CMM2 demo programs
Author | Message | ||||
matherp Guru ![]() Joined: 11/12/2012 Location: United KingdomPosts: 9957 |
Last one of these more as a proof of the absolute performance of the CMM2 than anything useful - 60 vertices, 32 faces full perspective projection using Painter's algorithm to establish face order. Time for each iteration 85mSec despite a huge amount of maths being done ![]() Watch the video ![]() option explicit option default none mode 2 page write 1 const edgelength=100 'set the length of the verticies of the ticosahedron const zlocation=1000 'how far is the center of the ticosahedron away from us const viewplane=800 'how far is the viewplane away from us dim float x,y,d dim float phi=(1+sqr(5))/2 dim float x1,y1,z1 dim integer col(11), sortorder(11) dim float q1(4),depth(11),v(4), vout(4) ' data for location of verticies for ticosahedron of edge length 2 data 0,1,3*phi data 0,1,-3*phi data 0,-1,3*phi data 0,-1,-3*phi data 1,3*phi,0 data 1,-3*phi,0 data -1,3*phi,0 data -1,-3*phi,0 data 3*phi,0,1 data 3*phi,0,-1 data -3*phi,0,1 data -3*phi,0,-1 data 2,(1+2*phi),phi data 2,(1+2*phi),-phi data 2,-(1+2*phi),phi data 2,-(1+2*phi),-phi data -2,(1+2*phi),phi data -2,(1+2*phi),-phi data -2,-(1+2*phi),phi data -2,-(1+2*phi),-phi data (1+2*phi),phi,2 data (1+2*phi),phi,-2 data (1+2*phi),-phi,2 data (1+2*phi),-phi,-2 data -(1+2*phi),phi,2 data -(1+2*phi),phi,-2 data -(1+2*phi),-phi,2 data -(1+2*phi),-phi,-2 data phi,2,(1+2*phi) data phi,2,-(1+2*phi) data phi,-2,(1+2*phi) data phi,-2,-(1+2*phi) data -phi,2,(1+2*phi) data -phi,2,-(1+2*phi) data -phi,-2,(1+2*phi) data -phi,-2,-(1+2*phi) data 1,(2+phi),2*phi data 1,(2+phi),-2*phi data 1,-(2+phi),2*phi data 1,-(2+phi),-2*phi data -1,(2+phi),2*phi data -1,(2+phi),-2*phi data -1,-(2+phi),2*phi data -1,-(2+phi),-2*phi data (2+phi),2*phi,1 data (2+phi),2*phi,-1 data (2+phi),-2*phi,1 data (2+phi),-2*phi,-1 data -(2+phi),2*phi,1 data -(2+phi),2*phi,-1 data -(2+phi),-2*phi,1 data -(2+phi),-2*phi,-1 data 2*phi,1,(2+phi) data 2*phi,1,-(2+phi) data 2*phi,-1,(2+phi) data 2*phi,-1,-(2+phi) data -2*phi,1,(2+phi) data -2*phi,1,-(2+phi) data -2*phi,-1,(2+phi) data -2*phi,-1,-(2+phi) ' 12 faces with 5 sides data 0,28,36,40,32 data 1,29,37,41,33 data 2,30,38,42,34 data 3,31,39,43,35 data 4,12,44,45,13 data 5,14,46,47,15 data 6,16,48,49,17 data 7,18,50,51,19 data 8,20,52,54,22 data 9,21,53,55,23 data 10,24,56,58,26 data 11,27,59,57,25 ' 20 faces with 6 sides data 0,2,34,58,56,32 data 0,2,30,54,52,28 data 1,3,31,55,53,29 data 1,3,35,59,57,33 data 4,6,17,41,37,13 data 4,6,16,40,36,12 data 5,7,19,43,39,15 data 5,7,18,42,38,14 data 8,9,23,47,46,22 data 8,9,21,45,44,20 data 10,11,27,51,50,26 data 10,11,25,49,48,24 data 12,44,20,52,28,36 data 13,45,21,53,29,37 data 14,46,22,54,30,38 data 15,47,23,55,31,39 data 16,48,24,56,32,40 data 17,49,25,57,33,41 data 18,50,26,58,34,42 data 19,51,27,59,35,43 ' dim float zpos(31),zsort(31) dim float ticos(2,59), nticos(3,59) dim integer i,j,k,l,m,n dim integer xs(179),ys(179),xe(179),ye(179) dim integer index(31),nnum(31) ' read in the coordinates of the verticies and scale for j=0 to 59 for i=0 to 2 read ticos(i,j) ticos(i,j)=ticos(i,j)*edgelength/2 next i next j ' dim integer xarr(179),yarr(179) dim integer nv(31)=(5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6) dim integer np(31)=(0,1,2,3,4,5,6,7,8,9,10,11,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19) dim integer nd(31) dim integer f5(4,11), f6(5,19) dim integer ncol(31) for j=0 to 11 for i=0 to 4 read f5(i,j) next i next j for j=0 to 19 for i=0 to 5 read f6(i,j) next i next j 'convert coordinates to normalised form for i=0 to 59 x1=ticos(0,i): y1=ticos(1,i): z1=ticos(2,i) create_vector(x1,y1,z1,v()) nticos(0,i)=v(2): nticos(1,i)=v(3): nticos(2,i)=v(4): nticos(3,i)=v(0) next i 'create a quarternion to rotate 4 degrees about a chosen axis 'play with the x,y,z vector which is the sxis of rotation create_normalised_quaternion(4,1,0.5,0.25,q1()) do cls for i=0 to 59 'rotate coordinates v(2)=nticos(0,i): v(3)=nticos(1,i): v(4)=nticos(2,i): v(0)=nticos(3,i): v(1)=0 rotate_vector(vout(),v(),q1()) nticos(0,i)=vout(2): nticos(1,i)=vout(3): nticos(2,i)=vout(4): nticos(3,i)=vout(0) next i ' ' average the z positions for the five sided faces for k=0 to 11 zpos(k)=0 for i=0 to 4 zpos(k)=zpos(k)+nticos(2,f5(i,k)) next i zpos(k)=zpos(k)/5 ' index(k)=k next k 'average the z positions for the 6 sided faces for k=12 to 31 zpos(k)=0 for i=0 to 5 zpos(k)=zpos(k)+nticos(2,f6(i,k-12)) next i zpos(k)=zpos(k)/6 ' index(k)=k next k ' sort the z positions sort zpos(),index() ' j=0:m=0 for l=0 to 31 k=index(l) m=np(k) nd(l)=nv(k) if nv(k)=5 then ncol(l)=rgb(red) else ncol(l)=rgb(white) endif for i=0 to nv(k)-1 if nv(k)=5 then xarr(j)=nticos(0,f5(i,m))*viewplane/(nticos(2,f5(i,m))+zlocation)*nticos(3,f5(i,m))+MM.HRES/2 yarr(j)=nticos(1,f5(i,m))*viewplane/(nticos(2,f5(i,m))+zlocation)*nticos(3,f5(i,m))+MM.VRES/2 else xarr(j)=nticos(0,f6(i,m))*viewplane/(nticos(2,f6(i,m))+zlocation)*nticos(3,f6(i,m))+MM.HRES/2 yarr(j)=nticos(1,f6(i,m))*viewplane/(nticos(2,f6(i,m))+zlocation)*nticos(3,f6(i,m))+MM.VRES/2 endif j=j+1 next i next l polygon nd(),xarr(),yarr(),rgb(black),ncol() page copy 1 to 0 loop ' sub create_normalised_quaternion(theta as float,x as float,y as float,z as float,q() as float) local float radians = theta/180.0*PI local float sineterm= sin(radians!/2) q(1)=cos(radians/2) q(2)=x* sineterm q(3)=y* sineterm q(4)=z* sineterm q(0)=sqr(q!(1)*q(1) + q(2)*q(2) + q(3)*q(3) + q(4)*q(4)) 'calculate the magnitude q(1)=q(1)/q(0) 'create a normalised quaternion q(2)=q(2)/q(0) q(3)=q(3)/q(0) q(4)=q(4)/q(0) q(0)=1 end sub ' sub invert_quaternion(n() as float,q() as float) n(0)=q(0) n(1)=q(1) n(2)=-q(2) n(3)=-q(3) n(4)=-q(4) end sub ' sub multiply_quaternion(n() as float,q1() as float,q2() as float) local float a1=q1(1),a2=q2(1),b1=q1(2),b2=q2(2),c1=q1(3),c2=q2(3),d1=q1(4),d2=q2(4) n(1)=a1*a2-b1*b2-c1*c2-d1*d2 n(2)=a1*b2+b1*a2+c1*d2-d1*c2 n(3)=a1*c2-b1*d2+c1*a2+d1*b2 n(4)=a1*d2+b1*c2-c1*b2+d1*a2 n(0)=q1(0)*q2(0) end sub ' sub create_vector(x as float,y as float ,z as float,v() as float) v(0)=sqr(x*x + y*y + z*z) v(1)=0 v(2)=x/v(0) v(3)=y/v(0) v(4)=z/v(0) end sub sub rotate_vector(vnew() as float,v() as float,q() as float) local float n(4),iq(4) multiply_quaternion(n(),q(),v()) invert_quaternion(iq(),q()) multiply_quaternion(vnew(),n(),iq()) end sub |
||||