MMBasic DOS Version

User Manual
MMBasic Ver 5.4

For updates to this manual and more details on MMBasic go to
http://geoffg.net/micromite.html

and http://mmbasic.com

http://geoffg.net/micromite.html
http://mmbasic.com

Copyright

The Micromite firmware including MMBasic and this manual are Copyright 2011-2017 by Geoff Graham.

The compiled object code (the MMBasic.exe file) is free software: you can use or redistribute it as you please.
The source code is available via subscription (free of charge) to individuals for personal use or under a
negotiated license for commercial use. In both cases go to http://mmbasic.com for details.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY:; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

This manual is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Australia
license (CC BY-NC-SA 3.0)

Contents
o o 11 T 1o o R 3
FIle INPUIOULPUL 5
LAY] Tol @ g P= T = 1o (=] 1 o3RRS 8
Predefined Read Only Variables ... 10
(@0] 017> Lo 3 URUPPUPRR 11
1 o 1 USSP 20
Obsolete Commands and FUNCHONSuviiiiiiiiiiiiiiiiiiiiiiiiieeeeeee ettt 24

MMBasic DOS Version User Manual Page 2

http://mmbasic.com

Introduction

MMBasic is an implementation of the BASIC language with floating point and string variables, long variable
names, arrays of floats or strings with multiple dimensions and powerful string handling. It is generally
compatible with Microsoft BASIC so it is easy to learn and run.

This version can run quite large and complex programs so it is useful for learning the BASIC language or
running BASIC programs in a DOS/Windows environment. It uses the same syntax and basic commands as the
Micromite version of MMBasic and can be used for testing programs in a convenient environment.

This manual covers the essentials of programming for the DOS version of MMBasic but for a more detailed
explanation it is recommended that you read chapters 2 and 3 of the tutorial Getting Started with the Micromite
which can be downloaded from: http://geoffg.net/Micromite#Downloads

Limitations
If you are familiar with the Micromite please note that this version does not attempt to emulate the full

Micromite environment. Due to limitations of the DOS window this version does not support the full screen
editor, graphics, external input/output, etc.

Installing and Running DOS MMBasic

The DOS version of MMBasic does not need installation. All you need do is copy the executable file
(MMBasic.exe) to the directory of your choice. The executable is fully self contained; there are no libraries or
other files required.

To run MMBasic just double click on the executable file (MMBasic.exe) and MMBasic will start running in a
DOS box.

DOS MMBasic Uer 5.84.8%
Copyright 2011-2017 Geoff Graham

» PRINT 1.7
B.1428571429
*

You can start MMBasic running a BASIC program by including the program's file name on the Windows
command line.

Developing Programs

To prepare a BASIC program you should use a Windows text editor like Notepad to edit your program as a file
within Windows. Do not use a word processing editor like WordPad or Word as they will insert formatting
commands in the file causing errors when run in MMBasic.

To run the program you have four choices:

e Use RUN "filename™ at the MMBasic command prompt (the greater than symbol '>"). Note that the
double quotes are required (for example, RUN "MYFILE.BAS")

e Dragand drop the BASIC program file onto the MMBasic icon in Windows — this will cause Windows
to start up MMBasic which will automatically run your program.

MMBasic DOS Version User Manual Page 3

http://geoffg.net/Micromite#Downloads

e |f you associate the file extension of .BAS to MMBasic.exe you can run your BASIC program simply
by double clicking on the program file (with the .BAS extension).

e Many editors like MMEdit, Notepad++ or Twistpad will let you define a single key that will save the
file and run MMBasic with the file's name on the command line. This causes MMBasic to immediately
run your program and results in a very fast edit/save/run cycle.

Differences to the Maximite Version of MMBasic

The main difference between the DOS version of MMBasic and the version running on the Micromite family is
that the DOS version does not support any hardware related features of the Micromite.

This means that the following facilities are not supported:
= LCD display panels and associated features (touch, fonts, etc).
= Any interrupts including timing interrupts.
= External I/0 and communications protocols (serial, 12C, SP1 and 1-wire).
= Serial console and commands which operate on the serial console such as AUTOSAVE and XMODEM
= The full screen editor.

DOS MMBasic has two extra commands:
= QUIT which will close MMBasic and return to the operating system.
= SYSTEM which will issue a DOS command to the operating system.

When MMBasic is running it is possible to copy and paste text to and from MMBasic using the standard copy
and paste facilities of the DOS box.

Double Precision Floating Point

All floating point numbers in the DOS version are double precision (the Maximite version uses single
precision). This means that calculations will have a far greater range and will be accurate to about 16 decimal
digits. Also when printing a floating point number MMBasic will display up to 9 digits.

MMBasic generates a single unigue character for the function keys and other special keys on the keyboard.
Special Keys
With the console input MMBasic uses the following codes to identify special keys on the keyboard:

Key Code | Key Code

Keyboard Key (Hex) (Decimal)
Up Arrow 80 128
Down Arrow 81 129
Left Arrow 82 130
Right Arrow 83 131
Insert 84 132
Home 86 134
End 87 135
Page Up 88 136
Page Down 89 137
Delete Us 127
F1 01 145
= 92 146
£3 93 147
=) 94 148
F5 95 149
F6 96 150
£7 97 151
F8 08 152
F9 99 153
F10 9A 154
F11 9B 155
F12 oC 156

MMBasic DOS Version User Manual Page 4

File Input/Output

The DOS version of MMBasic has full support for accessing files and directories. This includes opening files
for reading, writing or random access and loading and saving programs.

Note that:
o Long file/directory names are supported in addition to the old 8.3 format.
o Upper/lowercase characters and spaces are allowed although the file system is not case sensitive.
o Directory paths are allowed in file/directory strings. (ie, OPEN "\dir1\dir2\file.txt" FOR ...).
o Back slashes must be used in paths. Eg \dir\file.txt.
e Up to ten files can be simultaneously open.
o Except for PRINT, INPUT and LINE INPUT the # in #fnbr is optional and may be omitted.
00 OPEN fname$ FOR mode AS #fnbr

Opens a file for reading or writing. 'fname$' is the file name. 'mode' can be INPUT, OUTPUT, APPEND
or RANDOM. ‘#fnbr’ is the file number (1 to 10).

0 PRINT #fnbr, expression [[,;]Jexpression] ... etc
Outputs text to the file opened as #fnbr.

0 INPUT #fnbr, list of variables
Read a list of comma separated data into the variables specified from the file previously opened as #fnbr.

0 LINE INPUT #fnbr, variable$
Read a complete line into the string variable specified from the file previously opened as #fnbr.

0 CLOSE #fnbr [,#fnbr] ...
Close the file(s) previously opened with the file number “#fnbr’.

Programs can be loaded from a file.

0 LOAD fname$ [, R]
Load a BASIC program from disc. The optional suffix ",R" will cause the program to be run after it has
been loaded.

o1 RUN fname$
Load and run a BASIC program from disc.

Basic file and directory manipulation can be done from within a BASIC program.

o FILES
Search the current directory and list the files/directories found.

0 KILL fname$
Delete a file in the current directory.

0 MKDIR dname$
Make a sub directory in the current directory.

1 CHDIR dname$
Change into to the directory $dname. $dname can also be ".." (dot dot) for up one directory or "\" for the
root directory.

O RMDIR dir$
Remove, or delete, the directory ‘dir$’.

0 SEEK #fnbr, pos
Will position the read/write pointer in a file that has been opened for RANDOM access to the 'pos' byte.

Also there are a number of functions that support the above commands.

0 INPUTS(nbr, #fnbr)
Will return a string composed of ‘nbr’ characters read from a file previously opened for INPUT with the

MMBasic DOS Version User Manual Page 5

file number “#fnbr’. If less than “nbr’ characters are available the function will return with what it has
(including an empty string if no characters are available).

0 EOF(#fnbr)
Will return true if the file previously opened for INPUT with the file number “#fnbr’ is positioned at the
end of the file.

0 LOC(#fnbr)
For a file opened as RANDOM this will return the current position of the read/write pointer in the file.

0 LOF(#fnbr)
Will return the current length of the file in bytes.

Example of Sequential /O

In the example below a file is created and two lines are written to the file (using the PRINT command). The
file is then closed.

OPEN "fox.txt" FOR OUTPUT AS #1
PRINT #1, "The quick brown fox"
PRINT #1, "jumps over the lazy dog"
CLOSE #1

You can read the contents of the file using the LINE INPUT command. For example:

OPEN "fox.txt" FOR INPUT AS #1
LINE INPUT #1,a$

LINE INPUT #1,b$

CLOSE #1

LINE INPUT reads one line at a time so the variable a s will contain the text "The quick brown fox" and b $
will contain "jumps over the lazy dog".

Another way of reading from a file is to use the INPUT$() function. This will read a specified number of
characters. For example:

OPEN "fox.txt" FOR INPUT AS #1
tas$ = INPUTS (12, #1)

tb$ = INPUTS (3, #1)

CLOSE #1

The first INPUTS$() will read 12 characters and the second three characters. So the variable ta$ will contain
"The quick br" and the variable tb$ will contain "own".

Files normally contain just text and the print command will convert numbers to text. So in the following
example the first line will contain the line "123" and the second "56789".

nbrl = 123 : nbr2 = 56789

OPEN "numbers.txt" FOR OUTPUT AS #1
PRINT #1, nbrl

PRINT #1, nbr2

CLOSE #1

Again you can read the contents of the file using the LINE INPUT command but then you would need to
convert the text to a number using VAL(). For example:

OPEN "numbers.txt" FOR OUTPUT AS #1
LINE INPUT #1, a$

LINE INPUT #1, Db$

CLOSE #1

x = VAL (a$) : y = VAL(bS)

Following this the variable x would have the value 123 and y the value 56789.

MMBasic DOS Version User Manual Page 6

Random File /1O
For random access the file should be opened with the keyword RANDOM. For example:

OPEN "filename" FOR RANDOM AS #1

To seek to a record within the file you would use the SEEK command which will position the read/write
pointer to a specific byte. The first byte in a file is numbered one so, for example, the fifth record in a file that
uses 64 byte records would start at byte 257. In that case you would use the following to point to it:

SEEK #1, 257

When reading from a random access file the INPUT$() function should be used as this will read a fixed number
of bytes (ie, a complete record) from the file. For example, to read a record of 64 bytes you would use:

dat$ = INPUTS (64, #1)

When writing to the file a fixed record size should be used and this can be easily accomplished by adding
sufficient padding characters (normally spaces) to the data to be written. For example:

PRINT #1, dat$ + SPACES$ (64 — LEN(dat$);

The SPACES$() function is used to add enough spaces to ensure that the data written is an exact length (64bytes
in this example). The semicolon at the end of the print command suppresses the addition of the carriage return
and line feed characters which would make the record longer than intended.

Two other functions can help when using random file access. The LOC() function will return the current byte
position of the read/write pointer and the LOF() function will return the total length of the file in bytes.

The following program demonstrates random file access. Using it you can append to the file (to add some data
in the first place) then read/write records using random record numbers. The first record in the file is record
number 1, the second is 2, etc.

Reclen = 64
OPEN "test.dat" FOR RANDOM AS #1

DO
abort: PRINT
PRINT "Number of records in the file =" LOF (#1) /ReclLen
INPUT "Command (r = read,w = write, a = append, g = quit): ", cmd$
IF cmd$ = "g" THEN CLOSE #1 : END
IF cmd$ = "a" THEN
SEEK #1, LOF(#1) + 1
ELSE
INPUT "Record Number: ", nbr
IF nbr < 1 or nbr > LOF(#1) /RecLen THEN PRINT "Invalid record" : GOTO abort
SEEK #1, ReclLen * (nbr - 1) + 1
ENDIF
IF cmd$ = "r" THEN
PRINT "The record = " INPUTS (RecLen, #1)
ELSE
LINE INPUT "Enter the data to be written: ", dat$
PRINT #1,dat$ + SPACES (RecLen - LEN(dat$));
ENDIF
LOOP

Random access can also be used on a normal text file. For example, this will print out a file backwards:

OPEN "file.txt" FOR RANDOM AS #1
FOR i = LOF(#1) TO 1 STEP -1
SEEK #1, i
PRINT INPUTS (1, #1);
NEXT i
CLOSE #1

MMBasic DOS Version User Manual Page 7

MMBasic Characteristics

Naming Conventions

Command names, function names, labels, variable names,, etc are not case sensitive, so that "Run" and "RUN"
are equivalent and "dOO™" and "Doo" refer to the same variable.

The type of a variable can be specified in the DIM command or by adding a suffix to the end of the variable's
name. For example the suffix for an integer is '%' so if a variable called nbr% is automatically created it will be
an integer. There are three types of variables:

1. Floating point. These can store a number with a decimal point and fraction (eg, 45.386) and also very
large numbers. The suffix is '!" and floating point is the default when a variable is created without a
suffix

2. 64-bit integer. These can store numbers with up to 19 decimal digits without losing accuracy but they
cannot store fractions (ie, the part following the decimal point). The suffix for an integer is '%'

3. Strings. These will store a string of characters (eg, "Tom"). The suffix for a string is the '$' symbol
(eg, name$, s$, etc) Strings can be up to 255 characters long.

Variable names and labels can start with an alphabetic character or underscore and can contain any alphabetic
or numeric character, the period (.) and the underscore (_). They may be up to 32 characters long. A variable

name or a label must not be the same as a command or a function or one of the following keywords: THEN,
ELSE, TO, STEP, FOR, WHILE, UNTIL, MOD, NOT, AND, OR, XOR, AS. Eg, step =5 s illegal.

Constants

Numeric constants may begin with a numeric digit (0-9) for a decimal constant, &H for a hexadecimal
constant, &0 for an octal constant or &B for a binary constant. For example &B1000 is the same as the
decimal constant 8. Constants that start with &H, &O or &B are always treated as 64-bit integer constants.

Decimal constants may be preceded with a minus (-) or plus (+) and may be terminated with 'E' followed by an
exponent number to denote exponential notation. For example 1.6E+4 is the same as 16000.

If the decimal constant contains a decimal point or an exponent, it will be treated as a floating point constant;
otherwise it will be treated as a 64-bit integer constant.

String constants are surrounded by double quote marks (*). Eg, "Hello World".

Operators and Precedence

The following operators, in order of precedence, are recognised. Operators that are on the same level (for
example + and -) are processed with a left to right precedence as they occur on the program line.

Arithmetic operators:

N

* |\ MOD Multiplication, division, integer division and modulus (remainder)

+ - Addition and subtraction

Shift operators:

X<<y X>>y These operate in a special way. << means that the value returned
will be the value of x shifted by y bits to the left while >> means the
same only right shifted. They are integer functions and any bits
shifted off are discarded and any bits introduced are set to zero.

Logical operators:

NOT logical inverse of the value on the right

<> < > <= =< Inequality, less than, greater than, less than or equal to, less than or

>= = equal to (alternative version), greater than or equal to, greater than or
equal to (alternative version)

= equality

AND OR XOR Conjunction, disjunction, exclusive or

MMBasic DOS Version User Manual Page 8

The operators AND, OR and XOR are integer bitwise operators. For example PRINT (3 AND 6) will output 2.

The other logical operations result in the integer 0 (zero) for false and 1 for true. For example the statement
PRINT 4 >=5 will print the number zero on the output and the expression A =3 > 2 will store +1 in A.

The NOT operator is highest in precedence so it will bind tightly to the next value. For normal use the
expression to be negated should be placed in brackets. For example, IF NOT (A=3 OR A=8) THEN ...

String operators:

+ Join two strings
<> < > <= =< Inequality, less than, greater than, less than or equal to, less than or
>= => equal to (alternative version), greater than or equal to, greater than or

equal to (alternative version)

= Equality

String comparisons respect case. For example "A" is greater than "a".

Implementation Characteristics

Maximum program size is 512KB.

Maximum number of variables is 500.

Maximum length of a command line is 255 characters.

Maximum length of a variable name or a label is 32 characters.

Maximum number of dimensions to an array is 8.

Maximum number of arguments to commands that accept a variable number of arguments is 50.
Maximum number of nested FOR...NEXT loops is 50.

Maximum number of nested DO...LOOP commands is 50.

Maximum number of nested GOSUBSs, subroutines and functions (combined) is 1000.

Maximum number of nested multiline IF...ELSE...ENDIF commands is 20.

Maximum number of user defined subroutines and functions (combined): 512

Numbers are stored and manipulated as double precision floating point numbers or 64-bit signed integers. The
maximum floating point number allowable is 1.7976931348623157e+308 and the minimum is
2.2250738585072014e-308.

The range of 64-bit integers (whole numbers) that can be manipulated is + 9223372036854775807.
Maximum string length is 255 characters.

Maximum line number is 65000.

Compatibility

MMBasic implements a large subset of Microsoft’s GW-BASIC. There are numerous differences due to
physical and practical considerations but most standard BASIC commands and functions are essentially the
same. An online manual for GW-BASIC is available at http://www.antonis.de/gbebooks/gwbasman/index.html
and this provides a more detailed description of the commands and functions.

MMBasic also implements a number of modern programming structures documented in the ANSI Standard for
Full BASIC (X3.113-1987) or ISO/IEC 10279:1991. These include SUB/END SUB, the DO WHILE ...
LOOP, the SELECT...CASE statements and structured IF .. THEN ... ELSE ... ENDIF statements.

MMBasic DOS Version User Manual Page 9

http://www.antonis.de/qbebooks/gwbasman/index.html

Predefined Read Only Variables

These variables are set by MMBasic and cannot be changed by the running program.

MM.VER

The version number of the firmware as a floating point number in the form
aa.bbcc where aa is the major version number, bb is the minor version
number and cc is the revision number. For example version 5.03.00 will
return 5.3 and version 5.03.01 will return 5.0301.

MM.DEVICE$

A string representing the device or platform that MMBasic is running on.
Currently this variable will contain one of the following:
"Maximite" on the standard Maximite and compatibles.
"Colour Maximite™ on the Colour Maximite and UBW32.
"DuinoMite" when running on one of the DuinoMite family.
"DOS" when running on Windows in a DOS box.
"Generic PIC32" for the generic version of MMBasic on a PIC32.
"Micromite" on the PIC32MX150/250
"Micromite MkII" on the PIC32MX170/270
"Micromite Plus" on the PIC32M X470
"Micromite Extreme" on the PIC32MZ series

MM.ERRNO
MM.ERRMSG$

If a statement caused an error which was ignored these variables will be set
accordingly. MM.ERRNO is a number where non zero means that there was
an error and MM.ERRMSGS$ is a string representing the error message that
would have normally been displayed on the console. They are reset to zero
and an empty string by RUN, ON ERROR IGNORE or ON ERROR SKIP.

MMBasic DOS Version User Manual

Page 10

Commands

Square brackets indicate that the parameter or characters are optional.

* (single quotation mark)

Starts a comment and any text following it will be ignored. Comments can
be placed anywhere on a line.

? (question mark)

Shortcut for the PRINT command.

CHDIR dir$

Change the current working directory to ‘dir$’

The special entry “..” represents the parent of the current directory and “.
represents the current directory.

CLOSE [#]fnbr [,[#]fnbr] ...

Close the file(s) previously opened with the file number “#fnbr’. The # is
optional. Also see the OPEN command.

CLS

Clears all text in the DOS box.

CLEAR

Delete all variables and recover the memory used by them.
See ERASE for deleting specific array variables.

CONST id = expression
[, id = expression] ... etc

Create a constant identifier which cannot be changed once created.

'id" is the identifier which follows the same rules as for variables. The
identifier can have a type suffix (!, %, or $) but it is not required. If it is
specified it must match the type of 'expression’.

‘expression’ is the value of the identifier and it can be a normal expression
(including user defined functions) which will be evaluated when the constant
is created.

A constant defined outside a sub or function is global and can be seen
throughout the program. A constant defined inside a sub or function is local
to that routine and will hide a global constant with the same name.

CONTINUE

Resume running a program that has been stopped by an END statement, an
error, or CTRL-C. The program will restart with the next statement
following the previous stopping point.

Note that it is not always possible to resume the program correctly — this

particularly applies to complex programs with nested loops and/or nested
subroutines and functions.

CONTINUE DO
or
CONTINUE FOR

Skip to the end of a DO/LOOP or a FOR/NEXT loop. The loop condition
will then be tested and if still valid the loop will continue with the next
iteration.

DATA constant [,constant]...

Stores numerical and string constants to be accessed by READ.

In general string constants should be surrounded by double quotes (). An
exception is when the string consists of just alphanumeric characters that do
not represent MMBasic keywords (such as THEN, WHILE, etc). In that
case quotes are not needed.

Numerical constants can also be expressions such as 5 * 60.

DIM [type] decl [,decl]...
where 'decl' is:

var [length] [type] [init]
'var' is a variable name with
optional dimensions

'length’ is used to set the
maximum size of the string to 'n
asin LENGTH n

'type' is one of AS FLOAT or

Declares one or more variables (ie, makes the variable name and its
characteristics known to the interpreter).

When OPTION EXPLICIT is used (as recommended) the DIM or LOCAL
commands are the only way that a variable can be created. If this option is
not used then using the DIM command is optional and if not used the
variable will be created automatically when first referenced.

The type of the variable (ie, string, float or integer) can be specified in one of
three ways:

By using a type suffix (ie, !, % or $ for float, integer or string). For
example:

MMBasic DOS Version User Manual

Page 11

AS INTEGER or AS STRING

'init" is the value to initialise the
variable and consists of:
= <expression>

For a simple variable one
expression is used, for an array a
list of comma separated
expressions surrounded by
brackets is used.

Examples:

DIM nbr(50)

DIM INTEGER nbr(50)

DIM name AS STRING

DIM a, b$, nbr(100), strn$(20)
DIM a(5,5,5), b(1000)

DIM strn$(200) LENGTH 20

DIM AS STRING strn(200)
LENGTH 20

DIM a=1234, b =345
DIM STRING strn = "text"
DIM x%(3) = (11, 22, 33, 44)

DIM nbr%, amount!, name$

By using one of the keywords FLOAT, INTEGER or STRING immediately
after the command DIM and before the variable(s) are listed. The specified
type then applies to all variables listed (ie, it does not have to be repeated).
For example:

DIM AS STRING first name, last name, city

By using the Microsoft convention of using the keyword "AS" and the type
keyword (ie, FLOAT, INTEGER or STRING) after each variable. If you
use this method the type must be specified for each variable and can be
changed from variable to variable.

For example:
DIM amount AS FLOAT, name AS STRING

Floating point or integer variables will be set to zero when created and
strings will be set to an empty string (ie, ™). You can initialise the value of
the variable with something different by using an equals symbol (=) and an
expression following the variable definition. For example:

DIM AS STRING city = "Perth", house = "Brick"

The initialising value can be an expression (including other variables) and
will be evaluated when the DIM command is executed.

As well as declaring simple variables the DIM command will also declare
arrayed variables (ie, an indexed variable with a number of dimensions).
Following the variable's name the dimensions are specified by a list of
numbers separated by commas and enclosed in brackets. For example:

DIM array (10, 20)

Each number specifies the number of elements in each dimension. Normally
the numbering of each dimension starts at 0 but the OPTION BASE
command can be used to change this to 1.

The above example specifies a two dimensional array with 11 elements (0 to
10) in the first dimension and 21 (0 to 20) in the second dimension. The
total number of elements is 231 and because each floating point number
requires 4 bytes a total of 924 bytes of memory will be allocated (integers
are different and require 8 bytes per element).

Strings will default to allocating 255 bytes (eg, characters) of memory for
each element and this can quickly use up memory. In that case the
LENGTH keyword can be used to specify the amount of memory to be
allocated to each element and therefore the maximum length of the string
that can be stored. This allocation ('n") can be from 1 to 255 characters.
For example: DIM str$(5, 10) will declare a string array with 66 elements
consuming 16,896 bytes of memory while:

DIM AS STRING str (5, 10) LENGTH 20
Will only consume 1,386 bytes of memory. Note that the amount of
memory allocated for each element is n + 1 as the extra byte is used to track
the actual length of the string stored in each element.
If a string longer than 'n' is assigned to an element of the array an error will
be produced. Other than this string arrays created with the LENGTH
keyword act exactly the same as other string arrays. Note that the LENGTH
keyword can also be used when defining non array string variables.
In the above example you can also use the Microsoft syntax of specifying the
type after the length specifier. For example:

DIM str (5, 10) LENGTH 20 AS STRING
Arrays can also be initialised when they are declared by adding an equals
symbol (=) followed by a bracketed list of values at the end of the
declaration. For example:

DIM INTEGER nbr (4) = (22, 44, 55, 66, 88)

MMBasic DOS Version User Manual

Page 12

or DIM str$(3) = ("foo", "boo", "doo", "zoo")

Note that the number of initialising values must match the number of
elements in the array including the base value set by OPTION BASE. Ifa
multi dimensioned array is initialised then the first dimension will be
initialised first followed by the second, etc.

DO This structure will loop forever; the EXIT DO command can be used to
<statements> terminate the loop or control must be explicitly transferred outside of the

LOOP loop by commands like GOTO or EXIT SUB (if in a subroutine).

DO WHILE expression Loops while "expression™ is true (this is equivalent to the older WHILE-
<statements> WEND loop, also implemented in MMBasic). If, at the start, the expression

LOOP is false the statements in the loop will not be executed, even once.

DO Loops until the expression following UNTIL is true. Because the test is
<statements> made at the end of the loop the statements inside the loop will be executed at

LOOP UNTIL expression

least once, even if the expression is true.

ELSE

Introduces a default condition in a multiline IF statement.
See the multiline IF statement for more details.

ELSEIF expression THEN
or
ELSE IF expression THEN

Introduces a secondary condition in a multiline IF statement.
See the multiline IF statement for more details.

ENDIF Terminates a multiline IF statement.

or See the multiline IF statement for more details.

END IF

END End the running program and return to the command prompt.

END FUNCTION

Marks the end of a user defined function. See the FUNCTION command.

Each function must have one and only one matching END FUNCTION
statement. Use EXIT FUNCTION if you need to return from a function
from within its body.

END SUB

Marks the end of a user defined subroutine. See the SUB command.

Each sub must have one and only one matching END SUB statement. Use
EXIT SUB if you need to return from a subroutine from within its body.

ERASE variable [,variable]...

Deletes variables and frees up the memory allocated to them. This will work
with arrayed variables and normal (non array) variables. Arrays can be
specified using empty brackets (eg, dat ()) or just by specifying the
variable's name (eg, dat).

Use CLEAR to delete all variables at the same time (including arrays).

ERASE variable [,variable]...

Deletes arrayed variables and frees up the memory.
Use CLEAR to delete all variables including all arrayed variables.

ERROR [error_msg$]

Forces an error and terminates the program. This is normally used in
debugging or to trap events that should not occur.

EXIT DO EXIT DO provides an early exit from a DO...LOOP
EXIT FOR EXIT FOR provides an early exit from a FOR...NEXT loop.
EXIT FUNCTION EXIT FUNCTION provides an early exit from a defined function.
EXIT SUB EXIT SUB provides an early exit from a defined subroutine.

The old standard of EXIT on its own (exit a do loop) is also supported.
FILES Lists files in the current directory. Same as the DOS DIR.

MMBasic DOS Version User Manual

Page 13

FOR counter = start TO finish
[STEP increment]

Initiates a FOR-NEXT loop with the 'counter initially set to 'start' and
incrementing in 'increment’ steps (default is 1) until 'counter' equals 'finish'.
The “increment’ can be an integer or floating point number. Note that
using a floating point fractional number for 'increment’ can
accumulate rounding errors in ‘counter' which could cause the loop to
terminate early or late.

‘increment’ can be negative in which case ‘finish' should be less than 'start'
and the loop will count downwards. See also the NEXT command.

FUNCTION xxx (argl
[larg2, ...]) [AS <type>}
<statements>
<statements>
XXX = <return value>
END FUNCTION

Defines a callable function. This is the same as adding a new function to
MMBasic while it is running your program.

'xxX' is the function name and it must meet the specifications for naming a
variable. The type of the function can be specified by using a type suffix
(ie, xxx$) or by specifying the type using AS <type> at the end of the
functions definition. For example:

FUNCTION xxx (argl, arg2) AS STRING

‘argl’, 'arg2', etc are the arguments or parameters to the function. An array is
specified by using empty brackets. ie, arg3(). The type of the argument
can be specified by using a type suffix (ie, argl$) or by specifying the type
using AS <type> (ie, argl AS STRING).

The argument can also be another defined function or the same function if
recursion is to be used (the recursion stack is limited to 1000 nested calls).

To set the return value of the function you assign the value to the function's
name. For example:
FUNCTION SQUARE (a)
SQUARE = a * a
END FUNCTION

Every definition must have one END FUNCTION statement. When this is
reached the function will return its value to the expression from which it was
called. The command EXIT FUNCTION can be used for an early exit.

You use the function by using its name and arguments in a program just as
you would a normal MMBasic function. For example:

PRINT SQUARE (56.8)

When the function is called each argument in the caller is matched to the
argument in the function definition. These arguments are available only
inside the function.

Functions can be called with a variable number of arguments. Any omitted
arguments in the function's list will be set to zero or a null string.

Arguments in the caller's list that are a variable (ie, not an expression or
constant) will be passed by reference to the function. This means that any
changes to the corresponding argument in the function will also be copied to
the caller's variable. Arrays are passed by specifying the array name with
empty brackets (eg, arg()) and are always passed by reference.

You must not jump into or out of a function using commands like GOTO,
GOSUB, etc. Doing so will have undefined side effects including the
possibility of ruining your day.

GOSUB target Initiates a subroutine call to the target, which can be a line number or a label.
The subroutine must end with RETURN.
GOTO target Branches program execution to the target, which can be a line number or a

label.

MMBasic DOS Version User Manual

Page 14

IF expr THEN statement
or
IF expr THEN stmt ELSE stmt

Evaluates the expression ‘expr' and performs the THEN statement if it is true
or skips to the next line if false. The optional ELSE statement is the reverse
of the THEN test. This type of IF statement is all on one line.

The “THEN statement’ construct can be also replaced with:
GOTO linenumber | label’.

IF expression THEN
<statements>

[ELSEIF expression THEN
<statements>]

[ELSE
<statements>]

ENDIF

Multiline IF statement with optional ELSE and ELSEIF cases and ending
with ENDIF. Each component is on a separate line.

Evaluates 'expression’ and performs the statement(s) following THEN if the
expression is true or optionally the statement(s) following the ELSE
statement if false.

The ELSEIF statement (if present) is executed if the previous condition is
false and it starts a new IF chain with further ELSE and/or ELSEIF
statements as required.

One ENDIF is used to terminate the multiline IF.

INPUT ["prompt string$";] list
of variables

Allows input from the console to a list of variables. The input command will
prompt with a question mark (?).

The input must contain commas to separate each data item if there is more
than one variable.

For example, if the command is: INPUT a, b, ¢
And the following is typed on the keyboard: 23, 87, 66
Thena=23and b =87andc =66

If the "prompt string$" is specified it will be printed before the question
mark. If the prompt string is terminated with a comma (,) rather than the
semicolon (;) the question mark will be suppressed.

INPUT #fnbr, Same as the normal INPUT command except that the input is read from a
list of variables file previously opened for INPUT as “#fnbr’. See the OPEN command.
KILL file$ Deletes the file specified by “file$’. If there is an extension it must be

specified.

LET variable = expression

Assigns the value of 'expression' to the variable. LET is automatically
assumed if a statement does not start with a command.

LINE INPUT [prompt$,]
string-variable$

Reads an entire line from the console input into ‘string-variable$’. If
specified the ‘prompt$” will be printed first. Unlike INPUT, this command
will read a whole line, not stopping for comma delimited data items.

A question mark is not printed unless it is part of ‘prompt$’.

LINE INPUT #fnbr,
string-variable$

Same as the LINE INPUT command except that the input is read from a file
previously opened for INPUT as “#fnbr’. See the OPEN command.

LIST
or
LIST ALL

List a program on the serial console.
LIST on its own will list the program with a pause at every screen full.
LIST ALL will list the program without pauses.

LOAD file$ [,R]

Loads a program called “file$’ from the current drive into program memory.
If the optional suffix ,R is added the program will be immediately run
without prompting.

If an extension is not specified “.BAS” will be added to the file name.

LOCAL variable [, variables]
See DIM for the full syntax.

Defines a list of variable names as local to the subroutine or function.

This command uses exactly the same syntax as DIM and will create
variables that will only be visible within the subroutine or function. They
will be automatically discarded when the subroutine or function exits.

LOOP [UNTIL expression]

Terminates a program loop: see DO.

MEMORY

List the amount of memory currently in use.

MMBasic DOS Version User Manual

Page 15

MKDIR dir$

Make, or create, the directory ‘dir$’.

NAME old$ AS new$

Rename a file or a directory from “old$’ to ‘new$’. Both are strings.
A directory path can be used in both 'old$' and 'new$'.

OPEN fname$ FOR mode AS
[#]fnbr

Opens a file for reading or writing.

‘fname’ is the filename with an optional extension separated by a dot (.).
Long file names with upper and lower case characters are supported.

A directory path can be specified with the backslash as directory separators.
The parent of the current directory can be specified by using a directory
name of .. (two dots) and the current directory with . (a single dot).

For example OPEN ". \dir1\dir2\filename.txt" FOR INPUT AS #1
‘mode’ is INPUT, OUTPUT, APPEND or RANDOM.

INPUT will open the file for reading and throw an error if the file does not
exist. OUTPUT will open the file for writing and will automatically
overwrite any existing file with the same name.

APPEND will also open the file for writing but it will not overwrite an
existing file; instead any writes will be appended to the end of the file. If
there is no existing file the APPEND mode will act the same as the
OUTPUT mode (i.e. the file is created then opened for writing).
RANDOM will open the file for both read and write and will allow random
access using the SEEK command. When opened the read/write pointer is
positioned at the end of the file.

“fnbr’ is the file number (1 to 10). The # is optional. Up to 10 files can be
open simultaneously. The INPUT, LINE INPUT, PRINT, WRITE and
CLOSE commands as well as the EOF() and INPUT$() functions all use
‘fnbr’ to identify the file being operated on.

See also OPTION ERROR and MM.ERRNO for error handling.

NEW

Deletes the program and clears all variables.

NEXT [counter-variable] [,
counter-variable], etc

NEXT comes at the end of a FOR-NEXT loop; see FOR.

The “counter-variable’ specifies exactly which loop is being operated on. If
no ‘counter-variable’ is specified the NEXT will default to the innermost
loop. Itis also possible to specify multiple counter-variables as in:

NEXT x,y, z

ON ERROR ABORT
or

ON ERROR IGNORE
or

ON ERROR SKIP [nn]
or

ON ERROR CLEAR

This controls the action taken if an error occurs while running a program and
applies to all errors discovered by MMBasic including syntax errors, wrong
data, etc.

ON ERROR ABORT will cause MMBasic to display an error message, abort
the program and return to the command prompt. This is the normal behaviour
of MMBasic and is the default when a program starts running.

ON ERROR IGNORE will cause any error to be ignored.

ON ERROR SKIP will ignore an error in a number of commands (specified by
the number 'nn’) executed following this command. 'nn"is optional, the default
if not specified is one. After the number of commands has completed (with an
error or not) the behaviour of MMBasic will revert to ON ERROR ABORT.

If an error occurs and is ignored/skipped the read only variable MM.ERRNO
will be set to non zero and MM.ERRMSGS$ will be set to the error message
that would normally be generated. These are reset to zero and an empty string
by ON ERROR CLEAR. They are also cleared when the program is run and
when ON ERROR IGNORE and ON ERROR SKIP are used.

ON ERROR IGNORE can make it very difficult to debug a program so it is
strongly recommended that only ON ERROR SKIP be used.

MMBasic DOS Version User Manual

Page 16

ON nbr GOTO | GOSUB
target[,target, target,...]

ON either branches (GOTO) or calls a subroutine (GOSUB) based on the
rounded value of 'nbr'; if it is 1, the first target is called, if 2, the second
target is called, etc. Target can be a line number or a label.

OPTIONBASEO| 1

Set the lowest value for array subscripts to either 0 or 1.

This must be used before any arrays are declared and is reset to the default of
0 on power up.

OPTION CASE
UPPER | LOWER | TITLE

Change the case used for listing command and function names when using
the LIST command. The default is TITLE but the old standard of MMBasic
can be restored using OPTION CASE UPPER.

OPTION DEFAULT FLOAT |
INTEGER | STRING | NONE

Used to set the default type for a variable which is not explicitly defined.
If OPTION DEFAULT NONE is used then all variables must have their type
explicitly defined.

When a program is run the default is set to FLOAT for compatibility with
previous versions of MMBasic.

OPTION ERROR CONTINUE
or
OPTION ERROR ABORT

Set the treatment for errors in file input/output. The option CONTINUE will
cause MMBasic to ignore file related errors. The program must check the
variable MM.ERRNO to determine if and what error has occurred.

The option ABORT sets the normal behaviour (ie, stop the program and
print an error message). The default is ABORT.

Note that this entry only relates to errors reading from or writing to a file.
See the ON ERROR command for handling syntax and other program
errors.

OPTION EXPLICIT

Placing this command at the start of a program will require that every variable
be explicitly declared using the DIM command before it can be used in the
program.

This option is disabled by default when a program is run. If it is used it must
be specified before any variables are used.

OPTIONTAB 2|48

Set the spacing for the tab key. Default is 2.

PAUSE delay

Halt execution of the running program for ‘delay’ ms. Note that unlike the
Micromite MMBasic a fractional number will not be recognised and will be
rounded to the nearest integer. The maximum delay is 2147483647 ms
(about 24 days).

PRINT expression
[[; Jexpression] ... etc

Outputs text to the serial console. Multiple expressions can be used and must
be separated by either a:

e Comma (,) which will output the tab character

¢ Semicolon (;) which will not output anything (it is just used to separate
expressions).

o Nothing or a space which will act the same as a semicolon.

A semicolon (;) at the end of the expression list will suppress the automatic
output of a carriage return/ newline at the end of a print statement.

When printed, a number is preceded with a space if positive or a minus (-) if
negative but is not followed by a space. Integers (whole numbers) are
printed without a decimal point while fractions are printed with the decimal
point and the significant decimal digits. Large floating point numbers
(greater than six digits) are printed in scientific number format.

The function TAB() can be used to space to a certain column and the string
functions can be used to justify or otherwise format strings.

PRINT #fnbr, expression
[[; Jexpression] ... etc

Same as the normal PRINT command except that the output is directed to a
file previously opened for OUTPUT or APPEND as ‘#fnbr’. See the OPEN
command.

QUIT

Terminate the running program, exit MMBasic and close the DOS box.

MMBasic DOS Version User Manual

Page 17

RANDOMIZE nbr

Seed the random number generator with “nbr’.

On power up the random number generator is seeded with zero and will
generate the same sequence of random numbers each time. To generate a
different random sequence each time you must use a different value for ‘nbr’
(the TIMER function is handy for that).

READ variable[, variable]...

Reads values from DATA statements and assigns these values to the named
variables. Variable types in a READ statement must match the data types in
DATA statements as they are read. See also DATA and RESTORE.

REM string

REM allows remarks to be included in a program.

Note the Microsoft use of the single quotation mark to denote remarks is also
supported and is preferred.

RESTORE [line]

Resets the line and position counters for the READ statement.

If ‘line’ is specified the counters will be reset to the beginning of the
specified line. ‘line’ can be a line number or label.

If “line’ is not specified the counters will be reset to the start of the program.

RETURN RETURN concludes a subroutine called by GOSUB and returns to the
statement after the GOSUB.

RMDIR dir$ Remove, or delete, the directory ‘dir$'".

RUN ([file$] Run the program held in memory. Optionally ‘file$' can be specified used

and this will load and run a file (the extension .BAS is added if an extension
is not specified).

SELECT CASE value
CASE testexp [[, testexp] ...]
<statements>
<statements>
CASE ELSE
<statements>
<statements>
END SELECT

Executes one of several groups of statements, depending on the value of an
expression. ‘value' is the expression to be tested. It can be a number or
string variable or a complex expression.
'testexp' is the value that 'exp' is to be compared against. It can be:
e Asingle expression (ie, 34, "string" or var*5) to which it may equal
e Arange of values in the form of two single expressions separated by the
keyword "TO" (ie, 5 TO 9 or "aa" TO "cc")
e A comparison starting with the keyword "IS" (which is optional). For
example: IS >5, IS <= 10.
When a number of test expressions (separated by commas) are used the
CASE statement will be true if any one of these tests evaluates to true.
If 'value' cannot be matched with a ‘testexp' it will be automatically matched to
the CASE ELSE. If CASE ELSE is not present the program will not execute
any <statements> and continue with the code following the END SELECT.
When a match is made the <statements> following the CASE statement will
be executed until END SELECT or another CASE is encountered when the
program will then continue with the code following the END SELECT.
An unlimited number of CASE statements can be used but there must be
only one CASE ELSE and that should be the last before the END SELECT.
Each SELECT CASE must have one and one only matching END SELECT
statement. Any number of SELECT...CASE statements can be nested inside
the CASE statements of other SELECT...CASE statements.
Example:
SELECT CASE nbr%
CASE 4, 9, 22, 33 TO 88
statements
CASE IS < 4, IS > 88, 5 TO 8
statements
CASE ELSE

statements
END SELECT

MMBasic DOS Version User Manual

Page 18

SUB xxx (argl [,arg2, ...])
<statements>
<statements>

END SUB

Defines a callable subroutine. This is the same as adding a new command to
MMBasic while it is running your program.

'XxX' is the subroutine name and it must meet the specifications for naming a
variable.

‘argl’, 'arg2', etc are the arguments or parameters to the subroutine. An array
is specified by using empty brackets. ie, arg3(). The type of the argument
can be specified by using a type suffix (ie, argl$) or by specifying the type
using AS <type> (ie, argl AS STRING).

Every definition must have one END SUB statement. When this is reached
the program will return to the next statement after the call to the subroutine.
The command EXIT SUB can be used for an early exit.

You use the subroutine by using its name and arguments in a program just as
you would a normal command. For example: MySub al, a2

When the subroutine is called each argument in the caller is matched to the
argument in the subroutine definition. These arguments are available only
inside the subroutine. Subroutines can be called with a variable number of
arguments. Any omitted arguments in the subroutine's list will be set to zero
or a null string.

Arguments in the caller's list that are a variable (ie, not an expression or
constant) will be passed by reference to the subroutine. This means that any
changes to the corresponding argument in the subroutine will also be copied
to the caller's variable and therefore may be accessed after the subroutine has
ended. Arrays are passed by specifying the array name with empty brackets
(eg, arg()) and are always passed by reference. Brackets around the
argument list in both the caller and the definition are optional.

SYSTEM command-line$

This will exit to DOS, run the ‘command-line$' as if typed in at the command
prompt and then return to the running MMBasic program.
This can be used to access features of the DOS window that are not available
from within MMBasic. For example:

SYSTEM "DIR /b > flist.txt"

will run the DOS DIR command (with brief output) and redirect its output to
the file flist.txt. The MMBasic program could then open this file and read
the list of files and directories listed by the DIR command.

Note that 'command-line$' must be a string constant (surrounded by double
quotes) or a string expression.

TIMER = msec Resets the timer to a number of milliseconds. Normally this is just used to
reset the timer to zero but you can set it to any positive integer.
See the TIMER function for more details.
TRACE ON TRACE ON/OFF will turn on/off the trace facility. This facility will print
or the number of each line (counting from the beginning of the program) in
TRACE OFF square brackets as the program is executed. This is useful in debugging
programs.
or

TRACE LIST nn

TRACE LIST will list the last 'nn' lines executed in the format described
above. Note that MMBasic is always logging the lines executed so this
facility is always available (ie, it does not have to be turned on).

MMBasic DOS Version User Manual

Page 19

Functions

Square brackets indicate that the parameter or characters are optional.

ACOS(number) Returns the inverse cosine of the argument ‘'number" in radians.

ABS(number) Returns the absolute value of the argument 'number’ (ie, any negative sign is
removed and the positive number is returned).

ASC(string$) Returns the ASCII code for the first letter in the argument “string$’.
ASIN(number) Returns the inverse sine value of the argument 'number" in radians.
ATN(number) Returns the arctangent of the argument 'number’ in radians.

BINS$(number [, chars]) Returns a string giving the binary (base 2) value for the 'number'.

‘chars' is optional and specifies the number of characters in the string with
zero as the leading padding character(s).

CHR$(number) Returns a one-character string consisting of the character corresponding to
the ASCII code indicated by argument ‘'number'.

CINT(number) Round numbers with fractional portions up or down to the next whole
number or integer.

For example, 45.47 will round to 45
45.57 will round to 46
-34.45 will round to -34
-34.55 will round to -35

See also INT() and FIX().

COS(number) Returns the cosine of the argument ‘'number" in radians.
CWD$ Returns the current working directory as a string.
DATES$ Returns the current date based on the internal DOS clock as a string in the

form "DD-MM-YYYY". For example, "28-07-2012".

DEG(radians) Converts 'radians' to degrees.

EOF([#]fnbr) Will return true if the file previously opened for INPUT with the file number
“#fnbr’ is positioned at the end of the file.

The # is optional. Also see the OPEN, INPUT and LINE INPUT commands
and the INPUTS$ function.

MMBasic DOS Version User Manual Page 20

EVAL(string$)

Will evaluate 'string$' as if it is a BASIC expression and return the result.
'string$' can be a constant, a variable or a string expression. The expression
can use any operators, functions, variables, subroutines, etc that are known at
the time of execution. The returned value will be an integer, float or string
depending on the result of the evaluation.

For example: S$="COS (RAD(30)) * 100"
Will display: 86.6025

PRINT EVAL(SS$)

EXP(number)

Returns the exponential value of 'number".

FIX(number)

Truncate a number to a whole number by eliminating the decimal point and
all characters to the right of the decimal point.

For example 9.89 will return 9 and -2.11 will return -2.

The major difference between FIX and INT is that FIX provides a true
integer function (ie, does not return the next lower number for negative
numbers as INT() does). This behaviour is for Microsoft compatibility.

See also CINT() .

HEXS$(number [, chars])

Returns a string giving the hexadecimal (base 16) value for the 'number’.

‘chars' is optional and specifies the number of characters in the string with
zero as the leading padding character(s).

INKEY$

Checks the console input buffers and, if there is one or more characters
waiting in the queue, will remove the first character and return it as a single
character in a string.

If the input buffer is empty this function will immediately return with an
empty string (ie,).

INPUTS$(nbr, [#]fnbr)

Will return a string composed of “nbr’ characters read from a file previously
opened for INPUT with the file number ‘#fnbr’. This function will read all
characters including carriage return and new line without translation.

The # is optional. Also see the OPEN command.

INSTR([start-position,] string-
searched$, string-pattern$)

Returns the position at which 'string-pattern$' occurs in 'string-searched$',
beginning at 'start-position'.

Both the position returned and 'start-position' use 1 for the first character, 2
for the second, etc. The function returns zero if 'string-pattern$' is not found.

INT(number)

Truncate an expression to the next whole number less than or equal to the
argument. For example 9.89 will return 9 and -2.11 will return -3.

This behaviour is for Microsoft compatibility, the FIX() function provides a
true integer function.

See also CINT() .

LEFT$(string$, nbr)

Returns a substring of ‘string$’ with ‘nbr' of characters from the left
(beginning) of the string.

LEN(string$)

Returns the number of characters in 'string$'".

MMBasic DOS Version User Manual

Page 21

LOC([#]fnbr)

For a file opened as RANDOM this will return the current position of the
read/write pointer in the file. Note that the first byte in a file is numbered 1.
The # is optional.

LOF([#]fnbr) Return the current length of a file in bytes. The # is optional.
LOG(number) Returns the natural logarithm of the argument 'number’.
LCASE$(string$) Returns “string$’ converted to lowercase characters.

MAX(argl [, arg2 [, ...]1)
or
MIN(argl [, arg2 [, ...]])

Returns the maximum or minimum number in the argument list.

Note that the comparison is a floating point comparison (integer arguments
are converted to floats) and a float is returned.

MID$(string$, start)
or
MID$(string$, start, nbr)

Returns a substring of ‘string$’ beginning at ‘start’ and continuing for ‘nbr’
characters. The first character in the string is number 1.

If “nbr’ is omitted the returned string will extend to the end of “string$’

OCT$(number [, chars])

Returns a string giving the octal (base 8) representation of 'number’.

‘chars' is optional and specifies the number of characters in the string with
zero as the leading padding character(s).

Pl Returns the value of pi.
POS Returns the current cursor position in the line in characters.
RAD(degrees) Converts 'degrees' to radians.

RIGHTS$(string$, number-of-
chars)

Returns a substring of ‘string$’ with ‘number-of-chars’ from the right (end)
of the string.

RND(number) Returns a pseudo-random number in the range of 0 to 0.999999. The
‘number’ value is ignored if supplied. The RANDOMIZE command reseeds
the random number generator.

SGN(number) Returns the sign of the argument 'number’, +1 for positive numbers, 0 for 0,

and -1 for negative numbers.

SIN(number)

Returns the sine of the argument 'number" in radians.

SPACES$(number) Returns a string of blank spaces 'number’ bytes long.

SQR(number) Returns the square root of the argument 'number’.

STR$(number) Returns a string in the decimal (base 10) representation of ‘number'.

or If 'm" is specified sufficient spaces will be added to the start of the number to
STR$(number, m) ensure that the number of characters before the decimal point (including the
or negative sign) will be at least 'm' characters. If 'm'is zero or the number has

STR$(number, m, n)

more than 'm'’ significant digits no padding spaces will be added.
If 'm' is negative, positive numbers will be prefixed with the plus symbol and

MMBasic DOS Version User Manual

Page 22

or
STR$(number, m, n, c$)

negative numbers with the minus symbol. If 'm'is positive then only the
negative symbol will be used.

'n' is the number of digits required to follow the decimal place. If it is zero
the string will be returned without the decimal point. If it is negative the
output will always use the exponential format with 'n' digits resolution. If 'n’
is not specified the number of decimal places and output format will vary
automatically according to the number.

'c$' is a string and if specified the first character of this string will be used as
the padding character instead of a space (see the 'm' argument).

Examples:

STR$(123.456) will return "123.456"

STR$(123.456, 6) will return 123.456"
STR$(123.456, -6) will return ™ +123.456"
STR$(-123.456, 6) will return ™ -123.456"
STR$(-123.456, 6, 5) willreturn™ -123.45600"
STR$(-123.456, 6, -5) will return " -1.23456e+02"
STR$(53, 6) will return 53"

STR$(53, 6, 2) will return 53.00"

STR$(53, 6, 2,"*") will return "****x53 00"

STRINGS(nbr, ascii)
or
STRINGS(nbr, string$)

Returns a string 'nbr' bytes long consisting of either the first character of
string$ or the character representing the ASCII value ‘ascii' which is a
decimal number in the range of 32 to 126.

TAB(number) Outputs spaces until the column indicated by 'number' has been reached.

TAN(number) Returns the tangent of the argument 'number’ in radians.

TIME$ Returns the current time based on the internal DOS clock as a string in the
form "HH:MM:SS" in 24 hour notation. For example, "14:30:00".

TIMER Returns the elapsed time in milliseconds (eg, 1/1000 of a second) since reset.
The timer is reset to zero when MMBasic is started and you can also reset it
by using TIMER as a command. Note that under DOS the timer will reset to
0 for each subsequent 24 hour interval that elapses.

UCASES$(string$) Returns ‘string$’” converted to uppercase characters.

VAL(string$)

Returns the numerical value of the “string$’. If 'string$' is an invalid number
the function will return zero.

This function will recognise the &H prefix for a hexadecimal number, &0
for octal and &B for binary.

MMBasic DOS Version User Manual

Page 23

Obsolete Commands and Functions

These commands and functions are mostly included to assist in converting programs written for Microsoft
BASIC. For new programs the corresponding commands in MMBasic should be used.

Note that these commands may be removed in the future.

IF condition THEN linenbr

For Microsoft compatibility a GOTO is assumed if the THEN statement is
followed by a number. A label is invalid in this construct.

New programs should use: IF condition THEN GOTO linenbr | label

SPC(number) This function returns a string of blank spaces 'number’ bytes long. It is
similar to the SPACE$() function and is only included for Microsoft
compatibility.

TROFF Turns the trace facility off; see TRON.

TRON Turns on the trace facility. This facility will print the number of each line

(counting from the beginning of the program) in square brackets as the
program is executed. This is useful in debugging programs.

New programs should use the TRACE command.

WHILE expression

WEND

WHILE initiates a WHILE-WEND loop.
The loop ends with WEND, and execution reiterates through the loop as long
as the 'expression' is true.

This construct is included for Microsoft compatibility. New programs
should use the DO WHILE ... LOOP construct.

MMBasic DOS Version User Manual

Page 24

	Copyright
	Contents
	Introduction
	Limitations
	Installing and Running DOS MMBasic
	Developing Programs
	Differences to the Maximite Version of MMBasic
	Double Precision Floating Point
	Special Keys
	Keyboard Key Key Code
	(Hex) Key Code (Decimal)

	File Input/Output
	Example of Sequential I/O
	Random File I/O

	MMBasic Characteristics
	Naming Conventions
	Constants
	Operators and Precedence
	Implementation Characteristics
	Compatibility

	Predefined Read Only Variables
	Detailed Listing
	MM.VER
	MM.DEVICE$
	MM.ERRNO
	MM.ERRMSG$

	Commands
	Detailed Listing
	‘ (single quotation mark)
	? (question mark)
	CHDIR
	CLOSE
	CLS
	CLEAR
	CONST
	CONTINUE
	CONTINUE DO
	CONTINUE FOR
	DATA
	DIM
	DO
	DO WHILE
	ELSE
	ELSEIF
	ENDIF
	END
	END FUNCTION
	END SUB
	ERASE
	ERASE
	ERROR
	EXIT DO
	EXIT FOR
	EXIT FUNCTION
	EXIT SUB
	FILES
	FOR
	FUNCTION
	GOSUB
	GOTO
	IF expr THEN statement
	IF expression THEN
	INPUT
	INPUT
	KILL
	LET
	LINE INPUT
	LINE INPUT
	LIST
	LOAD
	LOCAL
	LOOP
	MEMORY
	MKDIR
	NAME
	OPEN
	NEW
	NEXT
	ON ERROR ABORT
	ON ERROR IGNORE
	ON ERROR SKIP [nn]
	ON ERROR CLEAR
	ON
	OPTION BASE
	OPTION CASE
	OPTION DEFAULT
	OPTION ERROR
	OPTION EXPLICIT
	OPTION TAB
	PAUSE
	PRINT
	PRINT
	QUIT
	RANDOMIZE
	READ
	REM
	RESTORE
	RETURN
	RMDIR
	RUN [file$]
	SELECT CASE
	SUB
	SYSTEM command-line$
	command-line$' as if typed in at the command
	prompt and then return to the running MMBasic program.
	This can be used to access features of the DOS window that are not available
	from within MMBasic. For example:
	will run the DOS DIR command (with brief output) and redirect its output to
	the file flist.txt. The MMBasic program could then open this file and read
	the list of files and directories listed by the DIR command.
	Note that
	command-line$' must be a string constant (surrounded by double
	quotes) or a string expression.
	TIMER
	TRACE ON
	TRACE OFF
	TRACE LIST nn

	Functions
	Detailed Listing
	ACOS
	ABS
	ASC
	ASIN
	ATN
	BIN$
	CHR$
	CINT
	COS
	CWD
	DATE$
	DEG
	EOF
	EVAL
	EXP
	FIX
	HEX$
	INKEY$
	INPUT$
	INSTR
	INT
	LEFT$
	LEN
	LOC
	LOF
	LOG
	LCASE$
	MAX
	MIN
	MID$
	MID$
	OCT$(
	PI
	POS
	RAD
	RIGHT$
	RND
	SGN
	SIN
	SPACE$
	SQR
	STR$
	STRING$
	TAB
	TAN
	TIME$
	TIMER
	UCASE$
	VAL

	Obsolete Commands and Functions
	Detailed Listing
	IF condition THEN linenbr
	SPC
	TROFF
	TRON
	WHILE
	WEND

