVETIME command for more details.

The Pi-cromite firmware should be copied to a suitable directory on the Pi before use. When first run
the firmware creates a hidden file .options in the same directory. This file should be deleted before
any new version is installed.

The firmware must be set as executable before running using chmod +x mmbasic

The firmware requires privileged access to the Pi hardware and so must be run using the sudo
command
 sudo ./mmbasic

NB The Pi-cromite firmware sits in a tight loop polling for input and so will use 100% of one CPU. It

is running at priority zero most of the time so the operating system is able to time-slice processor
access. During time-sensitive I/O operations the priority will be raised and other processes locked
out.

NB Do not run or use the PIGPIO Daemon

http://abyz.co.uk/rpi/pigpio/download.html

Pi-cromite Manual Page 7

40-pin Pi-cromite Pinout

Pin

1 3V3

2 5V

3 DIGITAL_IN DIGITAL_OUT I2C-SDA*

4 5V

5 DIGITAL_IN DIGITAL_OUT I2C-SCL*

6 GND

7 DIGITAL_IN DIGITAL_OUT COM2-TX

8 DIGITAL_IN DIGITAL_OUT COM1-TX

9 GND

10 DIGITAL_IN DIGITAL_OUT COM1-RX

11 DIGITAL_IN DIGITAL_OUT COM2-RX

12 DIGITAL_IN DIGITAL_OUT COUNT PWM-HS

13 DIGITAL_IN DIGITAL_OUT SSD1963-RS ILI9341-CS*

14 GND

15 DIGITAL_IN DIGITAL_OUT SSD1963-DB3

16 DIGITAL_IN DIGITAL_OUT SSD1963-DB4

17 3V3

18 DIGITAL_IN DIGITAL_OUT SSD1963-DB5

19 DIGITAL_IN DIGITAL_OUT SPI-OUT

20 GND

21 DIGITAL_IN DIGITAL_OUT SPI-IN

22 DIGITAL_IN DIGITAL_OUT SSD1963-DB6

23 DIGITAL_IN DIGITAL_OUT SPI-CLK

24 DIGITAL_IN DIGITAL_OUT COUNT TOUCH-IRQ*

25 GND

26 DIGITAL_IN DIGITAL_OUT TOUCH-CS*

27 ID_SD

28 ID_SC

29 DIGITAL_IN DIGITAL_OUT COUNT ILI9341-DC*

30 GND

31 DIGITAL_IN DIGITAL_OUT SSD1963-RESET ILI9341-RESET*

32 DIGITAL_IN DIGITAL_OUT SSD1963-WR

33 DIGITAL_IN DIGITAL_OUT COUNT IR

34 GND

35 DIGITAL_IN DIGITAL_OUT SSD1963-DB0

36 DIGITAL_IN DIGITAL_OUT SSD1963-RD

37 DIGITAL_IN DIGITAL_OUT SSD1963-DB7

38 DIGITAL_IN DIGITAL_OUT SSD1963-DB1

39 GND

40 DIGITAL_IN DIGITAL_OUT SSD1963-DB2

* Recommended usage for compatibility between PCB designs

Pi-cromite Manual Page 8

Pi-cromite Features
Double Precision Floating Point
The Pi-cromite uses the hardware floating point capability of the Broadcom chip and can therefore
process floating point calculations faster than the Micromite and Micromite Plus. All floating point uses
double precision calculations.

Twenty Six PWM Channels
All pins can be used for PWM output up to 20KHz as well as for driving servos. In addition pin 12
can be used for PWM output up to 25MHz

MM.DEVICE$
On the Pi-cromite the read only variable MM.DEVICE$ will return " Pi-cromite running on H/W version:
hhhhhh ".

CPU command
The Pi-cromite does not support dynamically changing the CPU speed or the sleep function.
Accordingly the commands CPU speed and CPU SLEEP are not available. However the Pi-cromite
does support “CPU SLEEP time” where time is specified in seconds.

OPTION CONTROLS command
The Pi-cromite does not support the OPTION CONTROLS command instead the maximum number of
GUI controls is set to 500.

Longstring handling
The Pi-cromite supports a comprehensive set of commands and functions for handling long strings
stored in integer arrays

Mouse control in editor
While in the editor the left mouse button can be used to position the cursor. Just click on any character
and the edit point will move to just before that character with the cursor on the character. Click just after
the last character in a line to go to the end of that line. Click well past the end of a line to go to the start
of the next line.
The mouse wheel can be used to scroll up and down the file.

Delete and Backspace
Teraterm, Putty, and the Raspian desktop console window generate different codes for backspace
and delete. The Pi-cromite defaults to support the console window and Putty. Use OPTION
TERATERM ON to accept the default codes from Teraterm. Alternatively configure teraterm in the
Keyboard setup window

Ctrl-C and Ctrl-Z
Use Ctrl-C to terminate a running program, to exit GUI TEST LCDPANEL, to exit GUIT TEST
TOUCH or to exit from auto input mode.
Use Ctrl-Z at the command prompt to exit MMBasic and return to the Linux command prompt

I2C
Before using I2C the pins to be used must be selected with OPTION I2C SDApinno, SCLpinno
Then you can use I2C exactly the same as the Micromite with the following limitations:
The implementation does not support 10-bit addressing (i.e. options 0 and 1 only)
The implementation is Master only.

DATE$ and TIME$
Date$ and Time$ are derived from the Linux system clock. They are returned in standard MMBasic
format when read but cannot be set by MMBasic (except by using the SYSTEM command with the
requisite Linux syntax)

VAR command
The Pi-cromite does not support the VAR command. On the Pi-cromite variables can be saved and
restored from a file as the SDcard is always available

SETPIN command
The Pi-cromite does not support analogue input so SETPIN nnn,AIN is not allowed but see function
ADC and command OPTION ADC

Automatic Console re-sizing
The Pi-cromite does not support the OPTION DISPLAY command. Instead the code will automatically
set the display width and height based on the size of the terminal window

FONTS

The Pi-cromite does not support loadable fonts but includes an additional small 6x8 font as #7

Pi-cromite Manual Page 9

Commands (Pi-cromite Only)
Detailed Listing

ARC x, y, r1, [r2], rad1,
rad2, colour

Draws an arc of a circle or a given colour and width between
two radials (defined in degrees). Parameters for the ARC
command are:

x: X coordinate of centre of arc

y: Y coordinate of centre of arc

r1: inner radius of arc

r2: outer radius of arc - can be omitted if 1 pixel wide

rad1: start radial of arc in degrees

rad2: end radial of arc in degrees

colour: Colour of arc

BEZIER xs, ys, xc1, yc1,
xc2, yc2, xe, ye, colour

Draws a cubic Bezier curve by specifying the start and end
points and two control points. Parameters for the BEZIER
command are:

xs: X coordinate of start point

ys: Y coordinate of start point

xc1: X coordinate of first control point

yc1: Y coordinate of first control point

xc2: X coordinate of second control point

yc2: Y coordinate of second control point

xe: X coordinate of end point

ye: Y coordinate of end point

colour: Colour of curve

BITSTREAM pin, nbr, dur%() Generates a stream of ‘nbr’ Hi/Lo (OR Lo/Hi) transitions on pin
number ‘pin’. The duration of each state after the transition is
determined by the contents of array ‘dur%()’ which is specified in
micro-seconds. The arrays can be INTEGER or FLOAT but the
pulse length must be specified in microseconds.
The minimum pulse length and pulse increment is 1uS
The pin must previously have been set as a digital output.
The direction of the first pulse will be determined by the state of the
pin when BITSTREAM is called. If it is high then the first pulse will be
at zero, if it is low the first pulse will be at 3.3V.
The BITSTREAM command will automatically create an end
transition to the last pulse.
NB There is a known clock issue on the Pi 3. See OPTION
WAVETIME for details

BOX x1, y1, w, h [, lw] [,c]
[,fill]

All parameters can now be expressed as arrays and the software will
plot the number of boxes as determined by the dimensions of the
smallest array. x1, y1, w, and h must all be arrays or all be single
variables /constants otherwise an error will be generated. lw, c, and
fill can be either arrays or single variables/constants. See the
Micromite User manual for full details of parameter usage.

CIRCLE x, y, r [,lw] [, a] [,
c] [, fill]

All parameters can now be expressed as arrays and the software will
plot the number of boxes as determined by the dimensions of the
smallest array. x, y and r must all be arrays or all be single variables
/constants otherwise an error will be generated. lw, a, c, and fill can
be either arrays or single variables/constants. See the Micromite
User manual for full details of parameter usage.

Pi-cromite Manual Page 10

CLS CONSOLE Clears the text console

CURSOR MOVE x,y

CURSOR COLOUR “fg”, “bc”

CURSOR UNDERLINE
mode

CURSOR REVERSE mode

CURSOR BOLD mode

Moves the text console cursor position to the X,Y position specified

Set the foreground and background colours for the text console.
Only valid if OPTION COLOURCODE ON is set. Valid colours must
be in quotes and are the normal 8 primaries RED, BLUE WHITE,
BLACK, GREEN, CYAN, MAGENTA, YELLOW

Sets/removes underline on the subsequent output. Valid modes are
ON and OFF

Sets/removes reverse colours on the subsequent output. Valid
modes are ON and OFF

Sets/removes bold text mode on the subsequent output. Valid
modes are ON and OFF

FORK unix_command

FORK KILL

Executes the unix_command as a new process. Non-blocking.
Output from the process is directed to the null device. Only one
process may be started at any one time. Returns an error if a second
process is attempted to be started before the first terminates

e.g. FORK aplay sound.wav

The status of the process may be tested with MM.FORK (see below)

Note that the unix command does not need quotes or specific field
separators but commas may be used instead of spaces if preferred.
Note also that the C-library parser does not accept "-" characters in
filenamesas these are treated as specific to command syntax.

Stops execution of any forked process. Returns an error if no forked
process exists.

GUI STARTLINE n Sets the row in the graphics memory which will appear at the top of
the screen (landscape or reverse landscape) or left of the screen
(portrait or reverse portrait) for a 4.3” SSD1963 display initialised
with OPTION LCDPANEL SSD1963_4P

LINE x1, y1, x2, y2 [, LW [,
C]]

All parameters can now be expressed as arrays and the software will
plot the number of boxes as determined by the dimensions of the
smallest array. x1, y1, x2, and y2 must all be arrays or all be single
variables /constants otherwise an error will be generated. lw and c
can be either arrays or single variables/constants. See the Micromite
User manual for full details of parameter usage.

LIST COMMANDS Lists all valid commands

LIST FUNCTIONS Lists all valid functions and operators

LONGSTRING APPEND
array%(), string$

LONGSTRING CLEAR
array%()

LONGSTRING COPY
dest%(), src%()

Append a normal MMBasic string to a long string variable. array%()
is a long string variable while string$ is a normal MMBasic string
expression.

Will clear the long string variable array%(). ie, it will be set to an
empty string.

Copy one long string to another. dest%() is the destination variable
and src%() is the source variable. Whatever was in dest%() will be
overwritten.

Pi-cromite Manual Page 11

LONGSTRING CONCAT
dest%(), src%()

LONGSTRING LCASE
array%()

LONGSTRING LEFT
dest%(), src%(), nbr

LONGSTRING LOAD
array%(), nbr, string$

LONGSTRING MID dest%(),
src%(), start, nbr

LONGSTRING PRINT [#n,]
src%()

LONGSTRING REPLACE

array%() , string$, start

LONGSTRING RIGHT
dest%(), src%(), nbr

LONGSTRING TRIM
array%(), nbr

LONGSTRING UCASE
array%()

Concatenate one long string to another. dest%() is the destination
variable and src%() is the source variable. src%() will the added to
the end of dest%() (the destination will not be overwritten).

Will convert any uppercase characters in array%() to lowercase.
array%() must be long string variable.

Will copy the left hand 'nbr' characters from src%() to dest%()
overwriting whatever was in dest%(). ie, copy from the beginning of
src%(). src%() and dest%() must be long string variables. 'nbr' must
be an integer constant or expression.

Will copy 'nbr' characters from string$ to the long string variable
array%() overwriting whatever was in array%().

Will copy 'nbr' characters from src%() to dest%() starting at character
position 'start' overwriting whatever was in dest%(). ie, copy from
the middle of src%(). 'nbr' is optional and if omitted the characters
from 'start' to the end of the string will be copied src%() and dest%()
must be long string variables. 'start' and 'nbr' must be an integer
constants or expressions.

Prints the longstring stored in src%()

Will substitute characters in the normal MMBasic string string$ into an
existing long string array%() starting at position ‘start’ in the long
string.

Will copy the right hand 'nbr' characters from src%() to dest%()
overwriting whatever was in dest%(). ie, copy from the end of src%().
src%() and dest%() must be long string variables. 'nbr' must be an
integer constant or expression.

Will trim ‘nbr’ characters from the left of a long string. array%() must
be a long string variables. 'nbr' must be an integer constant or
expression.

Will convert any lowercase characters in array%() to uppercase.
array%() must be long string variable.

NANO Allows you to edit the current program using the Linux nano editor.
MMBasic will automatically write the current program (if any) to a
temporary file and open it in nano. To return to MMBasic save the file
to the temporary file and exit nano. The edited file will then be
restored into MMBasic memory

OPTION ADC type, address Provides support for 2 types of 4-channel I2C ADC. Valid types are
ADS1015 and MCP3424. The address is the 7-bit I2C address of the
device. The ADC must be connected SDA to Pi pin 3, SCL to Pi pin 5.
When the option is specified the I2C port is automatically opened as
soon as MMBasic starts. I2C speed is set to 400KHz. See the ADC
function to read values.

For the Pimoroni Enviro pHAT use OPTION ADC ADS1015, &H49

Pi-cromite Manual Page 12

OPEN “SOCKET [,interrupt]
,[count]” as #n

Opens a socket for use in a MMBasic program. Once the socket is
open then PRINT and INPUT commands and functions can be used
exactly like any other file I/O.
Print output is buffered until a TRANSMIT HTML command is sent
which will create a valid HTTP header
The optional parameters specify a MMBasic interrupt routine
‘interrupt’ to be called when ‘count’ characters have been received on
the socket.
See Appendix B for an example of socket programming.

OPTION AUTOREFRESH
mode

If OPTION AUTOREFRESH ON is set drawing and GUI commands
will update the screen immediately. If set to OFF then the screen will
only be updated when a REFRESH command is called. Defaults to
ON when MMBasic is first started - not stored.

OPTION AUTORUN mode If OPTION AUTORUN ON is set the code will try and load and run
the file "AUTORUN.BAS" on start up. The file must be in the same
directory as MMBasic. If the file does not exist you will get a "file not
found" error in which case just disable the option using
OPTION AUTORUN OFF. The filename is case sensitive.

OPTION CLOCK type This command is used to specify which of the two main Pi clocks are
used for MMBasic. The default allows hardware PWM to be used on
pin 12 but will cause external commands using the PCM clock, such
as output on the i2s port, to fail. Valid values are ‘PCM’ (default) and
‘PWM’. See Appendix D for an example of usage.

OPTION I2C SDApin, SCLpin Specifies which pins are to be used for I2C. Any valid pin may be
selected. They can be changed by using OPTION I2C DISABLE and
then re-defining them. Must be run once before I2C can be used. The
values are permanently stored in the .options file. This option is
automatically set if OPTION ADC is in use

OPTION LCDPANEL HDMI Sets up an HDMI display for graphics/GUI output. The code
automatically reads in the display size and MM.HRES and
MM.VRES are set automatically for you. The display must be set up
in full 32-bit colour (RGBA). See Appendix E for more information.

OPTION LCDPANEL
SSD1963_4P

Sets the 4.3” SSD1963 display up in 480 x 864 (landscape or reverse
landscape) or 864x480 (portrait or reverse portrait) pixel mode. The
screen viewport is 480x272 or 272x480 and the position of the
viewport is controlled by GUI STARTLINE n. This mode of operation
allows display updates to be done on a non-visible part of the
graphics memory and then the viewport moved to see the updated
image. The 4P display controller is fully compatible with TOUCH,
MOUSE, CURSOR and GUI controls

OPTION LCDPANEL
spidisplay, orientation, DCpin,
RESETpin, CSpin, SPIspeed

Initialises a SPI TFT. Additional display types include the ILI9481 and
ILI9486. A new parameter SPIspeed can be used to set the transfer
rate. Valid values are 1,000,000 to 30,000,000. The ILI9481 defaults
to 16,000,000 all other displays default to 30,000,000. See the
Micromite User manual, ILI9341 section, for further details of
parameter usage.

OPTION PINS pinmask Specify pins to be excluded from MMBasic e.g. ‘OPTION PINS
&B10100’ will exclude pins 3 and 5 from use by MMBasic
OPTION LIST will report the ‘pinmask’ if non-zero
SETPIN reservedpin,DOUT will report a “reserved on boot” error
See Appendix D for an example of usage.

Pi-cromite Manual Page 13

OPTION SERIAL CONSOLE
n

Sets the device to be used as the MMbasic console device. By
default this is 0 which is the terminal used to start the process.
Alternatives are 1 and 2. Selecting one of these sets the console to
use the COM1 or COM2 port. Changing the selection will
automatically terminate MMBasic and it can be restarted. With the
console set to COM1 or COM2 it is possible to run MMBasic as a
background process using the Linux command:

sudo ./mmbasic &>/dev/null &

This could be included as part of the boot process by adding the
following lines to /etc/rc.local

echo “starting MMBasic”
cd /home/pi
sudo ./mmbasic &>/dev/null &

This will automatically run MMBasic on a “Pi” as a pseudo
embedded application and if OPTION AUTORUN is set and the file
“AUTORUN.BAS” exists then the user application will also start
automatically.
A standard USB/Uart can be used to connect to the COM port at
anytime to access the MMBasic console.

OPTION SOCKET sockno Sets the socket number to use when opening a socket. This defaults
to 80 but can be anything between 1 and 65535

OPTION TERATERM mode Sets the treatment of backspace and delete characters. Default
mode is ‘OFF’. Setting mode to ‘ON’ will allow teraterm to be used
properly in the editor. Default should suit Putty and the Linux console
window

OPTION WAVETIME scale! Sets a scaling factor to adjust the timing of serial output and
bitstream output.. Values of ‘scale’ > 1.0 will increase the speed of
the output. Defaults to 1.0. This parameter may need to be adjusted
to correct for a kernel issue on the Pi 3. Timings can be affected by
factors like the presence (or not) of a HDMI monitor, the presence
(or not) of a USB mouse and/or keyboard, and the use of Raspbian
Lite or Full.
The best way to determine if you have an issue is to open the serial
port with a baudrate of 100 and transmit the character “U”
repeatedly. Then measure the pulse length of the output which
should be 10msec.
The option is only active when MMBasic determines it is running on
a Pi 3

PIXEL x, y [,c] All parameters can now be expressed as arrays and the software will
plot the number of boxes as determined by the dimensions of the
smallest array. x and y must both be arrays or both be single
variables /constants otherwise an error will be generated. c can be
either an arrays or single variable/constant. See the Micromite User
manual for full details of parameter usage.

POLYGON xarray%(),
yarray%() [, bordercolour]
[, fillcolour]

Draws a outline or filled polygon defined by the x,y coordinate
pairs in xarray%() and yarray%(). If fill colour is omitted then
just the polygon outline is drawn. If bordercolour is omitted
then it will default to the current gui foreground colour. The
polygon should be closed with the first and last elements the
same. The size of the array should exactly match the number
of x,y coordinate pairs.

Pi-cromite Manual Page 14

PWM pin, freq, duty

PWM pin, STOP

Sets up a PWM output on ‘pin’ with frequency ‘freq’ Hz and duty
cycle of ‘duty’. There is no limit on the number of pins used in this
way. Frequencies and duty cycles are individually set per pin within
the following restrictions:
SPECIAL CASE PIN 12
This has true hardware PWM and the frequency can be set
anywhere between 1Hz and 25MHz. Duty cycle is expressed as a
percentage (like the Micromite). The underlying clock is 250MHz so
with a 25MHz output the duty cycle will move in steps of 25/250 =
10%. At 250Hz the duty cycle will move in steps of 0.0001%

ALL OTHER PINS
These use a PWM based on a 1uS clock and the valid frequencies
will be exact divisors of 1,000,000. The maximum frequency is
20KHz where the duty cycle will move in steps of 2%. If a frequency
of say 433Hz is input the actual frequency will round to the nearest
of:

1,2,4,5,8,10,16,20,25,32,40,50,80,100,125,160,200,250,400,50
0,625,800,1000,1250,2000,2500,4000,5000,10000,20000

Stops PWM output on pin

REFRESH Forces a screen update when OPTION AUTOREFRESH is OFF

RBOX x1, y1, w, h [, r] [,c]

[,fill]

All parameters can now be expressed as arrays and the software will
plot the number of boxes as determined by the dimensions of the
smallest array. x1, y1, w, and h must all be arrays or all be single
variables /constants otherwise an error will be generated. r, c, and fill
can be either arrays or single variables/constants. See the Micromite
User manual for full details of parameter usage.

SERVO pin, period

SERVO pin, STOP

Sets up a PWM output on ‘pin’ with a fixed frequency of 50Hz. Valid
periods are specified in milli-seconds and are in the ‘valid’ range 1.0-
2.0.
There is no limit on the number of pins used in this way. Periods are
individually set per pin.
Of course you can use the PWM command to generate any non-
standard servo output but be aware this can damage a servo.

Stops SERVO output on pin

SENSORFUSION type ax,
ay, az, gx, gy, gz, mx, my,
mz, pitch, roll, yaw [,p1] [,p2]

Calculates pitch, roll and yaw angles from accelerometer and
magnetometer inputs. Valid fusion types are MAHONY and
MADGWICK. Usage is described in Appendix A

SPRITE

SPRITE x1, y1, x2, y2, w, h

SPRITE CLOSE [#]n

SPRITE CLOSE ALL

The BLIT and SPRITE commands can be used interchangeably. The
command is available on all display types.

Copies the memory area specified by top right coordinate x1, y1 and
of width w and height h to a new location where the top right
coordinate is x2, y2.

Closes sprite n and releases all memory resources. Updates the
screen (see SPRITE HIDE). Sprites which have been “copied”
cannot be closed until all “copies” have been closed

Closes all sprites and releases all memory resources. It does not
change the screen.

Pi-cromite Manual Page 15

SPRITE COPY [#]n, [#]m,
nbr

SPRITE HIDE [#]n

SPRITE INTERRUPT sub

SPRITE LOAD [#]n, fname$
[,colour]

SPRITE MOVE

SPRITE NEXT [#]n, x, y

SPRITE NOINTERRUPT

SPRITE READ [#]n, x , y, w,
h

SPRITE SCROLLH n [,col]

SPRITE SCROLLR x, y, w,
h, delta_x, delta_y [,col]

SPRITE SCROLLV n [,col]

Makes a copy of sprite “n” to “nbr” of new sprites starting a number
“m”. Copied sprites share the same loaded image as the original to
save memory

Removes sprite n from the display and replaces the stored
background. To restore a screen to a previous state sprites should
be hidden in the opposite order to which they were written "LIFO"

Specifies the name of the subroutine that will be called when a sprite
collision occurs. See Appendix C for how to use the function SPRITE
to interrogate details of what has collided

Loads the file fname$ as a sprite into buffer number n. The file must
be in PNG format RGB888 or RGBA888. If the file extension .PNG
is omitted then it will be automatically added. The parameter “colour”
specifies the background colour for the sprite. Pixels in the
background colour will not overwrite the background when the sprite
is displayed. Colour defaults to zero

Actions a single atomic transaction that re-locates all sprites which
have previously had a location change set up using the SPRITE
NEXT command. Collisions are detected once all sprites are moved
and reported in the same way as from a scroll

Sets the X and Y coordinate of the sprite to be used when the
screen is next scrolled or the SPRITE MOVE command is executed.
Using SPRITE NEXT rather than SPRITE SHOW allows multiple
sprites to be moved as part of the same atomic transaction.

Disables collision interrupts

Reads the display area specified by coordinates x and y, width w
and height h into buffer number n. If the buffer is already in use and
the width and height of the new area are the same as the original
then the new command will overwrite the stored area.

Scrolls the background and any sprites on layer 0 n pixels to the
right. n can be any number between -31 and 31. Sprites on any layer
other than zero will remain fixed in position on the screen. By default
the scroll wraps the image round. If “col” is specified the colour will
replace the area behind the scrolled image

Scrolls the region of the screen defined by top-right coordinates “x”
and “y” and width and height “w” and “h” by “delta_x” pixels to the
right and “delta_y” pixels up. By default the scroll wraps the
background image round. If “col” is specified the colour will replace
the area behind the scrolled image. Sprites on any layer other than
zero will remain fixed in position on the screen. Sprites in layer zero
where the centre of the sprite (x+ w/2, y+ h/2) falls within the scrolled
region will move with the scroll and wrap round if the centre moves
outside one of the boundaries of the scrolled region.

Scrolls the background, and any sprites on layer 0, n pixels up. n
can be any number between -MM.VRES-1 and MM.VRES-1. Sprites
on any layer other than zero will remain fixed in position on the
screen. . By default the scroll wraps the image round. If “col” is
specified the colour will replace the area behind the scrolled image

Pi-cromite Manual Page 16

SPRITE SHOW [#]n, x, layer,
[orientation]

SPRITE WRITE [#]n, x y

Displays sprite n on the screen with the top left at coordinates x, y.
Sprites will only collide with other sprites on the same layer, layer
zero, or with the screen edge. If a sprite is already displayed on the
screen then the SPRITE SHOW command acts to move the sprite to
the new location. The display background is stored as part of the
command such that it can be replaced when the sprite is hidden or
moved further. The orientation is an optional parameter, valid values
are:

0 - normal display (default if omitted)

1 - mirrored left to right

2 - mirrored top to bottom

3 - rotated 180 degrees (= 1+2)

Overwrites the display with the contents of sprite buffer n with the
top left at coordinates x, y. SPRITE WRITE overwrites the complete
area of the display. The background that is overwritten is not stored
so SPRITE WRITE is inherently higher performing than SPRITE
SHOW but with greater functional limitations.

SYSTEM string$ [,array%()] Executes the Linux operating system command in ‘string$’. If the
optional parameter is specified, the output from the system
command will be directed to the long string ‘array%()’ otherwise
output will appear on the console (stdout). Output can also be
directed to a file using standard Linux notation. See Appendix C for
examples of usage.

TCP CLIENT server$,
serverport

TCP CLOSE

TCP SEND string$

TCP RECEIVE string$

Opens a TCPIP socket as a client to a designated server. The server
IP address is specified as a string of the form “192.168.1.149”. The
serverport is the port number the intended server is expected to be
listening on e.g. 80 for an HTML server.

Closes an open TCPIP socket

Sends a string to a connected device via TCPIP to the server
specified in the TCP CLIENT statement.

Attempts to receive a message on an opened socket. If no message
is waiting string$ be a blank string. If a message is waiting it will be
returned in string$. If the message will not fit into a string then
repeated calls can be used to read all the message. A blank string
will then indicate end of message

TRANSMIT CODE nnn

TRANSMIT FILE filename,
content-type

TRANSMIT HTML

TRANSMIT NOHEADER

Constructs and sends a numerical response to the open socket.
Typical use would be “TRANSMIT CODE 404” to indicate page not
found.

This constructs an HTTP 1.1 header with the ’content-type’
specified and the length of the file, sends it and then sends the
contents of the file to the open socket

This constructs an HTTP 1.1 HTML header and transmits it together
with any output created by print #n commands to the file number
specified by a OPEN “SOCKET” command

Transmits any output created by print #n commands to the file
number specified by a OPEN “SOCKET” command

Pi-cromite Manual Page 17

TRANSMIT PAGE filename
[,content-type]

This constructs an HTTP 1.1 header with the ’content-type’
specified and the length of the file, sends it and then sends the
contents of the file to the open socket.
The content-type will default to text/html if not specified.
MMBasic will substitute current values for any MMBasic variables
defined in the file inside curly brackets e.g. {myvar%}
Variables can be simple or array elements.
An opening curly bracket can be included in the output by using {{.

See Appendix C for examples of usage.

TRIANGLE X1, Y1, X2,

Y2, X3, Y3 [, C [, FILL]]

All parameters can now be expressed as arrays and the software will
plot the number of boxes as determined by the dimensions of the
smallest array. x1, y1, x2, y2, x3,and y3 must all be arrays or all be
single variables /constants otherwise an error will be generated c
and fill can be either arrays or single variables/constants. See the
Micromite Plus manual for full details of parameter usage.

UDP SERVER nnnnn

UDP CLOSE

UDP CLIENT server$,
serverport, myport

UDP SEND string$

UDP RECEIVE string$
[,sender$] [,senderport%]

Opens a UDP socket on the port nnnnn

Closes an open UDP socket

Opens a socket as a client to a designated server. The server IP
address is specified as a string of the form “192.168.1.149”. The
serverport is the port number the intended server is expected to be
listening on e.g. 123 for an ntp server. myport is the port the Pi-
cromite will use to receive information from the server

Sends a string to a connected device via UDP. When in client mode
this will be the server specified in the UDP CLIENT statement. When
in server mode this command can only be used after receiving an
incoming message from a client as this will determine the address to
use for SEND. An error will be reported if SEND is used in server
mode before the link is established.

Attempts to receive a message on an opened socket. If no message
is waiting string$ and sender$ will be blank strings and senderport
will be zero. If a message is waiting it will be returned in string$. If
sender$ is included in the command this will contain the IP address
of the sender as a string e.g.”192.168.1.149”. if senderport% is
specified it will contain the port number on which the sender would
expect any reply. The senders IP address and port are automatically
stored within the Pi-cromite and are used for any subsequent UDP
SEND command

Pi-cromite Manual Page 18

Functions (Pi-cromite Only)
Detailed Listing
ADC(channel, range
[,precision])

Returns the input voltage on the specified ADC channel (0-3). The
range is specified as the full-scale in mV. Valid ranges for the
MCP3424 are 256, 512, 1024, and 2048. Valid ranges for the
ADS1015 also include 4096 and 6144. The MCP3424 must also have
the number of bits of precision specified. Valid values are 12, 14, 16,
and 18. The conversion time on the MCP3424 changes with the
precision – see the manual for details.
In addition the range can be specified as AUTO in this case the code
does a first conversion at the maximum range and then chooses the
lowest safe range for a second more accurate conversion. Care
should be taken in using AUTO with moving signals

DATETIME$(n) Returns the date and time corresponding to the epoch number n
(number of seconds that have elapsed since midnight GMT on
January 1, 1970). The format of the returned string is “dd-mm-yyyy
hh:mm:ss”. Use the text NOW to get the current datetime string, i.e.
? DATETIME$(NOW)

DAY$(date$) Returns the day of the week for a given date as a string
“Monday”, “Tuesday” etc. The format for date$ is “dd-mm-
yyyy”. Use NOW to get the day for the current date, e.g. ?
DAY$(NOW)

EPOCH(DATETIME$) Returns the the epoch number (number of seconds that have
elapsed since midnight GMT on January 1, 1970) for the
supplied DATETIME$ string. The format for DATETIME$ is
“dd-mm-yyyy hh:mm:ss”. Use NOW to get the epoch number
for the current date and time, i.e. ? EPOCH(NOW)

FIELD$(str$, field)
 or
FIELD$(str$, field, delim$)
 or
FIELD$(str$, field, delim$,
quote$)

Extract a substring (ie, field) from 'str$'. Each is separated by any
one of the characters in the string 'delim$' and the field number to
return is specified by 'field' (the first field is field number 1). Any
leading and trailing spaces will be trimmed from the returned string.

 Note that 'delim$' can contain a number of characters and the fields
 will then be separated by any one of these characters. if delim$ is
not provided it will default to a comma (,) character.

 'quote$' is the set of characters that might be used to quote text.
Typically it is the double quote character (") and any text that is
surrounded by the quote character(s) will be treated as a block and
any 'delim$' characters within that block will not be used as
delimiters.

 This function is useful for splitting apart comma-separated-values
(CSV) in data streams produced by GPS modules and test
equipment. For example:

 PRINT FIELD$("aaa,bbb,ccc", 2, ",")
 Will print the string: bbb

 PRINT FIELD$("text1, 'quoted, text', text3", 2, ",", "'")
 will print the string: 'quoted, text'

GETIP$(address$) Translates a web address such as www.thebackshed.com into the

http://www.thebackshed.com/

Pi-cromite Manual Page 19

IP address nnn.nnn.nnn.nnn. The IP address is returned as a string
which can be used as an input to UDP CLIENT

JSON$(array%(),string$) Returns a string representing a specific item out of the JSON input
stored in the longstring array%()

e.g.
JSON$(a%(), “name”)
JSON$(a%(), “coord.lat”)
JSON$(a%(), “weather[0].description”)
JSON$(a%(),”list[4].weather[0].description

Examples taken from api.openweathermap.org

LCOMPARE(array1%(),
array2%())

Compare the contents of two long string variables array1%()
and array2%(). The returned is an integer and will be -1 if
array1%() is less than array2%(). It will be zero if they are
equal in length and content and +1 if array1%() is greater than
array2%(). The comparison uses the ASCII character set and
is case sensitive.

LGETSTR$(array%(), start,
length)

Returns part of a long string stored in array%() as a normal MMBasic
string. The parameters start and length define the part of the string
to be returned.

LINSTR(array%(), search$
[,start])

Returns the position of a search string in a long string. The
returned value is an integer and will be zero if the substring
cannot be found. array%() is the string to be searched and
must be a long string variable. Search$ is the substring to look
for and it must be a normal MMBasic string or expression (not
a long string). The search is case sensitive.
Normally the search will start at the first character in 'str' but
the optional third parameter allows the start position of the
search to be specified.

LLEN(array%()) Returns the length of a long string stored in array%()

MM.DEVICE$ Returns "Pi-cromite running on H/W version: hhhhhh" where hhhhhh
is the version ID of the Raspberry Pi

MM.DISPLAY(X)

MM.DISPLAY(Y)

MM.DISPLAY(XMAX)

MM.DISPLAY(YMAX)

Gives the current X cursor position on the console (0<width in chars)

Gives the current Y cursor position on the console (0<height in chars)

Gives the width in chars of the console

Gives the height in chars of the console

Pi-cromite Manual Page 20

MM.INFO$(AUTORUN)

MM.INFO$(CPUSPEED)

MM.INFO$(LCDPANEL)

MM.INFO$(PIN pinno)

MM.INFO$(SDCARD)

MM.INFO$(TOUCH)

Returns “On” or “Off” depending on the status of OPTION
AUTORUN

Returns the CPU speed as a string

Returns the name of the LCD panel configured or a blank
string

Returns the status of I/O pin “pinno”. Valid returns are:
“Invalid”, “Reserved”, “In Use”, and “Unused”

Returns the status of the SDcard. Valid returns are:
“Disabled”, “Not present”, “Ready, and “Unused”

Returns the status of the Touch controller. Valid returns are:
“Disabled”, “Not calibrated”, and “Ready”

MM.FORK Returns the process id (PID) of a forked process. Returns 0 if the
process has terminated

SPRITE(…)

SPRITE(C, [#]n)

SPRITE(C, [#]n, m)

SPRITE(H,[#]n)

SPRITE(L, [#]n)

SPRITE(N)

SPRITE(N,n)

SPRITE(S)

SPRITE(W, [#]n)

SPRITE(X, [#]n)

SPRITE(Y, [#]n)

The function is available on VGA, SSD1963 (pin RD must be
connected and specified) and ILI9341 (SPI-IN must be connected)
displays. In addition there is an optimised version for 16-bit parallel
ILI9341 displays (code ILI9341P16)

Returns the number of currently active collisions for sprite n. If n=0
then returns the number of sprites that have a currently active collision
following a SPRITE SCROLL command

Returns the number of the sprite which caused the “m”th collision of
sprite n. If n=0 then returns the sprite number of “m”th sprite that has
a currently active collision following a SPRITE SCROLL command

Returns the height of sprite n. This function is active whether or not
the sprite is currently displayed (active).

Returns the layer number of active sprites number n

Returns the number of displayed (active) sprites

Returns the number of displayed (active) sprites on layer n

Returns the number of the sprite which last caused a collision. NB if
the number returned is Zero then the collision is the result of a
SPRITE SCROLL command and the SPRITE(C…) function should be
used to find how many and which sprites collided.

Returns the width of sprite n. This function is active whether or not the
sprite is currently displayed (active).

Returns the X-coordinate of sprite n. This function is only active when
the sprite is currently displayed (active). Returns 10000 otherwise.

Returns the Y-coordinate of sprite n. This function is only active when
the sprite is currently displayed (active). Returns 10000 otherwise

Pi-cromite Manual Page 21

Appendix A – 1-Wire Communications
Sensor Fusion

The Pi-cromite supports the calculation of pitch, roll and yaw angles from accelerometer and
magnetometer inputs.

For information on this technology see https://github.com/kriswiner/MPU-6050/wiki/Affordable-9-
DoF-Sensor-Fusion

The SENSORFUSION command supports both the MADGWICK and MAHONY fusion algorithms.
The format of the command is:

SENSORFUSION type ax, ay, az, gx, gy, gz, mx, my, mz, pitch, roll, yaw [,p1] [,p2]
Type can be MAHONY or MADGWICK
Ax, ay, and az are the accelerations in the three directions and should be specified in units of
standard gravitational acceleration.
Gx, gy, and gz are the instantaneous values of rotational speed which should be specified in radians
per second.
Mx, my, and mz are the magnetic fields in the three directions and should be specified in nano-Tesla
(nT)

Care must be taken to ensure that the x, y and z components are consistent between the three
inputs. So , for example, using the MPU-9250 the correct input will be ax, ay,az, gx, gy, gz, my, mx, -
mz based on the reading from the sensor.

Pitch, roll and yaw should be floating point variables and will contain the outputs from the sensor
fusion.

The SENSORFUSION routine will automatically measure the time between consecutive calls and will
use this in its internal calculations.

The Madwick algorithm takes an optional parameter p1. This is used as beta in the calculation. It
defaults to 0.5 if not specified

The Mahony algorithm takes two optional parameters p1, and p2. These are used as Kp and Ki in the
calculation. If not specified these default to 10.0 and 0.0 respectively.

A fully worked example of using the code is given on the BackShed forum at

http://www.thebackshed.com/forum/forum_posts.asp?TID=9321&PN=1&TPN=1

https://github.com/kriswiner/MPU-6050/wiki/Affordable-9-DoF-Sensor-Fusion
https://github.com/kriswiner/MPU-6050/wiki/Affordable-9-DoF-Sensor-Fusion

Pi-cromite Manual Page 22

Appendix B – 1-Wire Communications
Socket Use

This Appendix contains a fully worked example of code to implement a simple interactive web site in
MMBasic. The code is for a remote thermostat which requires a security code to be entered before
the thermostat setting can be changed. The code buffers incoming HTTP requests in a long string
and then uses a generic parsing routine to interpret the request. The HTML file shows how to include
MMBasic variables which will have current values substituted into the HTML when the page is
transmitted

See http://www.thebackshed.com/forum/forum_posts.asp?TID=9601 for more information and
examples of the use of CSS files and embedded pictures

option explicit
option default none
Const starttemp = 18
Const maxargs = 32
Const relaypin=7
Const off=0
Const on=1
Dim a%(1000),i%
Dim integer sp(11)
Dim s$,pg$
Dim security$="123456"
Dim string cp(11)
Dim float tcurrent,tnew
Dim float tmax=-1000
Dim float tmin=1000
Dim arg$(1,maxargs-1)
Dim integer checked=0
Const check$="checked='checked'" 'string to set a readio button pressed
Dim string heating="off"
Const hon$="#ff0000" 'red
Const hoff$="#00ff00" 'green
Dim string hcol=hoff$
'
SetPin relaypin,dout
For i%=0 To 10
 sp(i%)=i%+starttemp-1 'set up the temperature values
 cp(i%)="" 'set up the radio buttons as not pressed
Next i%
tcurrent=TEMPR(11) 'get the current temperature
cp(checked)=check$
Open "socket,myint,100" As #2
Do
 TEMPR START 11
 Pause 2000
 tnew=TEMPR(11)
 If Abs(tnew-tcurrent)<10 Then tcurrent=tnew
 updateheater
 If tcurrent>tmax Then tmax=tcurrent
 If tcurrent<tmin Then tmin=tcurrent
Loop
'
Sub myint
 Local p%=0, t%=0
 Local g$
 Do While Not Eof(2)
 LongString append a%(),Input$(10,2)
 Loop
 p%=LInStr(a%(),"GET",1)
 t%=LInStr(a%(),"HTTP",1)

http://www.thebackshed.com/forum/forum_posts.asp?TID=9601

Pi-cromite Manual Page 23

 If p%<>0 And t%<>0 Then 'full request received
 s$=LGetStr$(a%(),p%,t%-p%+4)
 LongString trim a%(),t%+4
 pg$= parserequest$(s$,i%)
 If i% Then
 If arg$(0,0)="Security" And arg$(1,0)=security$ Then 'valid update
 If arg$(0,1)="R" Or arg$(0,2)="R" Then
 cp(checked)=""
 If arg$(0,1)="R" Then checked=Asc(arg$(1,1))-Asc("A")
 If arg$(0,2)="R" Then checked=Asc(arg$(1,2))-Asc("A")
 cp(checked)=check$
 updateheater
 EndIf
 If arg$(0,1)="Check" Or arg$(0,2)="Check" Then
 tmin=tcurrent
 tmax=tcurrent
 EndIf
 EndIf
 EndIf
'
 If pg$="index.html" Then
 Transmit page "index.html"
 Else
 Transmit code 404
 EndIf
 EndIf
End Sub

'Function to parse an HTML GET request'
' Assumes that the request starts with "GET /"
' and ends with "HTTP"
'
Function parserequest$(req$, paramcount As integer)
 Local a$,b$
 Local integer inpos,startparam,processargs
 For inpos=0 To maxargs-1
 arg$(0,inpos)=""
 arg$(1,inpos)=""
 Next inpos
 paramcount=0
 a$=Mid$(req$,6,Len(req$)-10)
 inpos=Instr(a$,"?")
 If inpos<>0 Then 'parameters found
 processargs=1
 parserequest$=Left$(a$,inpos-1)
 a$=Mid$(a$,inpos+1)
 Do
 arg$(0,paramcount)=""
 arg$(1,paramcount)=""
 inpos=Instr(a$,"=")
 startparam=1
 arg$(0,paramcount)=Mid$(a$,startparam,inpos-startparam)
 startparam=inpos+1
 inpos=Instr(a$,"&")
 If inpos<>0 Then
 arg$(1,paramcount)=Mid$(a$,startparam,inpos-startparam)
 a$=Mid$(a$,inpos+1)
 paramcount=paramcount+1
 Else
 arg$(1,paramcount)=Mid$(a$,startparam)
 paramcount=paramcount+1
 processargs=0
 EndIf
 Loop While processargs
 Else
 parserequest$=a$

Pi-cromite Manual Page 24

 EndIf
 If a$="" Then
 parserequest$="index"
 EndIf
 If Instr(parserequest$,".html")=0 And Instr(parserequest$,".HTML")=0 Then
 parserequest$=parserequest$+".html"
End Function

Sub updateheater
 Local float hcalc
 If checked=11 Then
 Pin(relaypin)=1
 heating="On"
 hcol=hon$
 EndIf
 If checked=0 Then
 Pin(relaypin)=0
 heating="Off"
 hcol=hoff$
 EndIf
 If checked>=1 And checked<=10 Then
 hcalc=checked+starttemp-1 'setpoint temperature
 If tcurrent>hcalc Then 'turn heating off
 Pin(relaypin)=0
 heating="Off"
 hcol=hoff$
 EndIf
 If tcurrent<hcalc Then 'turn heating on
 Pin(relaypin)=1
 heating="On"
 hcol=hon$
 EndIf
 EndIf
End Sub

<html>
<head>
 <title>Remote Thermostat</title>
</head>
<body>
 <form name='f1' method='get' action='index'>
 <h2 align='left'>Remote Thermostat V4.0</h2>
 Update Code: <input type='text' name='Security' size='6' value='000000'>

 <p>
 <TABLE BORDER='1' CELLSPACING='0' CELLPADDING='5'>
 <TR>
 <TD>Heating</TD>
 <TD BGCOLOR='{HCOL}'>{heating}</TD>
 </TR>
 </TABLE>
 </p>
 <p>
 <TABLE BORDER='1' CELLSPACING='0' CELLPADDING='5'>
 <TR>
 <TD></TD>
 <TD>Temperature</TD>
 </TR>
 <TR>
 <TD>Current</TD>
 <TD>{TCURRENT}°C</TD>
 </TR>
 <TR>
 <TD>Max</TD>
 <TD>{TMAX}°C</TD>
 </TR>

Pi-cromite Manual Page 25

 <TR>
 <TD>Min</TD>
 <TD>{TMIN}°C</TD>
 </TR>
 </TABLE>
 </p>
 <input name='Check' type='checkbox' value='Reset' onClick='this.form.submit()'>
 Reset Max/Min<p>
 <TABLE BORDER='1' CELLSPACING='0' CELLPADDING='5'>
 <TR>
 <TD>Thermostat</TD>
 <TD><input name='R' type='radio' {CP(0)} value='A' onClick='this.form.submit()'> Off
</TD>
 <TD><input name='R' type='radio' {CP(1)} value='B' onClick='this.form.submit()'> {SP(1)}°C
</
TD>
 <TD><input name='R' type='radio' {CP(2)} value='C' onClick='this.form.submit()'> {SP(2)}°C
</
TD>
 <TD><input name='R' type='radio' {CP(3)} value='D' onClick='this.form.submit()'> {SP(3)}°C
</
TD>
 <TD><input name='R' type='radio' {CP(4)} value='E' onClick='this.form.submit()'> {SP(4)}°C
</
TD>
 <TD><input name='R' type='radio' {CP(5)} value='F' onClick='this.form.submit()'> {SP(5)}°C
</
TD>
 <TD><input name='R' type='radio' {CP(6)} value='G' onClick='this.form.submit()'> {SP(6)}°C
</
TD>
 <TD><input name='R' type='radio' {CP(7)} value='H' onClick='this.form.submit()'> {SP(7)}°C
</
TD>
 <TD><input name='R' type='radio' {CP(8)} value='I' onClick='this.form.submit()'> {SP(8)}°C
</T
D>
 <TD><input name='R' type='radio' {CP(9)} value='J' onClick='this.form.submit()'> {SP(9)}°C
</T
D>
 <TD><input name='R' type='radio' {CP(10)} value='K' onClick='this.form.submit()'> {SP(10)}°C

</TD>
 <TD><input name='R' type='radio' {CP(11)} value='L' onClick='this.form.submit()'> On
</TD>
 </TR>
 </TABLE>
 </p>
 </form>
</body>
</html>

Pi-cromite Manual Page 26

Appendix C – 1-Wire Communications
Code Examples

Capturing system output to a file

System "ls -al >> myfile"
Open "myfile" For input As #1
Do
 Line Input #1,a$
 Print a$
Loop While Not Eof(#1)
Close #1
Kill "myfile"

NB The >> will append to the file (and create it if required).
Instead you can use > and it will throw away any existing data then write the file.

Capturing system output to a long string

DIM INTEGER a(1000)
SYSTEM "ls -al",a()
FOR i=1 to LLEN(a())
 print LGETSTR$(a(),i,1);
NEXT i

Accessing a USB/UART from MMBasic
Thanks to TassyJim for the code snippet

 ' serial test program
 System "stty -F /dev/ttyUSB0 38400"
 OPEN "/dev/ttyUSB0" FOR random AS #5 ' open the serial port
 PRINT #5, "HELLO!!! Is anyone out there?"
 DO ' preferred way to receive serial data which might not be there!
 k$ = INPUT$(1,#5)
 IF k$="" THEN
 nodata=nodata+1
 ELSE
 result$=result$+k$
 PRINT ASC(k$),result$
 nodata=0
 ENDIF
 PAUSE 20
 LOOP UNTIL k$=CHR$(10)OR nodata=50 ' 50*20ms = 1 second timeout
 DO
 PRINT #5, "U";
 LOOP

 CLOSE #5

Pi-cromite Manual Page 27

Appendix D – 1-Wire Communications
Using an I2S DAC with MMBasic

The pinout for I2S is:

Bit-clock : pin 12
LR-clock : pin 35
i2s-data-in : pin 38
i2s data-out : pin 40

I2S can be enabled with

sudo curl -sS https://get.pimoroni.com/phatdac | bash

Set the MMBasic to use the PWM clock with

OPTION CLOCK PWM

Reserve the I2S pins so that MMBasic can’t use them with

OPTION PINS &HA400000800

Then an audio file can be played over i2s either external to mmbasic (and unaffected by it), or from
mmbasic using any appropriate Linux command

SYSTEM "aplay wavfile"

To play mp3 or flac files over i2s I found mpv worked, omxplayer does not work

sudo apt-get install mpv

Pi-cromite Manual Page 28

Appendix E – 1-Wire Communications
Using an HDMI display with MMBasic

Set up the display using OPTION LCDPANEL HDMI.

The code automatically reads in the display size and MM.HRES and MM.VRES are set automatically
for you. The display must be configured in full 32-bit colour (RGBA).

The code works best on a Pi running Raspbian Lite as updating elements of the Pixel GUI will break
through the Pi-cromite display (e.g. the clock and CPU meter) unless stopped

You can start and stop the PIXEL desktop with:

sudo systemctl stop lightdm

sudo systemctl start lightdm

And then disable the flashing cursor with

sudo su

setterm -cursor off > /dev/tty0

On a Lite install it works best if you disable the login prompt and the cursor

To disable the login prompt use

sudo systemctl disable getty@tty1.service

to disable the flashing cursor use:

sudo su

setterm -cursor off > /dev/tty1

As normally configured Raspbian turns off the display after a period without keyboard or mouse input
(screen blanking)

To stop screen blanking on Lite

sudo nano /boot/cmdline.txt

Append " consoleblank=0" to the end of the line

To stop screen blanking on Pixel

sudo nano /etc/lightdm/lightdm.conf

in the "[Seat:*]" section insert the line

"xserver-command=X -s 0 dpms"

In both cases reboot for the change to take effect

Pi-cromite Manual Page 29

Appendix F – 1-Wire Communications
Sprites

 See the SPRITE commands and functions for syntax details.

The concept of the sprite implementation is as follows:

1. Sprites are full colour and of any size. The collision boundary is the enclosing rectangle.

2. Sprites are loaded to a specific number (1-50)

3. Sprites are displayed using the SPRITE SHOW command

4. For each SHOW command the user must select a "layer". This can be between 0 and 10.

5. Sprites collide with sprites on the same layer, layer 0, or the screen edge

6. Layer 0 is a special case and sprites on all other layers will collide with it

7. The SCROLL commands leave sprites on all layers except layer 0 unmoved

8. Layer 0 sprites scroll with the background and this can cause collisions

9. There is no practical limit on the number of collisions caused by SHOW or SCROLL commands

10. The sprite function allows the user to fully interrogate the details of a collision

11. A SHOW command will overwrite the details of any previous collisions for that sprite

12. A SCROLL command will overwrite details of previous collisions for ALL sprites

13. To restore a screen to a previous state sprites should be removed in the opposite order to which they

were written "LIFO"

Because moving a sprite or, particularly, scrolling the background can cause multiple sprite collisions it is

important to understand how they can be interrogated.

The best way to deal with a sprite collision is using the interrupt facility. A collision interrupt routine is set up

using the SPRITE INTERRUPT command.

e.g. SPRITE INTERRUPT collision

The following is a pro-forma for identifying all collisions that have resulted from either a SPRITE SHOW

command or a SCROLL command

'

' This routine demonstrates a complete interrogation of collisions

'

sub collision

 local integer i

' First use the SPRITE(S) function to see what caused the interrupt

 if sprite(S) <> 0 then 'collision of specific individual sprite

 'sprite(S) returns the sprite that moved to cause the collision

print "Collision on sprite ",sprite(S)

 process_collision(sprite(S))

 print ""

'

 else '0 means collision of one or more sprites caused by background move

 ' SPRITE(C, 0) will tell us how many sprites had a collision

 print "Scroll caused a total of ",sprite(C,0)," sprites to have

collisions"

Pi-cromite Manual Page 30

 for i=1 to sprite(C,0)

' SPRITE(C, 0, i) will tell us the sprite number of the “I”th sprite

 print "Sprite ",sprite(C,0,i)

 process_collision(sprite(C,0,i))

 next i

 print ""

 endif

end sub

' get details of the specific collisions for a given sprite

sub process_collision(S as integer)

 local integer i ,j

 'sprite(C, #n) returns the number of current collisions for sprite n

 print "Total of ",sprite(C,S)," collisions"

 for i=1 to sprite(C,S)

' SPRITE(C, S, i) will tell us the sprite number of the “I”th sprite

 j=sprite(C,S,i)

 if j=100 then

 print "collision with left of screen"

 else if j=101 then

 print "collision with top of screen"

 else if j=102 then

 print "collision with right of screen"

 else if j=103 then

 print "collision with bottom of screen"

 else

 print "Collision with sprite ",sprite(C,S,i) 'sprite(C, #n, #m)

returns details of the mth collision

 endif

 next i

end sub

Pi-cromite Manual Page 31

Appendix G – 1-Wire Communications
Running a program at boot

Thanks to disco4now and google there is now a way of running a MMBasic program fully
automatically at boot on a Pi - the steps are pretty. There may be better ways but this way works
very reliably. The following assumes that the mmbasic executable is in the directory /home/pi. This is
the default login directory for the username "pi".

First install the application "screen" on the pi

sudo apt-get install screen

Next create a file "start.bash" in the same directory as mmbasic. Put the following into the file

cd /home/pi
sudo ./mmbasic

Make the script executable with the command

chmod +x start.bash

Now we need to tell Raspbian to execute screen and start.bash on boot. Edit the file "/etc/rc.local"
(sudo nano /etc/rc.local) and add the following line to the file just before “exit 0”

/usr/bin/sudo -u pi /usr/bin/screen -dmS screen /home/pi/start.bash

This tells the pi to run screen under the user "pi" and to execute "start.bash" under screen.

Next, we assume we want to run a specific MMBasic program so once it is developed save it as
AUTORUN.BAS in the same directory as the mmbasic executable.

Run MMBasic as normal (sudo ./mmbasic) and set the autorun option

OPTION AUTORUN ON

exit mmbasic (ctrl-Z)

Finally reboot the pi (sudo shutdown -r now") and when it reboots your MMBasic program will be
running - you can check this with the command "ps -aux"

To connect to your running program execute the command

screen -D -r

Pi-cromite Manual Page 32

and the terminal will connect so you can see any output and stop the program and edit it if required.

The use of "screen" ensures that console output from MMBasic is properly handled and your
program can run happily without a console connected.

One minor issue with screen is that if you paste your code into mmbasic with putty it sometimes will
miss a character when pasting if hosted under screen. (especially if a large program). You can drop
out of screen from the linux prompt using

exit

and run mmbasic without it during code development if pasting the code becomes a problem during
development.

