|
Forum Index : Microcontroller and PC projects : MMX/RPI - Chebyshev ephemeris
| Author | Message | ||||
| cdeagle Senior Member Joined: 22/06/2014 Location: United StatesPosts: 266 |
If you look at any of the ephemeris programs I've posted on this forum, you will notice that most of the algorithms consist of lots and lots of double precision numbers used in trig and series calculations. These calculations can involve lots of CPU time since an ephemeris algorithm will be called many times to compute events such as rise and set, eclipses and so forth. This post describes four MicroMite BASIC program for the MMX and Raspberry Pi that can be used to create and evaluate ephemerides that consist of Chebyshev polynomials. These types of polynomials can be used to accurately represent the three components of the celestial body position vector. Also, they can be evaluated much quicker than an analytic algorithm. Here are some guidelines for creating a Chebyshev ephemeris. (1) don't create a Chebyshev ephemeris for a time duration longer than the orbital period of the celestial body of interest. For example, for the Moon the maximum fit duration should be 28 days, for the Earth 360 days, and so forth. (2) the "order" of the Chebyshev fit is defined in the source code statement; nfit% = 8. (3) the duration of the fit, in days, is defined in the line of source code which reads deltat = 30. (4) the idea is to change the order and the fit duration until you are happy with the Chebyshev approximation. For the Moon you might use a fit of 30 while for Mars you might use 8 or perhaps 10. The motion of the Moon is quite complicated which requires a high order fit for an accurate approximation. The four BASIC programs included in the zipped archive are (1) make_chebyshev_moon.bas - creates lunar ephemeris data statements (2) chebyshev_moon.bas - evaluates Chebyshev coefficients for the moon (3) make_chebyshev_planet.bas - creates ephemeris data statements for one of the inner planets. Define the planet using the source code statement ibody% = #, where # is 1 for Mercury, 2 for Venus, 3 for Earth and 4 for Mars. (4) chebyshev_planet.bas - evaluates Chebyshev coefficients for a planet Within the two "make" programs, you must define the initial calendar date of the ephemeris like so '''''''''''''''''''''''''''''' ' define initial calendar date ' of the Chebyshev ephemeris '''''''''''''''''''''''''''''' cmonth = 1 cday = 1 cyear = 2017 ' initial tdb julian date julian(cmonth, cday, cyear, jdtdb1) PLEASE NOTE THAT THE FUNDAMENTAL TIME ARGUMENT FOR THE CHEBYSHEV EPHEMERIS, x, IS BASED ON THE BARYCENTRIC DYNAMICAL TIME (TDB) JULIAN DAY AND COMPUTED USING x = (jdtdb - 2451545.0) / 36525.0 Here are typical DATA statements for the Moon, analytic and Chebyshev position vectors and their differences. To use this program for a user-defined Chebyshev ephemeris, simply copy the calculated DATA statements into the DATA statement area of the Chebyshev evaluation source code. Chebyshev ephemeris of the Moon ------------------------------- DATA 30 , 2.457754500000000e+06 , 2.457784500000000e+06 DATA -1.671212766283444e+05 , 2.339452743007602e+05 , -6.643820380953825e+04 DATA -1.013516615782387e+05 , -5.338868026854525e+04 , -3.252851865625804e+04 DATA -1.410488649048607e+05 , 3.198528042990981e+05 , -6.150080272239724e+04 DATA 2.504108815580476e+05 , 1.288933583288243e+05 , 7.969374208748670e+04 DATA 5.588685465655353e+04 , -1.387664335549331e+05 , 2.469063811957224e+04 DATA -5.357791059449854e+04 , -1.938342258785099e+04 , -1.734897073672480e+04 DATA -1.563117911126481e+03 , 1.962116581684537e+04 , -1.324979274227767e+03 DATA 6.033806923981408e+03 , -2.163099288612435e+03 , 2.132847784192905e+03 DATA -1.996995877841867e+03 , -2.076839904134528e+03 , -5.954315567404735e+02 DATA -6.101299362497032e+02 , 1.259631080869243e+03 , -2.578993245468610e+02 DATA 6.157834144601497e+02 , 1.789866309373343e+02 , 2.024828825228624e+02 DATA 1.397766147511673e+01 , -3.046738556139396e+02 , 1.667284166198618e+01 DATA -1.282736190179750e+02 , 2.496789357918427e+01 , -4.497879709269770e+01 DATA 2.756566127147638e+01 , 5.707144398157365e+01 , 7.092149271244830e+00 DATA 2.095669284160436e+01 , -2.071875123884303e+01 , 8.138655535849524e+00 DATA -1.229585583649403e+01 , -7.863442975289804e+00 , -3.633748605814500e+00 DATA -1.920784881261493e+00 , 6.959414879665635e+00 , -8.818695691720236e-01 DATA 3.437597807267711e+00 , 2.037702345105278e-01 , 9.140860024969198e-01 DATA -3.219809705323930e-01 , -1.642568770972561e+00 , -1.628938505196974e-01 DATA -7.579454218014894e-01 , 3.401845352284820e-01 , -1.184860230841291e-01 DATA 2.273044256970377e-01 , 3.331935564938542e-01 , 1.425602672792475e-01 DATA 1.755790245839424e-01 , -1.539275528470640e-01 , -2.516797414207230e-03 DATA -8.034554061915484e-02 , -8.772612029250950e-02 , -5.614954702351468e-02 DATA -5.802522909230432e-02 , 5.263075910625048e-02 , 2.241081730913251e-03 DATA 2.752260642497981e-02 , 3.340975976560355e-02 , 1.774626340756508e-02 DATA 2.174060563969936e-02 , -1.890506993438448e-02 , 1.081468033296387e-03 DATA -1.064998679231071e-02 , -1.200350847812520e-02 , -5.418672341376453e-03 DATA -6.752858228977739e-03 , 7.203210781294582e-03 , -7.713717958165123e-04 DATA 4.207065041672679e-03 , 3.157313824856593e-03 , 1.719649341764800e-03 DATA 1.498989865555608e-03 , -2.408632381223968e-03 , 1.931360317441079e-04 DATA -1.806502909828616e-03 , -4.825714913163064e-04 , -6.470521568131046e-04 Chebyshev position vector and magnitude --------------------------------------- r_x = 353767.14756075 kilometers r_y = 115299.02153829 kilometers r_z = 24816.66403370 kilometers rmag = 372908.73665646 kilometers analytic position vector and magnitude -------------------------------------- r_x = 353767.14704308 kilometers r_y = 115299.02207918 kilometers r_z = 24816.66418116 kilometers rmag = 372908.73634242 kilometers position vector and magnitude differences (analytic - Chebyshev) ---------------------------------------------------------------- delta r_x = -0.5177 meters delta r_y = 0.5409 meters delta r_z = 0.1475 meters delta_rmag = -0.3140 meters Here's the source code for the program that demonstrates how to evaluate a typical Chebyshev ephemeris. ' program chebyshev_moon.bas April 18, 2017 ' this MMBASIC eXtreme program demonstrates how ' to evaluate a Chebyshev ephemeris of the Moon ' MicroMite eXtreme version ''''''''''''''''''''''''''' option default float option base 1 dim rmoon(3) ' global constants const pi2 = 2.0 * pi, pidiv2 = 0.5 * pi, dtr = pi / 180.0, rtd = 180.0 / pi '''''''''''''''''''''''''''''''' ' read Chebyshev fit information '''''''''''''''''''''''''''''''' read nfit%, jdtdb1, jdtdb2 dim rx_poly(nfit% + 1), ry_poly(nfit% + 1), rz_poly(nfit% + 1) for i% = 1 to nfit% + 1 read rx_poly(i%), ry_poly(i%), rz_poly(i%) next i% DATA 30 , 2.457754500000000e+06 , 2.457784500000000e+06 DATA -1.671212766283444e+05 , 2.339452743007602e+05 , -6.643820380953825e+04 DATA -1.013516615782387e+05 , -5.338868026854525e+04 , -3.252851865625804e+04 DATA -1.410488649048607e+05 , 3.198528042990981e+05 , -6.150080272239724e+04 DATA 2.504108815580476e+05 , 1.288933583288243e+05 , 7.969374208748670e+04 DATA 5.588685465655353e+04 , -1.387664335549331e+05 , 2.469063811957224e+04 DATA -5.357791059449854e+04 , -1.938342258785099e+04 , -1.734897073672480e+04 DATA -1.563117911126481e+03 , 1.962116581684537e+04 , -1.324979274227767e+03 DATA 6.033806923981408e+03 , -2.163099288612435e+03 , 2.132847784192905e+03 DATA -1.996995877841867e+03 , -2.076839904134528e+03 , -5.954315567404735e+02 DATA -6.101299362497032e+02 , 1.259631080869243e+03 , -2.578993245468610e+02 DATA 6.157834144601497e+02 , 1.789866309373343e+02 , 2.024828825228624e+02 DATA 1.397766147511673e+01 , -3.046738556139396e+02 , 1.667284166198618e+01 DATA -1.282736190179750e+02 , 2.496789357918427e+01 , -4.497879709269770e+01 DATA 2.756566127147638e+01 , 5.707144398157365e+01 , 7.092149271244830e+00 DATA 2.095669284160436e+01 , -2.071875123884303e+01 , 8.138655535849524e+00 DATA -1.229585583649403e+01 , -7.863442975289804e+00 , -3.633748605814500e+00 DATA -1.920784881261493e+00 , 6.959414879665635e+00 , -8.818695691720236e-01 DATA 3.437597807267711e+00 , 2.037702345105278e-01 , 9.140860024969198e-01 DATA -3.219809705323930e-01 , -1.642568770972561e+00 , -1.628938505196974e-01 DATA -7.579454218014894e-01 , 3.401845352284820e-01 , -1.184860230841291e-01 DATA 2.273044256970377e-01 , 3.331935564938542e-01 , 1.425602672792475e-01 DATA 1.755790245839424e-01 , -1.539275528470640e-01 , -2.516797414207230e-03 DATA -8.034554061915484e-02 , -8.772612029250950e-02 , -5.614954702351468e-02 DATA -5.802522909230432e-02 , 5.263075910625048e-02 , 2.241081730913251e-03 DATA 2.752260642497981e-02 , 3.340975976560355e-02 , 1.774626340756508e-02 DATA 2.174060563969936e-02 , -1.890506993438448e-02 , 1.081468033296387e-03 DATA -1.064998679231071e-02 , -1.200350847812520e-02 , -5.418672341376453e-03 DATA -6.752858228977739e-03 , 7.203210781294582e-03 , -7.713717958165123e-04 DATA 4.207065041672679e-03 , 3.157313824856593e-03 , 1.719649341764800e-03 DATA 1.498989865555608e-03 , -2.408632381223968e-03 , 1.931360317441079e-04 DATA -1.806502909828616e-03 , -4.825714913163064e-04 , -6.470521568131046e-04 ' beginning and end of valid time interval ' in Julian centuries wrt 1/1.5/2000 TDB ta = (jdtdb1 - 2451545.0) / 36525.0 tb = (jdtdb2 - 2451545.0) / 36525.0 '''''''''''''''''''''''''''''''' ' evaluate ephemeris on 1/6/2017 '''''''''''''''''''''''''''''''' jdtdb = jdtdb1 + 5.0 x = (jdtdb - 2451545.0) / 36525.0 teval(ta, tb, nfit%, ry_poly(), x, rmoon(1)) teval(ta, tb, nfit%, rx_poly(), x, rmoon(2)) teval(ta, tb, nfit%, rz_poly(), x, rmoon(3)) ' print position vector and magnitude print " " print "Moon position vector and magnitude" print "----------------------------------" print " " print "r_x = ", str$(rmoon(1), 0, 8), " kilometers" print " " print "r_y = ", str$(rmoon(2), 0, 8), " kilometers" print " " print "r_z = ", str$(rmoon(3), 0, 8), " kilometers" print " " print "rmag = ", str$(vecmag(rmoon()), 0, 8), " kilometers" print " " end ''''''''''''''''''''''''''''''' ''''''''''''''''''''''''''''''' sub teval(fa, fb, n%, c(), x, tf) ' evaluate chebyshev series subroutine '''''''''''''''''''''''''''''''''''''' f1 = 0.0 f2 = 0.0 xx = (2.0 * x - fa - fb) / (fb - fa) xx2 = 2.0 * xx for i% = n% to 1 step -1 oldf1 = f1 f1 = xx2 * f1 - f2 + c(i% + 1) f2 = oldf1 next i% tf = xx * f1 - f2 + 0.5 * c(1) end sub '''''''''''''''''' '''''''''''''''''' function vecmag(a()) ' vector magnitude function ' input ' { a } = column vector ( 3 rows by 1 column ) ' output ' vecmag = scalar magnitude of vector { a } vecmag = sqr(a(1) * a(1) + a(2) * a(2) + a(3) * a(3)) end function The zipped archive is located here 2017-04-21_180252_chebyshev.zip |
||||
Grogster![]() Admin Group Joined: 31/12/2012 Location: New ZealandPosts: 9748 |
I have seen these posts, and am totally lost. I am in awe of your mathematical abilities - the forum has apparently gained a maths professor. ![]() I know who to ask next time I have a tricky mathematical problem to solve! Smoke makes things work. When the smoke gets out, it stops! |
||||
| cdeagle Senior Member Joined: 22/06/2014 Location: United StatesPosts: 266 |
I've recently updated two of the MMBASIC-MMX programs for the Moon mentioned in the first post about this subject. The create program now writes the ephemeris information to a CSV file. The program that evaluates the ephemeris reads and uses the data file. I'm happy to say that these two programs run on the MMX, Raspberry Pi and DOS versions of MMBASIC without changing any of the code. A rare happening during software development indeed. Here's a link to the forum-hosted zipped file with the software. 2017-07-05_181144_chebyshev_moon.zip |
||||
| Tinine Guru Joined: 30/03/2016 Location: United KingdomPosts: 1646 |
+1 |
||||
| The Back Shed's forum code is written, and hosted, in Australia. | © JAQ Software 2025 |