|
Forum Index : Microcontroller and PC projects : MMX - Earth satellite rise and set
| Author | Message | ||||
| cdeagle Senior Member Joined: 22/06/2014 Location: United StatesPosts: 266 |
This post describes a MMBASIC program for the MicroMite eXtreme that can be used to calculate visibility conditions of Earth satellites. The software uses Two-Line Element (TLE) information to calculate visibility. The sat_riseset.bas computer code allows the user to specify a minimum elevation angle during the analysis. Shadow conditions at rise, maximum elevation and set are also displayed if valid. TLE data for a variety of space objects can be downloaded from Dr. Kelso's CeleTrak website located at https://celestrak.com/NORAD/elements/ The data for the object of interest must be extracted from the TLE file and added to the sat_riseset.bas source code via three lines of strings as follows; '''''''''' ' TLE data '''''''''' cline1 = "ISS (ZARYA)" cline2 = "1 25544U 98067A 17077.64837083 .00001665 00000-0 32320-4 0 9993" cline3 = "2 25544 51.6420 129.6155 0006880 308.3866 194.6632 15.54222906 47676" Always use the TLE data with a calendar date closest to your calendar date of interest. Here's a typical user interaction with this computer program. It first displays the TLE epoch along with the data used by the software. This example displays conditions of the International Space Station (ISS) relative to Cape Canaveral, Florida. rise and set of Earth satellites ================================ TLE epoch calendar date March 18 2017 UTC 15 hours 33 minutes 39.07 seconds ISS (ZARYA) 1 25544U 98067A 17077.64837083 .00001665 00000-0 32320-4 0 9993 2 25544 51.6420 129.6155 0006880 308.3866 194.6632 15.54222906 47676 please input the calendar date (month [1 - 12], day [1 - 31], year [yyyy]) < for example, october 21, 1986 is input as 10,21,1986 > < b.c. dates are negative, a.d. dates are positive > < the day of the month may also include a decimal part > ? 3,23,2017 please input the UTC time (hours [0 - 24], minutes [0 - 60], seconds [0 - 60]) ? 4,0,0 please input the geographic latitude of the observer (degrees [-90 to +90], minutes [0 - 60], seconds [0 - 60]) (north latitudes are positive, south latitudes are negative) ? 28,23,45 please input the geographic longitude of the observer (degrees [0 - 360], minutes [0 - 60], seconds [0 - 60]) (east longitude is positive, west longitude is negative) ? -80,35,55 please input the altitude of the observer (meters) (positive above sea level, negative below sea level) ? 0 please input the number of days to simulate ? 1 please input the minimum elevation angle (degrees) ? 10 Here is the program output for this example. rise conditions --------------- calendar date March 23 2017 UTC 9 hours 40 minutes 20.33 seconds UTC julian day 2457835.90301302 topocentric coordinates azimuth angle 352 deg 24 min 21.35 sec elevation angle 10 deg 0 min 0.00 sec slant range 1470.7678 kilometers azimuth rate 0.2029 degrees/second elevation rate 0.0445 degrees/second range rate -4.8883 kilometers/second umbra shadow maximum elevation conditions ---------------------------- calendar date March 23 2017 UTC 9 hours 42 minutes 45.25 seconds UTC julian day 2457835.90469039 topocentric coordinates azimuth angle 39 deg 36 min 24.61 sec elevation angle 18 deg 34 min 55.55 sec slant range 1056.9589 kilometers azimuth rate 0.4212 degrees/second elevation rate -0.0002 degrees/second range rate -0.0097 kilometers/second set conditions -------------- calendar date March 23 2017 UTC 9 hours 45 minutes 9.77 seconds UTC julian day 2457835.90636313 topocentric coordinates azimuth angle 86 deg 47 min 11.40 sec elevation angle 10 deg 0 min 0.06 sec slant range 1467.3834 kilometers azimuth rate 0.2036 degrees/second elevation rate -0.0448 degrees/second range rate 4.8844 kilometers/second event duration 0 hours 4 minutes 49.45 seconds rise conditions --------------- calendar date March 23 2017 UTC 11 hours 16 minutes 23.56 seconds UTC julian day 2457835.96971717 topocentric coordinates azimuth angle 290 deg 35 min 37.76 sec elevation angle 10 deg 0 min 0.00 sec slant range 1468.6603 kilometers azimuth rate -0.1526 degrees/second elevation rate 0.0527 degrees/second range rate -5.8094 kilometers/second maximum elevation conditions ---------------------------- calendar date March 23 2017 UTC 11 hours 19 minutes 11.51 seconds UTC julian day 2457835.97166102 topocentric coordinates azimuth angle 232 deg 18 min 58.05 sec elevation angle 25 deg 37 min 46.68 sec slant range 847.4275 kilometers azimuth rate -0.5524 degrees/second elevation rate -0.0005 degrees/second range rate -0.0152 kilometers/second set conditions -------------- calendar date March 23 2017 UTC 11 hours 21 minutes 58.84 seconds UTC julian day 2457835.97359774 topocentric coordinates azimuth angle 173 deg 55 min 59.61 sec elevation angle 10 deg 0 min 0.00 sec slant range 1461.7028 kilometers azimuth rate -0.1546 degrees/second elevation rate -0.0532 degrees/second range rate 5.7904 kilometers/second event duration 0 hours 5 minutes 35.28 seconds rise conditions --------------- calendar date March 24 2017 UTC 0 hours 40 minutes 8.03 seconds UTC julian day 2457836.52787070 topocentric coordinates azimuth angle 150 deg 46 min 45.39 sec elevation angle 10 deg 0 min 0.00 sec slant range 1443.1546 kilometers azimuth rate -0.2686 degrees/second elevation rate 0.0272 degrees/second range rate -2.9261 kilometers/second umbra shadow maximum elevation conditions ---------------------------- calendar date March 24 2017 UTC 0 hours 41 minutes 32.30 seconds UTC julian day 2457836.52884611 topocentric coordinates azimuth angle 124 deg 53 min 8.58 sec elevation angle 12 deg 15 min 48.49 sec slant range 1315.3239 kilometers azimuth rate -0.3288 degrees/second elevation rate 0.0003 degrees/second range rate 0.0324 kilometers/second umbra shadow set conditions -------------- calendar date March 24 2017 UTC 0 hours 42 minutes 56.79 seconds UTC julian day 2457836.52982397 topocentric coordinates azimuth angle 99 deg 1 min 56.17 sec elevation angle 10 deg 0 min 0.01 sec slant range 1448.8546 kilometers azimuth rate -0.2664 degrees/second elevation rate -0.0267 degrees/second range rate 2.9844 kilometers/second umbra shadow event duration 0 hours 2 minutes 48.76 seconds rise conditions --------------- calendar date March 24 2017 UTC 2 hours 14 minutes 43.26 seconds UTC julian day 2457836.59355621 topocentric coordinates azimuth angle 249 deg 9 min 33.01 sec elevation angle 10 deg 0 min 0.00 sec slant range 1447.2065 kilometers azimuth rate 0.1196 degrees/second elevation rate 0.0575 degrees/second range rate -6.2459 kilometers/second umbra shadow maximum elevation conditions ---------------------------- calendar date March 24 2017 UTC 2 hours 17 minutes 42.99 seconds UTC julian day 2457836.59563647 topocentric coordinates azimuth angle 316 deg 38 min 23.21 sec elevation angle 33 deg 51 min 59.64 sec slant range 683.7368 kilometers azimuth rate 0.7440 degrees/second elevation rate 0.0010 degrees/second range rate 0.0180 kilometers/second umbra shadow set conditions -------------- calendar date March 24 2017 UTC 2 hours 20 minutes 44.11 seconds UTC julian day 2457836.59773279 topocentric coordinates azimuth angle 24 deg 8 min 14.14 sec elevation angle 10 deg 0 min 0.00 sec slant range 1457.9380 kilometers azimuth rate 0.1185 degrees/second elevation rate -0.0565 degrees/second range rate 6.2475 kilometers/second umbra shadow event duration 0 hours 6 minutes 0.86 seconds Here's a zip archive that contains the MMBASIC source code and two PDF documents that may be helpful. In the riseset.pdf document, the MATLAB riseset2.m program corresponds to this MMBASIC implementation. 2017-03-23_153747_sat_riseset.zip |
||||
| The Back Shed's forum code is written, and hosted, in Australia. | © JAQ Software 2025 |