GWBASIC User's Manual

User's Guide

Chapters
1. Welcome

2. Getting Started

3. Reviewing and Practicing
4. The Screen Editor

5. Creating and Using Files
6. Constants, Variables,
Expressions and Operators

Appendicies

A. Error Codes and Messages
B. Mathematical Functions
C. ASCII Character Codes

D. Assembly Language

E. Converting Programs

F. Communications

G. Hexadecimal Equivaents
H. Key Scan Codes

|. Characters Recognized

Glossary

User's Reference

ABS Function
ASC Function
ATN Function
AUTO Command

BEEP Statement
BLOAD Command
BSAVE Command

CALL Statement
CDBL Function
CHAIN Statement
CHDIR Command
CHR$ Function
CINT Function

GW-BASIC User's Guide

Microsoft Cor poration

Information in this document is subject to change without
notice and does not represent a commitment on the part of
Microsoft Corporation. The software described in this
document is furnished under alicense agreement or
nondisclosure agreement. It isagainst the law to copy this
software on magnetic tape, disk, or any other medium for any
purpose other than the purchaser's personal use.

© Copyright Microsoft Corporation, 1986, 1987. All rights
reserved.

Portions copyright COMPAQ Computer Corporation, 1985
Simultaneously published in the United States and Canada.

Microsoft®, MS-DOS®, GW-BASIC® and the Microsoft logo
are registered trademarks of Microsoft Corporation.

Compag® is aregistered trademark of COMPAQ Computer
Corporation.

DEC® isaregistered trademark of Digital Equipment
Corporation.

Document Number 410130001-330-R02-078

GW-BASIC User's Reference

Microsoft Cor poration

Information in this document is subject to change without
notice and does not represent a commitment on the part of
Microsoft Corporation. The software described in this
document is furnished under alicense agreement or
nondisclosure agreement. The software may be used or copied
only in accordance with the terms of the agreement. It is
against the law to copy this software on magnetic tape, disk, or
any other medium for any purpose other than the purchaser's
personal use.

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/index.html (1 of 6)28/03/2004 21.28.55

GWBASIC User's Manual

CIRCLE Statement
CLEAR Command
CLOSE Statement
CL S Statement
COLOR Statement
COM(n) Statement
COMMON Statement
CONT Command
COS Function
CSNG Function
CSRLIN Variable
CVD Function
CVI Function

CVS Function

DATA Statement
DATES Statement
DEF FN Statement
DEFINT Statement
DEFDBL Statement
DEFSNG Statement
DEFSTR Statement
DEF SEG Statement
DEF USR Statement
DELETE Command
DIM Statement
DRAW Statement

EDIT Command
END Statement
ENVIRON Statement
ENVIRONS$ Function
EOF Function
ERASE Statement
ERDEV($) Variables
ERL Variable

ERR Variable
ERROR Statement
EXP Function
EXTERR Function

FIELD Statement

© Copyright Microsoft Corporation, 1986, 1987. All rights
reserved.

Portions copyright COMPAQ Computer Corporation, 1985
Simultaneously published in the United States and Canada.

Microsoft®, MS-DOS®, GW-BASIC®, and the Microsoft
logo are registered trademarks of Microsoft Corporation.

EGA® and IBM® are registered trademarks of International
Business Machines Corporation.

Document Number 410130013-330-R02-0787

| ntroduction

This manual is an alphabetical reference to GW-BASIC
instructions: statements, functions, commands, and variables.

The name and type of each instruction islisted at the top of the
page, and is followed by:

Purpose The purpose of the instruction

Syntax The complete notation of the instruction
Comments Pertinent information about the instruction, and
what happens when it is encountered by GW-
BASIC

An illustration of the instruction as it might
appear in aprogram

Notes Any special information about the instruction

Examples

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/index.html (2 of 6)28/03/2004 21.28.55

GWBASIC User's Manual

FILES Command
FIX Function
FOR Statement
FRE Function

GET Statement (Files)

GET Statement (Graphics)
GOSUB-RETURN Statement
GOTO Statement

HEX$ Function

|F Statement
INKEY$ Variable
INP Function
INPUT Statement
INPUT# Statement
INPUT$ Function
INSTR Function
INT Function
|OCTL Statement
|OCTLS$ Function

KEY Statement
KEY (n) Statement
KILL Command

LEFT$ Function

LEN Function

LET Statement

LINE Statement

LINE INPUT Statement
LINE INPUT# Statement
LIST Command

LLIST Command
LOAD Command

L OC Function
LOCATE Statement
LOCK Statement

L OF Function

LOG Function

L POS Function
LPRINT Statement

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/index.html (3 of 6)28/03/2004 21.28.55

GWBASIC User's Manual

LPRINT USING Statement
LSET Statement

MERGE Command
MID$ Function
MID$ Statement
MKDIR Command
MKD$ Function
MKI$ Function

MK S$ Function

NAME Command
NEXT Statement
NEW Command

OCT$ Function

ON COM(n) Statement
ON KEY (n) Statement

ON PEN Statement

ON PLAY (n) Statement
ON STRIG(n) Statement
ON TIMER(n) Statement
ON ERROR GOTO Statement
ON-GOSUB Statement
ON-GOTO Statement
OPEN Statement

OPEN "COM(n) Statement
OPTION BASE Statement
OUT Statement

PAINT Statement
PALETTE Statement
PALETTE USING Statement
PCOPY Command

PEEK Function

PEN Statement and Function
PLAY Statement

PLAY (n) Function

PMAP Function

POINT Function

POKE Statement

POS Function

PRESET Statement

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/index.html (4 of 6)28/03/2004 21.28.55

GWBASIC User's Manual

PSET Statement

PRINT Statement

PRINT USING Statement
PRINT# Statement
PRINT# USING Statement
PUT Statement (Files)
PUT Statement (Graphics)

RANDOMIZE Statement
READ Statement
REM Statement
RENUM Command
RESET Command
RESTORE Statement
RESUME Statement
RETURN Statement
RIGHT$ Function
RMDIR Command
RND Function

RSET Statement
RUN Command

SAVE Command
SCREEN Function
SCREEN Statement
SGN Function
SHELL Statement
SIN Function
SOUND Statement
SPACES Function
SPC Function

SOR Function
STICK Function
STOP Statement
STR$ Function
STRIG Statement
STRIG(n) Statement
STRINGS$ Function
SWAP Statement
SYSTEM Command

TAB Function

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/index.html (5 of 6)28/03/2004 21.28.55

GWBASIC User's Manual

TAN Function
TIMES$ Statement
TIMER Function
TROFF Command
TRON Command

UNLOCK Statement
USR Function

VAL Function
VARPTR Function
VARPTRS$ Function
VIEW Statement

VIEW PRINT Statement

WAIT Statement
WHILE-WEND Statement
WIDTH Statement
WINDOW Statement
WRITE Statement
WRITE# Statement

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/index.html (6 of 6)28/03/2004 21.28.55

GW-BASIC User's Guide

Chapter 1
Welcometo GW-BASIC

Notational Conventions

Microsoft® GW-BASIC® is asimple, easy-to-learn, easy-to-use computer programming
language with English-like statements and mathematical notations. With GW-BASIC you will be
able to write both simple and complex programs to run on your computer. Y ou will also be able
to modify existing software that is written in GW-BASIC.

Thisguide is designed to help you use the GW-BASIC Interpreter with the MS-DOS® operating
system. Section 1.5 lists resources that will teach you how to program.

1.1 System Requirements
This version of GW-BASIC requires MS-DOS version 3.2 or |ater.

1.2 Preiminaries

Y our GW-BASIC fileswill be on the MS-DOS diskette located at the back of the MS-DOS
User's Reference. Be sure to make a working copy of the diskette before you proceed.

Note

This manual iswritten for the user familiar with the MS-DOS operating system. For more
information on MS-DOS, refer to the Microsoft MS-DOS 3.2 User's Guide and User's Reference.

1.3 Notational Conventions
Throughout this manual, the following conventions are used to distinguish elements of text:

bold Used for commands, options, switches, and literal portions of syntax that must
appear exactly as shown.

italic Used for filenames, variables, and placeholders that represent the type of text to be
entered by the user.

monospaceyUsed for sample command lines, program code and examples, and sample sessions.
SMALL CAPS Used for keys, key sequences, and acronymes.

Brackets surround optional command-line elements.

file:///C)/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/Chapter 1.html (1 of 3)28/03/2004 21.28.56

GW-BASIC User's Guide

1.4 Organization of This Manual
The GW-BAS C User's Guide is divided into six chapters, nine appendixes, and a glossary:
Chapter 1, "Welcome to GW-BASIC," describes this manual.

Chapter 2, "Getting Started with GW-BASIC," is an elementary guideline on how to begin
programming.

Chapter 3, "Reviewing and Practicing GW-BASIC," lets you use the principles of GW-BASIC
explained in Chapter 2.

Chapter 4, "The GW-BASIC Screen Editor," discusses editing commands that can be used when

inputting or modifying a GW-BASIC program. It also explains the unique properties of the ten re-
definable function keys and of other keys and keystroke combinations.

Chapter 5, "Creating and Using Files," tells you how to create files and to use the diskette input/
output (1/O) procedures.

Chapter 6, "Constants, Variables, Expressions, and Operators," defines the elements of GW-
BASIC and describes how you will use them.

Appendix A, "Error Codes and Messages,” isasummary of all the error codes and error messages
that you might encounter while using GW-BASIC.

Appendix B, "Mathematical Functions," describes how to calculate certain mathematical
functions not intrinsic to GW-BASIC.

Appendix C, "ASCII Character Codes," lists the ASCII character codes recognized by GW-
BASIC.

Appendix D, "Assembly L anguage (Machine Code) Subroutines," shows how to include
assembly language subroutines with GW-BASIC.

Appendix E, "Converting BASIC Programs to GW-BASIC," provides pointers on converting
programs written in BASIC to GW-BASIC.

Appendix F, "Communications," describes the GW-BASIC statements required to support RS-
232 asynchronous communications with other computers and peripheral devices.

Appendix G, "Hexadecimal Equivalents," lists decimal and binary equivalents to hexadecimal
values.

Appendix H, "Key Scan Codes," lists and illustrates the key scan code values used in GW-
BASIC.

Appendix |, "Characters Recognized by GW-BASIC," describes the GW-BASIC character set.

file:///C|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/Chapter 1.html (2 of 3)28/03/2004 21.28.56

GW-BASIC User's Guide

The Glossary defines words and phrases commonly used in GW-BASIC and data processing.

1.5 Bibliography

This manual is aguide to the use of the GW-BASIC Interpreter: it makes no attempt to teach the

BASIC programming language. The following texts may be useful for those who wish to learn
BASIC programming:

Albrecht, Robert L., LeRoy Finkel, and Jerry Brown. BASC. 2d ed. New Y ork: Wiley
Interscience, 1978.

Coan, James. Basic BASC. Rochelle Park, N.J.: Hayden Book Company, 1978.

Dwyer, Thomas A. and Margot Critchfield. BAS C and the Personal Computer. Reading, Mass.:
Addison-Wesley Publishing Co., 1978.

Ettlin, Walter A. and Gregory Solberg. The MBAS C Handbook. Berkeley, Calif.: Osborne/
McGraw Hill, 1983.

Knecht, Ken. Microsoft BASC. Portland, Oreg.: Dilithium Press, 1982.

file:///CJ/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/Chapter 1.html (3 of 3)28/03/2004 21.28.56

GW-BASIC User's Guide

Chapter 2
Getting Started with GW-BASIC

This chapter describes how to load GW-BASIC into your system. It aso explains the two
different types of operation modes, line formats, and the various elements of GW-BASIC.

2.1 Loading GW-BASIC

To use the GW-BASIC language, you must load it into the memory of your computer from your
working copy of the MS-DOS diskette. Use the following procedure:

1. Turn on your computer.

2. Insert your working copy of the MS-DOS diskette into Drive A of your computer, and
press RETURN.

3. Typethefollowing command after the A> prompt, and press RETURN:
gwbasi ¢

Once you enter GW-BASIC, the GW-BASIC prompt, Ok, will replace the MS-DOS prompt, A>.

On the screen, the line XXXXX Byt es Fr ee indicates how many bytes are available for use in
memory while using GW-BASIC.

The function key (F1-F10) assignments appear on the bottom line of the screen. These function
keys can be used to eliminate key strokes and save you time. Chapter 4, "The GW-BASIC Screen

Editor," contains detailed information on function keys.

2.2 Modes of Operation

Once GW-BASIC isinitialized (loaded), it displays the Gk prompt. Ok means GW-BASIC is at

command level; that is, it is ready to accept commands. At this point, GW-BASIC may be usedin
either of two modes: direct mode or indirect mode.

2.2.1 Direct Mode

In the direct mode, GW-BASIC statements and commands are executed as they are entered.
Results of arithmetic and logical operations can be displayed immediately and/or stored for later
use, but the instructions themselves are lost after execution. This mode is useful for debugging
and for using GW-BASIC as a calculator for quick computations that do not require a complete
program.

file:///CJ/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/Chapter%202.html (1 of 8)28/03/2004 21.28.57

GW-BASIC User's Guide

2.2.2 Indirect Mode

The indirect mode is used to enter programs. Program lines are always preceded by line numbers,
and are stored in memory. The program stored in memory is executed by entering the RUN

command.

2.3 The GW-BASIC Command Line Format

The GW-BASIC command line lets you change the environment or the conditions that apply
while using GW-BASIC.

Note

When you specify modifications to the operating environment of GW-BASIC, be sure to
maintain the parameter sequence shown in the syntax statement. To skip a parameter, insert a
comma. Thiswill let the computer know that you have no changes to that particular parameter.

GW-BASIC uses acommand line of the following form:
gwbasi c[filenane] [<stdin][[>]>stdout][/f:n][/i][/s:n][/c:n][/m[n]],
nj1[/d]

fil enane isthe name of a GW-BASIC program file. If this parameter is present, GW-BASIC
proceeds as if a RUN command had been given. If no extension is provided for the filename, a
default file extension of .BASisassumed. The .BAS extension indicates that the fileis a GW-
BASIC file. The maximum number of characters afilename may contain is eight with a decimal
and three extension characters.

<st di n redirects GW-BASIC's standard input to be read from the specified file. When used, it
must appear before any switches.

This might be used when you have multiple files that might be used by your program and you
wish to specify a particular input file.

>st dout redirects GW-BASIC's standard output to the specified file or device. When used, it
must appear before any switches. Using >> before st dout causes output to be appended.

GW-BASIC can be redirected to read from standard input (keyboard) and write to standard
output (screen) by providing the input and output filenames on the command line as follows:

gwbasi ¢ program nane <input file[>]>output file
An explanation of file redirection follows this discussion of the GW-BASIC command line.

Switches appear frequently in command lines; they designate a specified course of action for the
command, as opposed to using the default for that setting. A switch parameter is preceded by a

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ Chapter%202.html (2 of 8)28/03/2004 21.28.57

GW-BASIC User's Guide
dlash (/).

/ f:n setsthe maximum number of filesthat may be opened simultaneously during the

execution of a GW-BASIC program. Each file requires 194 bytes for the File Control Block
(FCB) plus 128 bytes for the data buffer. The data buffer size may be altered with the /s: switch.
If the/ f: switch isomitted, the maximum number of open files defaultsto 3. This switchis

ignored unlessthe/ i switchis also specified on the command line.

/i makes GW-BASIC statically allocate space required for file operations, based on the/ s and/
f switches.

/ s: n sets the maximum record length allowed for use with files. The record length option in the
OPEN statement cannot exceed thisvalue. If the/ s: switch is omitted, the record length defaults
to 128 bytes. The maximum record size is 32767.

/ ¢: n controls RS-232 communications. If RS-232 cards are present, / ¢: 0 disables RS-232
support, and any subsequent I/O attempts for each RS-232 card present. If the/ c: switchis

omitted, 256 bytes are allocated for the receive buffer and 128 bytes for the transmit buffer for
each card present.

The/ c: switch has no affect when RS-232 cards are not present. The/ c: n switch allocates n
bytes for the receive buffer and 128 bytes for the transmit buffer for each RS-232 card present.

/ mn[, n] setsthe highest memory location (first n) and maximum block size (second n) used
by GW-BASIC. GW-BASIC attempts to allocate 64K bytes of memory for the data and stack
segments. If machine language subroutines are to be used with GW-BASIC programs, use the /
m switch to set the highest location that GW-BASIC can use. The maximum block sizeisin

multiples of 16. It is used to reserve space for user programs (assembly |language subroutines)
beyond GW-BASIC's workspace.

The default for maximum block size is the highest memory location. The default for the highest
memory location is 64K bytes unless maximum block size is specified, in which case the default
IS the maximum block size (in multiples of 16).

/ d allows certain functions to return double-precision results. When the / d switch is specified,
approximately 3000 bytes of additional code space are used. The functions affected are ATN, CCS,
EXP, LOG, SI N, SQR, and TAN.

Note

All switch numbers may be specified as decimal, octal (preceded by &0), or hexadecimal
(preceded by &H).

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ Chapter%202.html (3 of 8)28/03/2004 21.28.57

GW-BASIC User's Guide

Sample GW-BASIC command lines are as follows:

The following uses 64K bytes of memory and three files; loads and executes the program file
payroll.bas:

A>gwbasi ¢ PAYROLL

The following uses 64K bytes of memory and six files; loads and executes the program file invent.
bas:

A>gwbasi c | NVENT /F: 6

The following disables RS-232 support and uses only the first 32K bytes of memory. 32K bytes
above that are reserved for user programs:

A>gwbasic /C. 0 /M 32768, 4096

The following uses four files and allows a maximum record length of 512 bytes:
A>gwbasic /F. 4 /S:512

The following uses 64K bytes of memory and three files. Allocates 512 bytesto RS-232 receive
buffers and 128 bytes to transmit buffers, and loads and executes the program file tty.bas:

A>gwbasic TTY /C: 512
For more information about RS-232 Communications, see Appendix F.

Redirection of Standard Input and Output

When redirected, all | NPUT, LI NE | NPUT, | NPUT$, and | NKEY$ statements are read from the
specified input file instead of the keyboard.

All PRI NT statements write to the specified output file instead of the screen.
Error messages go to standard output and to the screen.
File input from KYBD: isstill read from the keyboard.

File output to SCRN: still outputs to the screen.
GW-BASIC continues to trap keys when the ON KEY(n) statement is used.

Typing CTRL-BREAK When output is redirected causes GW-BASIC to close any open files, issue
themessage "Break in |ine nnnn" to standard output, exit GW-BASIC, and returnto MS

DOS.

When input is redirected, GW-BASIC continues to read from this source until actrL-z is
detected. This condition can be tested with the end-of-file (EOF) function. If the fileis not

terminated by acTtrL-z, or if a GW-BASIC file input statement tries to read past the end of file,
then any open files are closed, and GW-BASIC returnsto MS-DOS.

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ Chapter%202.html (4 of 8)28/03/2004 21.28.57

GW-BASIC User's Guide

For further information about these statements and other statements, functions, commands, and
variables mentioned in this text, refer to the GW-BAS C User's Reference.

Some examples of redirection follow.
GWBASI C MYPROG >DATA. QUT

Dataread by the | NPUT and LI NE | NPUT statements continues to come from the keyboard. Data
output by the PRI NT statement goes into the data.out file.
gwbhasi ¢ MYPROG <DATA. I N

Dataread by the | NPUT and LI NE | NPUT statements comes from data.in. Data output by PRI NT
continues to go to the screen.

gwbasi ¢ MYPROG <MYl NPUT. DAT >MYQUTPUT. DAT

Dataread by the | NPUT and LI NE | NPUT statements now come from the file myinput.dat, and
data output by the PRI NT statements goes into myoutput.dat.

gwbasi ¢ MYPROG <\ SALES\ JOHN\ TRANS. DAT >>\ SALES\ SALES. DAT

Dataread by the | NPUT and LI NE | NPUT statements now comes from the file \sales\john\trans.
dat. Data output by the PRI NT statement is appended to the file \sales\sal es.dat.

2.4 GW-BASIC Statements, Functions, Commands, and Variables

A GW-BASIC program is made up of several elements. keywords, commands, statements,
functions, and variables.

2.4.1 Keywords

GW-BASIC keywords, such as PRI NT, GOTO, and RETURN have specia significance for the GW-
BASIC Interpreter. GW-BASIC interprets keywords as part of statements or commands.

Keywords are also called reserved words. They cannot be used as variable names, or the system
will interpret them as commands. However, keywords may be embedded within variable names.

Keywords are stored in the system as tokens (1- or 2-byte characters) for the most efficient use of
memory space.

2.4.2 Commands

Commands and statements are both executable instructions. The difference between commands
and statementsis that commands are generally executed in the direct mode, or command level of
the interpreter. They usually perform some type of program maintenance such as editing, loading,
or saving programs. When GW-BASIC isinvoked and the GW-BASIC prompt, Ok, appears, the

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ Chapter%202.html (5 of 8)28/03/2004 21.28.57

GW-BASIC User's Guide

system assumes command level.

2.4.3 Statements

A statement, such as ON ERROR. . . GOTO, isagroup of GW-BASIC keywords generally used in

GW-BASIC program lines as part of a program. When the program is run, statements are
executed when, and as, they appear.

2.4.4 Functions
The GW-BASIC Interpreter performs both numeric and string functions.

2.4.4.1 Numeric Functions

The GW-BASIC Interpreter can perform certain mathematical (arithmetical or algebraic)
calculations. For example, it calculates the sine (SI N), cosine (COS), or tangent (TAN) of angle x.

Unless otherwise indicated, only integer and single-precision results are returned by numeric
functions.

2.4.4.2 String Functions

String functions operate on strings. For example, TI ME$ and DATES return the time and date

known by the system. If the current time and date are entered during system start up, the correct
time and date are given (the internal clock in the computer keeps track).

2.4.4.3 User -Defined Functions

Functions can be user-defined by means of the DEF FN statement. These functions can be either
string or numeric.

2.45Variables

Certain groups of alphanumeric characters are assigned values and are called variables. When
variables are built into the GW-BASIC program they provide information as they are executed.

For example, ERR defines the latest error which occurred in the program; ERL gives the location
of that error. Variables can also be defined and/or redefined by the user or by program content.

All GW-BASIC commands, statements, functions, and variables are individually described in the
GW-BAS C User's Reference.

2.5 Line Format

Each of the elements of GW-BASIC can make up sections of a program that are called
statements. These statements are very similar to sentences in English. Statements are then put

file:///CJ/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/Chapter%202.html (6 of 8)28/03/2004 21.28.57

GW-BASIC User's Guide

together in alogical manner to create programs. The GW-BAS C User's Reference describes al of
the statements available for usein GW-BASIC.

In aGW-BASIC program, lines have the following format:
nnnnn st at enent [st at enent sj

nnnnn isaline number
st at enent isaGW-BASIC statement.

A GW-BASIC program line aways begins with aline number and must contain at least one
character, but no more than 255 characters. Line numbers indicate the order in which the program
lines are stored in memory, and are also used as references when branching and editing. The
program line ends when you press the RETURN key.

Depending on the logic of your program, there may be more than one statement on aline. If so,
each must be separated by a colon (:). Each of the linesin a program should be preceded by a
line number. This number may be any whole integer from 0 to 65529. It is customary to use line
numbers such as 10, 20, 30, and 40, in order to leave room for any additional lines that you may
wish to include later. Since the computer will run the statements in numerical order, additional
lines needn't appear in consecutive order on the screen: for example, if you entered line 35 after
line 60, the computer would still run line 35 after line 30 and before line 40. This technique may
save your reentering an entire program in order to include one line that you have forgotten.

The width of your screen is 80 characters. If your statement exceeds this width, the cursor will
wrap to the next screen line automatically. Only when you press the RETURN key will the
computer acknowledge the end of the line. Resist the temptation to press RETURN as you approach
the edge of the screen (or beyond). The computer will automatically wrap the line for you. Y ou
can also press CTRL-RETURN, Which causes the cursor to move to the beginning of the next screen
line without actually entering the line. When you press RETURN, the entire logical lineis passed to
GW-BASIC for storage in the program.

In GW-BASIC, any line of text that begins with a numeric character is considered a program line
and is processed in one of three ways after the RETURN key is pressed:

. A new lineis added to the program. This occurs if the line number islegal (within the
range of O through 65529), and if at |east one alpha or special character followstheline
number in the line.

. Anexisting lineismodified. This occursif the line number matches the line number of an
existing linein the program. The existing line is replaced with the text of the newly-
entered line. This processis called editing.

file:///CJ/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/Chapter%202.html (7 of 8)28/03/2004 21.28.57

GW-BASIC User's Guide

Note

Reuse of an existing line number causes all of the information contained in the original
line to be lost. Be careful when entering numbersin the indirect mode. Y ou may erase
some program lines by accident.

. Anexisting lineisdeleted. This occursif the line number matches the line number of an
existing line, and the entered line contains only aline number. If an attempt is made to
delete anonexistent line, an "Undef i ned | i ne nunmber" error message is displayed.

2.6 Returningto MS-DOS

Before you return to MS-DOS, you must save the work you have entered under GW-BASIC, or
the work will be lost.

To returnto MS-DOS, type the following after the Ok prompt, and press RETURN:

system

The system returns to MS-DOS, and the A> prompt appears on your screen.

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ Chapter%202.html (8 of 8)28/03/2004 21.28.57

GW-BASIC User's Guide

Chapter 4
The GW-BASIC Screen Editor

Y ou can edit GW-BASIC program lines as you enter them, or after they have been saved in a
program file.

4.1 Editing Linesin New Files

If an incorrect character is entered asalineis being typed, it can be deleted with the BACKSPACE
or DEL keys, or with cTRL-H. After the character is deleted, you can continue to type on the line.

The esc key lets you delete a line from the screen that isin the process of being typed. In other
words, if you have not pressed the RETURN key, and you wish to delete the current line of entry,
press the esc key.

To delete the entire program currently residing in memory, enter the NEW command. NEW is
usually used to clear memory prior to entering a new program.

4.2 Editing Linesin Saved Files

After you have entered your GW-BASIC program and saved it, you may discover that you need
to make some changes. To make these modifications, use the LI ST statement to display the

program lines that are affected:

1. Reload the program.
2. Typethe Ll ST command, or pressthe F1 key.

3. Typetheline number, or range of numbers, to be edited.
The lines will appear on your screen.

4.2.1 Editing the Information in a Program Line

Y ou can make changes to the information in aline by positioning the cursor where the change is
to be made, and by doing one of the following:

Typing over the characters that are already there.

. Deleting charactersto the left of the cursor, using the BACKSPACE key.
. Deleting characters at the cursor position using the beL key on the number pad.

. Inserting characters at the cursor position by pressing the INs key on the number pad. This

file:///C)/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/Chapter%204.html (1 of 6)28/03/2004 21.28.57

GW-BASIC User's Guide

moves the characters following the cursor to the right making room for the new
information.

. Adding to or truncating characters at the end of the program line.

If you have changed more than one line, be sure to press RETURN on each modified line. The
modified lines will be stored in the proper numerical sequence, even if the lines are not updated
in numerical order.

Note

A program line will not actually have changes recorded within the GW-BASIC program until the
RETURN key is pressed with the cursor positioned somewhere on the edited line.

Y ou do not have to move the cursor to the end of the line before pressing the RETURN key. The
GW-BASIC Interpreter remembers where each line ends, and transfers the whole line, even if
RETURN is pressed while the cursor islocated in the middle or at the beginning of the line.

To truncate, or cut off, aline at the current cursor position, type CTRL-END or CTRL-E, followed by
pressing the RETURN key.

If you have originally saved your program to a program file, make sure that you save the edited
version of your program. If you do not do this, your modifications will not be recorded.

4.3 Special Keys

The GW-BASIC Interpreter recognizes nine of the numeric keys on the right side of your
keyboard. It also recognizes the BAcksPACE key, Esc key, and the cTrL key. The following keys
and key sequences have special functionsin GW-BASIC:

Key Function

BACKSPACE Of CTRL-H Deletes the last character typed, or deletes the character to the
left of the cursor. All charactersto the right of the cursor are
moved left one position. Subsequent characters and lines within
the current logical line are moved up as with the DEL key.

CTRL-BREAK Of CTRL-C Returns to the direct mode, without saving changes made to the
current line. It will also exit auto line-numbering mode.

CTRL-CURSOR LEFT Of CTRL-B Moves the cursor to the beginning of the previous word. The
previous word is defined as the next character to the left of the
cursor intheset AtoZ orintheset 0to 9.

file:///CJ/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/Chapter%204.html (2 of 6)28/03/2004 21.28.57

GW-BASIC User's Guide

CTRL-CURSOR RIGHT Or CTRL-F Moves the cursor to the beginning of the next word. The next

CURSOR DOWN Or CTRL--

CURSOR LEFT O CTRL-]

CURSOR RIGHT Of CTRL-\

CURSOR UP Or CTRL-6

CTRL-BACKSPACE Or DEL

CTRL-END Or CTRL-E

CTRL-N Or END

CTRL-RETURN Or CTRL-J

CTRL-M Or RETURN

CTRL-[Or ESC

word is defined as the next character to the right of the cursor in
theset A to Z or inthe set 0 to 9. In other words, the cursor
moves to the next number or letter after ablank or other special
character.

Moves the cursor down one line on the screen.

Moves the cursor one position left. When the cursor is advanced
beyond the left edge of the screen, it will wrap to the right side
of the screen on the preceding line.

Moves the cursor one position right. When the cursor is
advanced beyond the right edge of the screen, it will wrap to the
left side of the screen on the following line.

Moves the cursor up one line on the screen.

Deletes the character positioned over the cursor. All characters
to the right of the one deleted are then moved one position |eft to
fill in where the deletion was made.If alogical line extends
beyond one physical line, characters on subsequent lines are
moved left one position to fill in the previous space, and the
character in the first column of each subsequent line is moved up
to the end of the preceding line.DeL (delete) isthe opposite of INS
(insert). Deleting text reduces logical line length.

Erases from the cursor position to the end of the logical line. All
physical screen lines are erased until the terminating RETURN IS
found.

Moves the cursor to the end of the logical line. Characters typed
from this position are added to the line.

Moves the cursor to the beginning of the next screen line. This
lets you create logical program lines which are longer than the
physical screen width. Logical lines may be up to 255 characters
long. This function may also be used as aline feed.

Enters aline into the GW-BASIC program. It also movesthe
cursor to the next logical line.

Erases the entire logical line on which the cursor is located.

file:///CJ/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/Chapter%204.html (3 of 6)28/03/2004 21.28.57

GW-BASIC User's Guide

CTRL-G

CTRL-K Or HOME

CTRL-HOME Or CTRL-L

CTRL-R OF INS

CTRL-NUM LOCK Or CTRL-S

CTRL-PRTSC

Causes a beep to emit from your computer's speaker.

Moves the cursor to the upper left corner of the screen. The
screen contents are unchanged.

Clears the screen and positions the cursor in the upper left corner
of the screen.

Turns the Insert Mode on and off. Insert Mode is indicated by
the cursor blotting the lower half of the character position. In
Graphics Mode, the normal cursor covers the whole character
position. When Insert Mode is active, only the lower half of the
character position is blanked by the cursor.

When Insert Mode is off, characters typed replace existing
characters on the line. The sPACEBAR erases the character at the
current cursor position and moves the cursor one character to the
right. The CURSOR-RIGHT key moves the cursor one character to
the right, but does not delete the character.

When Insert Mode is off, pressing the TaB key moves the cursor
over characters until the next tab stop is reached. Tab stops
occur every eight character positions.

When Insert Mode is on, characters following the cursor are
moved to the right as typed characters are inserted before them
at the current cursor position. After each keystroke, the cursor
moves one position to the right. Line wrapping is observed. That
IS, as characters move off the right side of the screen, they are
inserted from the left on subsequent lines. Insertions increase
logical line length.

When Insert Mode is on, pressing the TAB key causes blanks to
be inserted from current cursor position to the next tab stop. Line
wrapping is observed as above.

Places the computer in a pause state. To resume operation, press
any other key.

Causes characters printed on the screen to echo to the line
printer (Iptl:). In other words, you will be printing what you
type on the screen. Pressing cTRL-PRTSC a second time turns of f
the echoing of charactersto Ipt1..

file:///C)/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/Chapter%204.html (4 of 6)28/03/2004 21.28.57

GW-BASIC User's Guide

SHIFT + PRTSC Sends the current screen contents to the printer, effectively
creating a snapshot of the screen.

CTRL-l Or TAB Moves the cursor to the next tab stop. Tab stops occur every
eight columns,

4.4 Function Keys

Certain keys or combinations of keyslet you perform frequently-used commands or functions
with a minimum number of keystrokes. These keys are called function keys.

The specia function keys that appear on the left side of your keyboard can be temporarily
redefined to meet the programming requirements and specific functions that your program may
require.

Function keys allow rapid entry of as many as 15 characters into a program with one keystroke.
These keys are located on the | eft side of your keyboard and are labeled F1 through F10. GW-
BASIC has already assigned special functions to each of these keys. Y ou will notice that after
you load GW-BASIC, these special key functions appear on the bottom line of your screen.
These key assignments have been selected for you as some of the most frequently used
commands.

Initially, the function keys are assigned the following special functions:

Table4.1
GW-BASIC Function Key Assignments
KeyFunction KeyFunction

F1 LI ST F6 ,"LPT1:"0

F2 RUNL F7 TRONU

3 LOAD' F8 TROFFO

F4 SAVE" Fo KEY

F5 CONTO F10 SCREEN 0, 0, O[J
Note

The [0 following afunction indicates that you needn't press the RETURN key after the function key.
The selected command will be immediately executed.

If you choose, you may change the assignments of these keys. Any one or all of the 10 function
keys may be redefined. For more information, see the KEY and ON KEY statements in the GW-

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ Chapter%204.html (5 of 6)28/03/2004 21.28.57

GW-BASIC User's Guide

BAS C User's Reference.

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ Chapter%204.html (6 of 6)28/03/2004 21.28.57

GW-BASIC User's Guide

KEY Statement

Purpose:

To alow rapid entry of as many as 15 characters into a program with one keystroke by redefining
GW-BASIC special function keys.

Syntax:

KEY key nunber,string expression
KEY n, CHR$(hex code) +CHR$(scan code)
KEY ON

KEY OFF

KEY LI ST

Comments:

key nunber isthe number of the key to be redefined. key number may range from 1-20.

string expression isthekey assignment. Any valid string of 1 to 15 characters may be used.
If astring islonger than 15 characters, only the first 15 will be assigned. Constants must be
enclosed in double quotation marks.

scan code isthe variable defining the key you want to trap. Appendix H in the GW-BASIC
User's Guide lists the scan codes for the keyboard keys.

hex code isthe hexadecimal code assigned to the key shown below:

Key Hex code

EXTENDED & H80

CAPSLOCK& H40

NUM LOCK & H20

ALT &HO08

CTRL &HO04

SHIFT &HO1, &HO02, &HO3

Hex codes may be added together, such as & HO3, which is both shift keys.

Initially, the function keys are assigned the following special functions:

F1Ll ST F2 RUNL]
F3LOAD" F4 SAVE"

F5CONTL] Fe6 , "LPT1:" [
F7TRONLI F8 TROFFLI
FoKEY F10SCREEN 000[]

file:///C|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/KEY .html (1 of 3)28/03/2004 21.28.58

GW-BASIC User's Guide

Note
[1 (arrow) means that you do not have to press RETURN after each of these keys has been pressed.

Any one or al of the 10 keys may be redefined. When the key is pressed, the data assigned to it
will be input to the program.

KEY key nunber, "string expression"

Assigns the string expression to the specified key.
KEY LI ST

List all 10 key values on the screen. All 15 characters of each value are displayed.

KEY ON
Displays the first six characters of the key values on the 25th line of the screen. When the display
width is set at 40, five of the 10 keys are displayed. When the width is set at 80, all 10 are
displayed.

KEY OFF
Erases the key display from the 25th line, making that line available for program use. KEY OFF
does not disable the function keys.

If thevaluefor key number isnot withintherangeof 1to 10, or 15t0 20, an"I | | egal
function cal | " error occurs. The previous KEY assignment is retained.

Assigning anull string (length 0) disables the key as afunction key.

When afunction key is redefined, the | NKEY$ function returns one character of the assigned
string per invocation. If the function key isdisabled, | NKEY$ returns a string of two characters:
the first is binary zero; the second is the key scan code.

Examples:
10 KEY 1, "MENU'+CHR$(13)

Displays a menu selected by the operator each time key 1 is pressed.
1 KEY OFF

Turns off the key display.

10 DATA KEY1, KEY2, KEY3, KEY4, KEY5
20 FOR N=1 TO 5: READ SOFTKEYS$(n)
30 KEY N, SOFTKEYS$(I)

40 NEXT N

50 KEY ON

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/KEY .html (2 of 3)28/03/2004 21.28.58

GW-BASIC User's Guide

Displays new function keys on line 25 of the screen.
20 KEY 1, ""

Disables function key 1.

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/KEY .html (3 of 3)28/03/2004 21.28.58

GW-BASIC User's Guide

Appendix H

Key Scan Codes

Key Code Key Code Key Code Key Code
Esc 01 U 16 /| 2B F7 41
1/! 02 I 17 Z 2C F8 42
2/@ 03 @) 18 X 2D F9 43
3/# 04 P 19 C 2E F10 44
4/$ 05 [1A \Y 2F NUM LOCK 45
5/% 06 1/} 1B B 30 SCROLL LOCK 46
6/" o7 ENTER 1C N 31 7/HOME a7
71& 08 CTRL 1D M 32 8/CURSORUP 48
8/* 09 A 1E 1< 33 9/pG UP 49
9/(OA S 1F 11? 35 - 4A
0/) 0B D 20 RIGHT SHIFT36 4/CURSOR LEFT 4B
-l 0oC F 21 *[PRTSCR 37 5 4C
=/+ oD G 22 ALT 38 6/CURSOR RIGHT4D
BACKSPACEQE H 23 SPACE 39 + 4E
TAB OF J 24 CAPSLOCK 3A 1/END 4F
Q 10 K 25 F1 3B 2/CURSOR DOWN50
W 11 L 26 F2 3C 3/PG DN 51
E 12 !/ 27 F3 3D O/INS 52
R 13 ' 28 F4 3E ./DEL 53
T 14 '~ 29 F5 3F

Y 15 LEFT SHIFT2A F6 40

file:///CJ/Documents¥20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ A ppendix H.html 28/03/2004 21.28.58

GW-BASIC User's Guide

ON COM(n), ON KEY(n), ON PEN, ON PLAY (n), ON STRIG(n),
and ON TIMER(n) Statements

Purpose:

To create an event trap line number for a specified event (such as communications, pressing
function or cursor control keys, using the light pen, or using joysticks).

Syntax:
ON event specifier GOSUB | i ne nunber

Comments:

The syntax shown sets up an event trap line number for the specified event. A | i ne nunber of
0 disables trapping for this event.

Once trap line numbers have been set, event trapping itself can be controlled with the following
syntax lines:

event specifier ON Whenaneventis ON, and anonzero line number is specified for the

trap, then every time BASIC starts a new statement, it checksto see if
the specified event has occurred. If it has, BASIC performs a GOSUB

to the line specified in the ON statement.
event specifier OFF When an eventis OFF, no trapping occurs and the event is not

remembered, even if it occurs.

event specifier STOPWhenan event is stopped, no trapping can occur, but if the event
happens, it is remembered so an immediate trap occurs when an event
specifier ONis executed.

When atrap is made for a particular event, the trap automatically causes a stop on that event, so
recursive traps can never take place.

The return from the trap routine automatically does an ON unless an explicit OFF has been
performed inside the trap routine.

When an error trap takes place, this automatically disables al trapping.
Trapping will never take place when BASIC is not executing a program.
Thefollowing are valid valuesfor event specifier:

COM n) n isthe number of the COM channel (1 or 2).

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/ ONCOMN.html (1 of 5)28/03/2004 21.28.58

GW-BASIC User's Guide

KEY(n)

PEN
PLAY(n)

STRI G(n)

TI MER(n)

RETURN | 1 ne nunber

n isafunction key number 1-20. 1 through 10 are the function keys
F1 through F10. 11 through 14 are the cursor control keys as follows:

11= CURSOR UP 13= CURSOR RIGHT
12= CURSOR LEFT 14= CURSOR DOWN

15-20 are user-defined keys.

Since there is only one pen, no number is given.
n isan integer expression in the range of 1-32. Values outside this

rangeresultin”l | | egal function call" errors.

nis0, 2,4 or 6. (O=trigger A1; 4=trigger A2; 2=trigger B1; 6=trigger
B2).

n isanumeric expression within the range of 1 to 86,400. A value
outside of thisrangeresultsinan”l | | egal function call™
error.

This optional form of RETURN is primarily intended for use with

event trapping. The event-trapping routine may want to go back into
the GW-BASIC program at afixed line number while still
eliminating the GOSUB entry that the trap created.

Use of the nonlocal RETURN must be done with care. Any other
GOSUB, WHI LE, or FOR that was active at the time of the trap remains
active.

If the trap comes out of a subroutine, any attempt to continue loops
outside the subroutine resultsin a"NEXT wi t hout FOR" error.

Special Notes about Each Type of Trap

COM Trapping

Typically, the COM trap routine will read an entire message from the COM port before returning.

It is recommended that you not use the COM trap for single character messages, since at high
baud rates the overhead of trapping and reading for each individual character may allow the
interrupt buffer for COM to overflow.

KEY Trapping

Trappable keys 15 to 20 are defined by the following statement:
KEY(n), CHR$[hex code] +CHR$[scan code]

n isan integer expression within the range of 15 to 20 defining the key to be trapped.

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basic/ ONCOMN.html (2 of 5)28/03/2004 21.28.58

GW-BASIC User's Guide

hex code isthe mask for the latched key: (CAPSLOCK, NUM LOCK, ALT, CTRL, LEFT SHIFT, RIGHT
SHIFT)

scan code isthe number identifying one of the 83 keys to trap. Refer to Appendix H in the GW-
BASIC User's Guide for key scan codes.

The appropriate bit in hex code must be set in order to trap akey that is shifted, control-shifted,
or alt-shifted. hex code values are asfollows:

M ask Hex code Indicatesthat

EXTENDED &H80 Key is extended

CAPS LOCK &H40 CAPSLOCK IS active

NUM LOCK &H?20 NUM LOCK IS active

ALT &HO8 TheALT key is pressed

CTRL &HO4 The cTRL key is pressed

LEFT SHIFT &HO02 The left sHIFT key is pressed
Theright sHIFT key is

RIGHT SHIFT &HO1 oressed

For trapping shifted keys, you may use the value & HO1, & H02, or & HO3. The left and right sHIFT
keys are coupled when & HO3 is used.

Refer to the KEY (n) statement for more information.

No type of trapping is activated when GW-BASIC isin direct mode. Function keys resume their
standard expansion meaning during input.

A key that causes atrap is not available for examination with the | NPUT or | NKEY$ statement, so
the trap routine for each key must be different if adifferent function is desired.

If cTL-PRTSCR is trapped, the line printer echo toggle is processed first. Defining CTL-PRTSCR as a
key trap does not prevent characters from being echoed to the printer if CTL-PRTSCR IS pressed.

Function keys 1 through 14 are predefined. Therefore, setting scan codes 59-68, 72, 75, 77, or 80
has no effect.
PLAY Trapping

A PLAY event trap isissued only when playing background music (PLAY" MB. .). PLAY event
music traps are not issued when running in MUSI C foreground (default case, or PLAY" MVF. .).

Choose conservative valuesfor n. An ON PLAY(32) .. statement will cause event traps so often
that there will be little time to execute the rest of your program.

The ON PLAY(n) statement causes an event trap when the background music queue goes from n
to n- 1 notes.

file:///IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/ ONCOMN.html (3 of 5)28/03/2004 21.28.58

GW-BASIC User's Guide

STRIG Trapping

Using STRI G(n) ON activates the interrupt routine that checks the trigger status. Down-strokes
that cause trapping will not set STRI G(0) , STRI G(2) , STRI G(4) , or STRI G(6) functions.

TIMER Trapping

AnON TI MER(n) event trapping statement is used with applications needing an internal timer.
The trap occurs when n seconds have elapsed since the TI VER ON statement.

Example 1:
Thisisavery ssimple terminal program.

10 REM "ON COMn)" EXAMPLE
20 OPEN "COML: 9600, O, 7" AS #1

30 ON COM 1) GOSUB 80

40 COM(1) ON

50 REM TRANSM T CHARACTERS FROM KEYBOARD
60 A$=I NKEY$: | F A$=""THEN 50

70 PRI NT #1, A$;: GOTO 50

80 REM DI SPLAY RECEl VE CHARACTERS

90 ALL=LOC(1): |F ALL<1 THEN RETURN

100 B$=I NPUT$(ALL, #1): PRI NT BS$;: RETURN

Example 2:

Prevents a CTRL-BREAK Of System reset during a program.

10 KEY 15, CHR$(4)+CHR$(70) REM Trap ~BREAK

20 KEY 16, CHR$(12)+CHR$(83) REM Trap system reset
30 ON KEY(15) GOsuB 1000

40 ON KEY(16) GOSUB 2000

50 KEY(15) ON

60 KEY(16) ON

1000 PRINT "lI"msorry, | can't let you do that"
1010 RETURN

2000 ATTEMPS=ATTEMPS+1

2010 ON ATTEMPS GOTO 2100, 2200, 2300, 2400, 2500
2100 PRINT "Mary had a little lanmb": RETURN

2200 PRINT "Its fleece was white as snow': RETURN
2300 PRI NT "And everywhere that Mary went": RETURN
2400 PRI NT "The lanb was sure to go": RETURN

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basic/ ONCOMN.html (4 of 5)28/03/2004 21.28.58

GW-BASIC User's Guide

2500 KEY(16) OFF REM If they hit us once nore...
2510 RETURN REM t hen BASI C di es. ..

Example 3:

Displays the time of day on line 1 every minute.

10 ON TI MER(60) GOSUB 10000
20 TI MER ON

10000 OLDROWECSRLI N REM Saves the current row

10010 OLDCOL=P0OS(0) REM Saves the current col umm

10020 LOCATE 1, 1: PRI NT TI VE$

10030 LOCATE OLDROW OLDCOL REM Restores row and col um
10040 RETURN

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/ ONCOMN.html (5 of 5)28/03/2004 21.28.58

GW-BASIC User's Guide

KEY (n) Statement

Purpose:

To initiate and terminate key capturein a GW-BASIC program.

Syntax:

KEY(n) ON
KEY(n) OFF
KEY(n) STOP

Comments:

nisanumber from 1 to 20 that indicates which key is to be captured. Keys are numbered as
follows:

Key NumberKey

1-10 Function keys F1 through F10

11 CURSOR UP

12 CURSOR LEFT

13 CURSOR RIGHT

14 CURSOR DOWN

15-20 Keys defined in the following format (see KEY statement): KEY n, CHR$(hex

code) + CHR$(scan code)
Execution of the KEY(n) ON statement is required to activate keystroke capture from the
function keys or cursor control keys. When the KEY(n) ON statement is activated and enabled,

GW-BASIC checks each new statement to see if the specified key is pressed. If so, GW-BASIC
performs a GOSUB to the line number specified inthe ON KEY(n) statement. An ON KEY(n)

statement must precede aKEY(n) statement.
When KEY(n) OFF isexecuted, no key capture occurs and no keystrokes are retained.

If KEY(n) STOP isexecuted, no key capture occurs, but if a specified key is pressed, the
keystroke is retained so that immediate keystroke capture occurs when aKEY(n) ONis executed.

For further information on key trapping, see the ON KEY (n) statement.

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/K EY N.html 28/03/2004 21.28.59

GW-BASIC User's Guide

Appendix F
Communications

This appendix describes the GW-BASIC statements necessary to support RS-232 asynchronous
communications with other computers and peripheral devices.

F.1 Opening Communications Files

The OPEN COMstatement allocates a buffer for input and output in the same manner as the OPEN
statement opens disk files.

F.2 Communications /O

Since the communications port is opened as afile, all 1/0 statements valid for disk filesare valid
for COM.

COM sequential input statements are the same as those for disk files:

| NPUT#
LI NE | NPUT#
| NPUT$

COM sequential output statements are the same as those for diskette:

PRI NT#
PRI NT# USI NG

See the GW-BAS C User's Reference for more information on these statements.

F.3TheCOM I/O Functions

The most difficult aspect of asynchronous communications is processing characters as quickly as
they are received. At rates above 2400 baud (bps), it is necessary to suspend character
transmission from the host long enough for the receiver to catch up. This can be done by sending
XOFF (cTRL-S) to the host to temporarily suspend transmission, and XON (CTRL-Q) to resume, if
the application supports it.

GW-BASIC provides three functions which help to determine when an overrun condition is
Imminent:

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/A ppendix%20F.html (1 of 7)28/03/2004 21.28.59

GW-BASIC User's Guide

LOC(x) Returns the number of charactersin the input queue waiting to be read. The input
gueue can hold more than 255 characters (determined by the /c: switch). If there are
more than 255 characters in the queue, LOC(x) returns 255. Since astring is

limited to 255 characters, this practical limit alleviates the need for the programmer
to test for string size before reading datainto it.

LOF(x) Returns the amount of free space in the input queue; that is

/c:(size)-nunber of characters in the input queue
LLOF may be used to detect when the input queue is reaching storage capacity.

EOF(x) True (-1), indicates that the input queue is empty. False (0) isreturned if any
characters are waiting to be read.

F.4 Possible Errors:

A "Conmuni cati ons buffer overfl ow' error occursif aread is attempted after the input
gueueisfull (thatis, LOC(x) returns 0).

A "Devi ce |/ 0" eror occursif any of the following line conditions are detected on receive:

overrun error (OE), framing error (FE), or break interrupt (BI). The error is reset by subsequent
inputs, but the character causing the error islost.

A "Devi ce fault" error occursif data set ready (DSR) islost during 1/0O.

A "Parity error"occursif the PE (parity enable) option was used in the OPEN COM statement
and incorrect parity was received.

F.5 The INPUT$ Function

The | NPUT$ function is preferred over the | NPUT and LI NE | NPUT statements for reading COM
files, because all ASCII characters may be significant in communications. | NPUT is |least
desirable because input stops when acomma or an enter is seen. LI NE | NPUT terminates when
an enter is seen.

| NPUT$ allows all characters read to be assigned to a string.

| NPUT$ returns x characters from they file. The following statements then are most efficient for
reading a COM file:

10 WH LE NOT EOF(1)

20 A$=I NPUT$(LOC(1), #1)

30 ...

40 ... Process data returned in A% ...
50 ...

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/A ppendix%20F.html (2 of 7)28/03/2004 21.28.59

GW-BASIC User's Guide

60 VEEND

This sequence of statements trandlates: Aslong as something isin the input queue, return the
number of charactersin the queue and store them in A$. If there are more than 255 characters,
only 255 are returned at atime to prevent string overflow. If thisisthe case, EOF(1) isfalse, and

input continues until the input queue is empty.

GET and PUT Statementsfor COM Files

Purpose:
To alow fixed-length I/O for COM.

Syntax:
CGET fil enunber, nbytes PUT fil enunber, nbytes

Comments:
fil enunber isaninteger expression returning avalid file number.

nbyt es isan integer expression returning the number of bytes to be transferred into or out of the
file buffer. nbyt es cannot exceed the value set by the /s. switch when GW-BASIC was invoked.

Because of the low performance associated with telephone line communications, it is
recommended that GET and PUT not be used in such applications.

Example:

Thefollowing TTY sample program is an exercise in communications I/O. It is designed to
enable your computer to be used as a conventional terminal. Besides full-duplex communications
with a host, the TTY program allows data to be downloaded to afile. Conversely, afile may be
uploaded (transmitted) to another machine.

In addition to demonstrating the elements of asynchronous communications, this program is
useful for transferring GW-BASIC programs and data to and from a computer.

Note

This program is set up to communicate with a DEC® System-20 especialy in the use of XON
and XOFF. It may require modification to communicate with other types of hardware.

F.6 TheTTY Sample Program
10 SCREEN 0, 0: W DTH 80

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/A ppendix%20F.html (3 of 7)28/03/2004 21.28.59

GW-BASIC User's Guide

15 KEY OFF: CLS: CLOSE

20 DEFINT A-Z

25 LOCATE 25,1

30 PRI NT STRING$(60," ")

40 FALSE=0: TRUE=NOT FALSE

50 MENU=5 ' Val ue of MENU Key (”"E)

60 XOFF$=CHR$(19) : XON$=CHR$(17)

100 LOCATE 25, 1: PRI NT "Async TTY Progrant;

110 LOCATE 1, 1: LI NE I NPUT " Speed?"; " SPEED$

120 COVFI L$="COWL: , +SPEED$+" | E, 7"

130 OPEN COWFI L$ AS #1

140 OPEN " SCRN: "FOR QUTPUT AS #3

200 PAUSE=FALSE

210 A$=I NKEYS$: | F A$=""THEN 230

220 | F ASC(A%$) =MENU THEN 300 ELSE PRI NT #1, A$;
230 | F EOF(1) THEN 210

240 1 F LOC(1)>128 THEN PAUSE=TRUE: PRI NT #1, XOFF$;
250 A$=I NPUT$(LOC(1), #1)

260 PRI NT #3,A%;:|IF LOC(1)>0 THEN 240

270 | F PAUSE THEN PAUSE=FALSE: PRI NT #1, XON$;
280 GOTO 210

300 LOCATE 1, 1: PRINT STRI NG$(30, 32): LOCATE 1,1
310 LINE I NPUT "FI LE?"; DSKFI L$

400 LOCATE 1, 1: PRI NT STRI NG$(30, 32): LOCATE 1,1
410 LINE INPUT" (T ransmt or (R)eceive?"; TXRX$
420 | F TXRX$="T" THEN OPEN DSKFI L$ FOR | NPUT AS #2: GOTO 1000
430 OPEN DSKFIL$ FOR OQUTPUT AS #2

440 PRINT #1, CHR$(13);

500 I F EOF(1) THEN GOSUB 600

510 I F LOC(1)>128 THEN PAUSE=TRUE: PRI NT #1, XOFF$;
520 A$=I NPUT$(LOC(1), #1)

530 PRINT #2,A%;:I1F LOC(1)>0 THEN 510

540 | F PAUSE THEN PAUSE=FALSE: PRI NT #1, XON$;
550 GOTO 500

600 FOR I =1 TO 5000

610 | F NOT EOF(1) THEN | =9999

620 NEXT |

630 I F 1>9999 THEN RETURN

640 CLOSE #2; CLS: LOCATE 25, 10: PRINT "* Downl oad conplete *";
650 RETURN 200

1000 WHI LE NOT ECF(2)

1010 A$=I NPUTS$(1, #2)

1020 PRI NT #1, AS;

1030 VEEND

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/A ppendix%20F.html (4 of 7)28/03/2004 21.28.59

GW-BASIC User's Guide

1040 PRI NT #1, CHR$(28);"Z to nmake close file.

1050 CLCSE #2: CLS: LOCATE 25, 10: PRINT "** Upl oad conplete **";
1060 GOTO 200

9999 CLCSE: KEY ON

F.7 Noteson the TTY Sample Program

Note

Asynchronous implies character |/O as opposed to line or block I/O. Therefore, all prints (either
to the COM file or screen) are terminated with a semicolon (;). This retards the return line feed
normally issued at the end of the PRI NT statement.

Line Number Comments

10 Sets the SCREEN to black and white alpha mode and sets the width to 80.

15 Turns off the soft key display, clears the screen, and makes sure that al files
are closed.

20 Defines all numeric variables as integer, primarily for the benefit of the

subroutine at 600-620. Any program looking for speed optimization should use
integer counters in loops where possible.

40 Defines Boolean true and fal se.

50 Definesthe ASCII (ASC) value of the MeNnu key.

60 Defines the ASCII XON and XOFF characters.

100-130 Prints program ID and asks for baud rate (speed). Opens communications to
file number 1, even parity, 7 data bits.

200-280 This section performs full-duplex 1/O between the video screen and the device

connected to the RS-232 connector as follows:

1. Read acharacter from the keyboard into A$. | NKEY$ returns a null
string if no character iswaiting.

2. If akeyboard character is available, waiting, then:

. |If the character isthe MeNu key, the operator is ready to down-
load afile. Get filename.

. If the character (A$) is not the MeNu key send it by writing to the
communicationsfile (PRI NT #1...).

3. If no character iswaiting, check to seeif any characters are being
received.

4. At 230, seeif any characters are waiting in COM buffer. If not, go back

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/A ppendix%20F.html (5 of 7)28/03/2004 21.28.59

GW-BASIC User's Guide

300-320
400-420
430

500

510

520-530

540-550

600-650

1000-1060

and check the keyboard.

5. At 240, if more than 128 characters are waiting, set PAUSE flag to
indicate that input is being suspended. Send X OFF to host, stopping
further transmission.

6. At 250-260, read and display contents of COM buffer on screen until
empty. Continue to monitor size of COM buffer (in 240). Suspend
transmission if reception falls behind.

7. Resume host transmission by sending XON only if suspended by
previous X OFF.

8. Repeat process until the MENU key is pressed.

Get disk filename to be down-loaded to. Open the file as number 2.

Asksif file named isto be transmitted (uploaded) or received (down-loaded).
Receive routine. Sends a RETURN to the host to begin the down-load. This
program assumes that the last command sent to the host was to begin such a
transfer and was missing only the terminating return. If a DEC® system isthe
host, such a command might be

COPY TTY: =MANUAL. MEM (MENU Key)

if the MENU key was struck instead of RETURN.

When no more characters are being received, (LOC(x) returns 0), then
performs atimeout routine.

If more than 128 characters are waiting, signal a pause and send X OFF to the
host.

Read all charactersin COM queue (LOC(x)) and write them to diskette

(PRI NT #2...) until reception is caught up to transmission.

If apauseisissued, restart host by sending XON and clearing the pause flag.
Continue the process until no characters are received for a predetermined time.
Time-out subroutine. The FOR loop count was determined by experimentation.
If no character is received from the host for 17-20 seconds, transmission is
assumed complete. If any character is received during thistime (line 610), then
set n well above the FOR loop range to exit loop and return to caller. If host
transmission is complete, close the disk file and resume regular activities,
Transmit routine. Until end of disk file, read one character into A$ with | NPUT
$ statement. Send character to COM device in 1020. Send a”Z at end of filein
1040 in case receiving device needs one to close itsfile. Lines 1050 and 1060

close disk file, print completion message, and go back to conversation mode in
line 200.

file:///CJ/Documents¥20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ A ppendix%20F.html (6 of 7)28/03/2004 21.28.59

GW-BASIC User's Guide

9999 Presently not executed. As an exercise, add some lines to the routine 400-420
to exit the program vialine 9999. Thisline closes the COM file left open and
restores the function key display.

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/A ppendix%20F.html (7 of 7)28/03/2004 21.28.59

GW-BASIC User's Guide

Chapter 3
Reviewing and Practicing GW-BASIC

The practice sessionsin this chapter will help you review what you have learned. If you have not
done so, thisis agood time to turn on your computer and |load the GW-BASIC Interpreter.

3.1 Examplefor the Direct Mode

Y ou can use your computer in the direct mode to perform fundamental arithmetic operations.
GW-BASIC recognizes the following symbols as arithmetic operators:

Operation GW-BASIC Operator

Addition +
Subtraction -
Multiplication®
Division /

To enter aproblem, respond to the Gk prompt with a question mark (?), followed by the

statement of the problem you want to solve, and press the RETURN key. In GW-BASIC, the
guestion mark can be used interchangeably with the keyword PRI NT. The answer is then

displayed.
Type the following and press the RETURN key:
?2+2

GW-BASIC will display the answer on your screen:

?2+2
4
Ok

To practice other arithmetic operations, replace the + sign with the desired operator.

The GW-BASIC language is not restricted to arithmetic functions. Y ou can also enter complex
algebraic and trigonometric functions. The formats for these functions are provided in Chapter 6,

"Constants, Variables, Expressions and Operators."

3.2 Examplesfor the Indirect Mode

The GW-BASIC language can be used for functions other than simple algebraic calculations.
Y ou can create a program that performs a series of operations and then displays the answer. To
begin programming, you create lines of instructions called statements. Remember that there can

file:///CJ/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/Chapter%203.html (1 of 5)28/03/2004 21.28.59

GW-BASIC User's Guide
be more than one statement on aline, and that each line is preceded by a number.
For example, to create the command PRI NT 2+3 as a statement, type the following:
10 print 2+3
When you press the RETURN key, the cursor shifts to the next line, but nothing else happens. To
make the computer perform the calculation, type the following and press the RETURN key:

run

Y our screen should look like this:

(0 ¢
10 print 2+3
run
5
(0 ¢

Y ou have just written a program in GW-BASIC.

The computer reservesits calculation until specifically commanded to continue (with the RUN
command). This allows you to enter more lines of instruction. When you type the RUN command,
the computer does the addition and displays the answer.

The following program has two lines of instructions. Typeit in:
10 x=3
20 print 2+x
Now use the RUN command to have the computer calculate the answer.

Y our screen should look like this:
ok
10 x=3
20 print 2+x
run
5
(0

The two features that distinguish a program from a calculation are

1. The numbered lines

2. Theuse of ther un command

These features | et the computer know that all the statements have been typed and the computation
can be carried out from beginning to end. It is the numbering of the lines that first signals the
computer that thisis a program, not a calculation, and that it must not do the actual computation

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ Chapter%203.html (2 of 5)28/03/2004 21.28.59

GW-BASIC User's Guide
until the RUN command is entered.

In other words, calculations are done under the direct mode. Programs are written under the
indirect mode.

To display the entire program again, type the LI ST command and press the RETURN key:
| i st

Y our screen should ook like this:

Ok

10 x=3

20 print 2+x
run

Ok

5

K

list

10 X=3

20 PRI NT 2+X
K

Y ou'll notice adlight change in the program. The lowercase letters you entered have been
converted into uppercase letters. The LI ST command makes this change automatically.

3.3 Function Keys

Function keys are keys that have been assigned to frequently-used commands. The ten function
keys are located on the left side of your keyboard. A guide to these keys and their assigned
commands appears on the bottom of the GW-BASIC screen. To save time and keystrokes, you
can press a function key instead of typing a command name.

For example, to list your program again, you needn't type the LI ST command; you can use the
function key assign to it, instead:

. Presstheri1 key.

« PressRrRETURN.

Y our program should appear on the screen.

To run the program, simply press the F2 key, which is assigned to the RUN command.

Asyou learn more commands, you'll learn how to use keys F3 through F10. Chapter 4, "The GW-
BASIC Screen Editor," contains more information about keys used in GW-BASIC.

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ Chapter%203.html (3 of 5)28/03/2004 21.28.59

GW-BASIC User's Guide

3.4 Editing Lines

There are two basic ways to change lines. Y ou can

. Delete and replace them

. Alter them with the EDI T command

To delete aline, simply type the line number and press the RETURN key. For example, if you type
12 and press the RETURN key, line number 12 is deleted from your program.

To use the EDI T command, type the command EDI T, followed by the number of the line you
want to change. For example, type the following, and press the RETURN key:

edit 10

Y ou can then use the following keys to perform editing:

Key Function

CURSORUP, Moves the cursor within the statement
CURSOR

DOWN,

CURSOR LEFT,
CURSOR RIGHT

BACKSPACE Deletes the character to the left of the cursor

DELETE (DEL) Deletesthe current character

INSERT (INS) Letsyou insert characters to the left of the cursor.

For example, to modify statement (line) 10 to read x=4, use the CURSOR-RIGHT control key to
move the cursor under the 3, and then type a 4. The number 4 replaces the number 3 in the
Statement.

Now press the RETURN key, and then the F2 key.

Y our screen displays the following:

(®
10 X=4
RUN
6
(®

3.5 Saving Your Program File

Creating a program is like creating adatafile. The program is afile that contains specific
instructions, or statements, for the computer. In order to use the program again, you must save it,
just as you would a datafile.

file:///CJ/Documents¥%20and%20Settings/ L orenzo/ Desktop/ GW%20Basi ¢/Chapter%203.html (4 of 5)28/03/2004 21.28.59

GW-BASIC User's Guide

To saveafilein GW-BASIC, use the following procedure:

1. Pressthe F4 key. The command word SAVE" appears on your screen.

2. Type aname for the program, and press the RETURN key. The fileis saved under the name
you specified.

To recall asaved file, use the following procedure:

1. Pressthe r3 key. The command load LOAD" appears on your screen.

2. Typethe name of thefile.

3. Press RETURN.

Thefileisloaded into memory, and ready for you to list, edit, or run.

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ Chapter%203.html (5 of 5)28/03/2004 21.28.59

GW-BASIC User's Guide

Chapter 6

Constants, Variables, Expressions and Operators

After you have learned the fundamentals of programming in GW-BASIC, you will find that you
will want to write more complex programs. The information in this chapter will help you learn

more about the use of constants, variables, expressions, and operatorsin GW-BASIC, and how
they can be used to develop more sophisticated programs.

6.1 Constants

Constants are static values the GW-BASIC Interpreter uses during execution of your program.
There are two types of constants: string and numeric.

A string constant is a sequence of 0 to 255 alphanumeric characters enclosed in double quotation
marks. The following are sample string constants:

HELLO
$25, 000. 00
Number of Enpl oyees

Numeric constants can be positive or negative. When entering a numeric constant in GW-BASIC,
you should not type the commas. For instance, if the number 10,000 were to be entered as a
constant, it would be typed as 10000. There are five types of numeric constants: integer, fixed-
point, floating-point, hexadecimal, and octal.

Constant Description

Integer Whole numbers between -32768 and +32767. They do not contain
decimal points.

Fixed-Point Positive or negative real numbers that contain decimal points.

Floating-Point Constants Positive or negative numbers represented in exponential form
(similar to scientific notation). A floating-point constant consists of
an optionally-signed integer or fixed-point number (the mantissa),
followed by the letter E and an optionally-signed integer (the
exponent). The alowable range for floating-point constantsis
3.0x10-39 to 1.7x1038. For example:

235. 988E- 7=. 0000235988
2359E6=2359000000

file:///CJ/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/Chapter 6.html (1 of 12)28/03/2004 21.29.00

GW-BASIC User's Guide

Hexadecimal Hexadecimal numbers with prefix &H. For example:
&H76
&H32F

Octal Octal numbers with the prefix &0 or & For example:
&0O347
&1234

6.1.1 Single- and Double-Precision Form for Numeric Constants

Numeric constants can be integers, single-precision, or double-precision numbers. Integer
constants are stored as whole numbers only. Single-precision numeric constants are stored with 7
digits (although only 6 may be accurate). Double-precision numeric constants are stored with 17
digits of precision, and printed with as many as 16 digits.

A single-precision constant is any numeric constant with either

. Seven or fewer digits

. Exponential form using E

. A trailing exclamation point (!)
A double-precision constant is any numeric constant with either

. Eight or more digits
. Exponential form using D

. A trailing number sign (#)

The following are examples of single- and double-precision numeric constants:

Single-Precision ConstantsDouble-Precision Constants

46. 8 345692811
-1. 09E- 06 -1.09432D- 06
3489. 0 3490. O#

22. 5l 7654321. 1234
6.2 Variables

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/Chapter 6.html (2 of 12)28/03/2004 21.29.00

GW-BASIC User's Guide

Variables are the names that you have chosen to represent values used in a GW-BASIC program.
The value of avariable may be assigned specifically, or may be the result of calculations in your
program. If avariableis assigned no value, GW-BA SIC assumes the variable's value to be zero.

6.2.1 Variable Names and Declar ations

GW-BASIC variable names may be any length; up to 40 characters are significant. The
characters allowed in a variable name are | etters, numbers, and the decimal point. The first
character in the variable name must be aletter. Special type declaration characters are also
allowed.

Reserved words (all the words used as GW-BASIC commands, statements, functions, and
operators) can't be used as variable names. However, if the reserved word is embedded within the
variable name, it will be allowed.

Variables may represent either numeric values or strings.

6.2.2 Type Declaration Characters

Type declaration characters indicate what a variable represents. The following type declaration
characters are recognized:

Character Typeof Variable

$ String variable

% Integer variable

! Single-precision variable

Double-precision variable

The following are sample variable names for each type:

Variable Type Sample Name

String variable NS

Integer variable LIM T%

Single-precision variable M NI MUM

Double-precision variableP! #

The default type for a numeric variable name is single-precision. Double-precision, while very
accurate, uses more memory space and more calculation time. Single-precision is sufficiently
accurate for most applications. However, the seventh significant digit (if printed) will not always
be accurate. Y ou should be very careful when making conversions between integer, single-
precision, and double-precision variables.

Thefollowing variable is a single-precision value by default:
ABC

Variables beginning with FN are assumed to be calls to a user-defined function.

file:///CJ/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/Chapter 6.html (3 of 12)28/03/2004 21.29.00

GW-BASIC User's Guide

The GW-BASIC statements DEFI NT, DEFSTR, DEFSNG, and DEFDBL may beincluded in a
program to declare the types of values for certain variable names.

6.2.3 Array Variables

Anarray isagroup or table of values referenced by the same variable name. Each element in an
array isreferenced by an array variable that is a subscripted integer or an integer expression. The
subscript is enclosed within parentheses. An array variable name has as many subscripts as there
are dimensionsin the array.

For example,

V(10)

references avalue in aone-dimensional array, while
T(1,4)

references avalue in atwo-dimensional array.

The maximum number of dimensions for an array in GW-BASIC is 255. The maximum number
of elements per dimension is 32767.

Note

If you are using an array with a subscript value greater than 10, you should use the DI M
statement. Refer to the GW-BAS C User's Reference for more information. If a subscript greater
than the maximum specified is used, you will receive the error message "Subscri pt out of
range."”

Multidimensional arrays (more than one subscript separated by commas) are useful for storing
tabular data. For example, A(1,4) could be used to represent a two-row, five-column array such
asthe following:

Col um 0 1 2 3 4
Row O 10 20 30 40 50
Row 1 60 70 80 90 100

In this example, element A(1,2)=80 and A(0,3)=40.

Rows and columns begin with O, not 1, unless otherwise declared. For more information, see the
OPTI ON BASE statement in the GW-BAS C User's Reference.

6.2.4 Memory Space Requirementsfor Variable Storage
The different types of variables require different amounts of storage. Depending on the storage

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/Chapter 6.html (4 of 12)28/03/2004 21.29.00

GW-BASIC User's Guide

and memory capacity of your computer and the size of the program that you are devel oping, these
can be important considerations.

Variable Required Bytes of Storage
I nteger 2
Single-precision 4
Double-precision8

Arrays Required Bytes of Storage
Integer 2 per element
Single-precision 4 per element
Double-precision8 per element

Strings:

Three bytes overhead, plus the present contents of the string as one byte for each character in the
string. Quotation marks marking the beginning and end of each string are not counted.

6.3 Type Conversion

When necessary, GW-BASIC converts a numeric constant from one type of variable to another,
according to the following rules:

. If anumeric constant of one typeis set equal to a numeric variable of adifferent type, the
number is stored as the type declared in the variable name.
For example:

10 A% = 23.42
20 PRI NT A%
RUN

23

If astring variableis set equal to anumeric value or viceversa, a"Type M smat ch" error
OCCurs.

. During an expression evaluation, all of the operands in an arithmetic or relational operation
are converted to the same degree of precision; that is, that of the most precise operand.
Also, the result of an arithmetic operation is returned to this degree of precision. For
example:

10 D# = 6#/7
20 PRI NT D#

RUN
. 8571428571428571

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/Chapter 6.html (5 of 12)28/03/2004 21.29.00

GW-BASIC User's Guide

The arithmetic is performed in double-precision, and the result isreturned in D# asa
double-precision value.

10 D = 6#/7
20 PRINT D
RUN

. 8571429

The arithmetic is performed in double-precision, and the result is returned to D (single-
precision variable) rounded and printed as a single-precision value.

. Logical operators convert their operands to integers and return an integer result. Operands
must be within the range of -32768 to 32767 or an "Over f | ow" error occurs.

. When afloating-point value is converted to an integer, the fractional portion is rounded.
For example:

10 C% = 55. 88
20 PRI NT C%
RUN

56

. If adouble-precision variable is assigned a single-precision value, only the first seven
digits (rounded), of the converted number are valid. Thisis because only seven digits of
accuracy were supplied with the single-precision value. The absolute value of the
difference between the printed double-precision number, and the original single-precision
value, isless than 6.3E-8 times the original single-precision value. For example:

10 A= 2.04
20 B# = A

30 PRI NT A; B#
RUN

2.04 2.039999961853027

6.4 Expressions and Operators

An expression may be simply a string or numeric constant, avariable, or it may combine
constants and variables with operators to produce a single value.

Operators perform mathematical or logical operations on values. The operators provided by GW-
BASIC are divided into four categories:

. Arithmetic
. Rdationd

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/Chapter 6.html (6 of 12)28/03/2004 21.29.00

GW-BASIC User's Guide
. Logica

. Functiond

6.4.1 Arithmetic Operators

The following are the arithmetic operators recognized by GW-BASIC. They appear in order of
precedence.

Operator Operation

" Exponentiation

- Negation

* Multiplication

/ Floating-point Division

+ Addition

- Subtraction

Operations within parentheses are performed first. Inside the parentheses, the usual order of
precedence is maintained.

The following are sample algebraic expressions and their GW-BASIC counterparts:

Algebraic ExpressonBASIC Expression

X=ZIY (X-Y)/Z
XY/Z xX*Yl Z
X+Y/Z (X+Y)/ Z
(X2)Y (XN2)NY
XYZ XN(YNZ)
X(-Y) X*(-Y)

Two consecutive operators must be separated by parentheses.

6.4.1.1 Integer Division and Modulus Arithmetic
Two additional arithmetic operators are available: integer division and modulus arithmetic.

Integer division is denoted by the backslash (\). The operands are rounded to integers (must be

within the range of -32768 to 32767) before the division is performed, and the quotient is
truncated to an integer.

The following are examples of integer division:
10\4 = 2
25.68\6.99 = 3

In the order of occurrence within GW-BASIC, the integer division will be performed just after
floating-point division.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/Chapter 6.html (7 of 12)28/03/2004 21.29.00

GW-BASIC User's Guide

Modulus arithmetic is denoted by the operator MOD. It gives the integer value that isthe
remainder of an integer division.
The following are examples of modulus arithmetic:

10.4 MOD 4 = 2
(10/4=2 with a renai nder 2)

25.68 MOD 6.99 = 5
(26/ 7=3 with a renmai nder 5)

In the order of occurrence within GW-BASIC, modulus arithmetic follows integer division. The
| NT and FI X functions, described in the GW-BAS C User's Reference, are also useful in modulus

arithmetic.

6.4.1.2 Overflow and Division by Zero

If, during the evaluation of an expression, adivision by zero is encountered, the"Di vi si on by
zer 0" error message appears, machine infinity with the sign of the numerator is supplied as the
result of the division, and execution continues.

If the evaluation of an exponentiation results in zero being raised to a negative power, the
"Di vi si on by zer o" error message appears, positive machine infinity is supplied as the result

of the exponentiation, and execution continues.

If overflow occurs, the"Over f | ow" error message appears, machine infinity with the

algebraically correct sign is supplied as the result, and execution continues. The errors that occur
in overflow and division by zero will not be trapped by the error trapping function.

6.4.2 Relational Operators

Relational operators let you compare two values. The result of the comparison is either true (- 1)
or false (0). Thisresult can then be used to make a decision regarding program flow.

Table 6.1 displays the relational operators.

Table6.1

Relational Operators

Operator Relation Tested EXxpression
= Equality X=Y

<> Inequality X<>Y

< Lessthan XY

> Greater than X>Y

<= Lessthanor equal to X<=Y

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/Chapter 6.html (8 of 12)28/03/2004 21.29.00

GW-BASIC User's Guide

>= Greater than or equal toX>=Y
The equal signisalso used to assign avalue to avariable. See the LET statement in the GW-

BAS C User's Reference.

When arithmetic and relational operators are combined in one expression, the arithmetic is
aways performed first:

X+Y < (T-1)/Zz

Thisexpressionistrueif the value of X plusY islessthan the value of T-1 divided by Z.

6.4.3 Logical Operators

Logical operators perform tests on multiple relations, bit manipulation, or Boolean operations.
The logical operator returns a bit-wise result which is either true (not zero) or false (zero). Inan
expression, logical operations are performed after arithmetic and relational operations. The
outcome of alogical operation is determined as shown in the following table. The operators are
listed in order of precedence.

Table 6.2
Results Returned by L ogical Operations
Operation Value Value Result

NOT X NOT X
T F
F T
AND « v X AND
Y
T T T
T F F
F T F
F F F
OR X Y X OR Y
T T T
T F T
F T T
F F F
XOR « v X XOR
Y
T T F
T F T
F T T
F F F

file:///CJ/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/Chapter 6.html (9 of 12)28/03/2004 21.29.00

GW-BASIC User's Guide

EQV X Y X EQV Y
T T T
T F F
F T F
F F T
IMP X Y X IMP Y
T T T
T F F
F T T
F F T

Just as the relational operators can be used to make decisions regarding program flow, logical
operators can connect two or more relations and return atrue or false valueto be used in a
decision. For example:

| F D<200 AND F<4 THEN 80
| F 1>10 OR K<O THEN 50
| F NOT P THEN 100

L ogical operators convert their operands to 16-bit, signed, two's complement integers within the
range of -32768 to +32767 (if the operands are not within this range, an error results). If both
operands are supplied as 0 or -1, logical operators return O or -1. The given operation is
performed on these integersin bits; that is, each bit of the result is determined by the
corresponding bits in the two operands.

Thus, it is possible to use logical operatorsto test bytesfor a particular bit pattern. For instance,
the AND operator may be used to mask all but one of the bits of a status byte at a machine 1/0

port. The OR operator may be used to merge two bytes to create a particular binary value. The
following examples demonstrate how the logical operators work:

Example Explanation

63 AND 16=16 63 = binary 111111 and 16 = binary 10000, so 63 AND 16 = 16

15 AND 14=14 15=bhinary 1111 and 14 = binary 1110, so 15 AND 14 = 14 (binary 1110)

-1 AND 8=8 -1=binary 1111111111111111 and 8 = binary 1000, so -1 AND 8 =8

4 OR 2=6 4 = binary 100 and 2 = binary 10, so 4 OR 2 = 6 (binary 110)

10 OR 10=10 10 =binary 1010, so 1010 OR 1010 =1010 (10)
-1=binary 1111111111111111 and -2 = binary 1111111111111110, s0o-1 OR -

-1 OR -2=-1 2=-1. The bit complement of 16 zerosis 16 ones, which is the two's
complement representation of -1.

NOT X=- (X+1) Thetwo's complement of any integer is the bit complement plus one.

6.4.4 Functional Operators

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢c/Chapter 6.html (10 of 12)28/03/2004 21.29.00

GW-BASIC User's Guide

A function is used in an expression to call a predetermined operation that is to be performed on
an operand. GW-BASIC hasintrinsic functions that reside in the system, such as SQR (square

root) or SI N (sine).

GW-BASIC also allows user-defined functions written by the programmer. See the DEF FN
statement in the GW-BAS C User's Reference.

6.4.5 String Operators
To compare strings, use the same relational operators used with numbers:

Operator M eaning

= Equal to

<> Unequal

< Less than

> Greater than

<= L ess than or equal to
>= Greater than or equal to

The GW-BASIC Interpreter compares strings by taking one character at atime from each string
and comparing their ASCII codes. If the ASCII codesin each string are the same, the strings are
equal. If the ASCII codes differ, the lower code number will precede the higher code. If the
interpreter reaches the end of one string during string comparison, the shorter string is said to be
smaller, providing that both strings are the same up to that point. Leading and trailing blanks are
significant.
For example:

"AAT < " AB"

“FI LENAME" = " FI LENAME"

"X&" > U X#"

oLt s L

"kg" > "KG'

"SMYTH' < " SIMYTHE"

B$ < "9/12/78" where B$ = "8/12/ 78"

String comparisons can also be used to test string values or to alphabetize strings. All string
constants used in comparison expressions must be enclosed in quotation marks.

Strings can be concatenated by using the plus (+) sign. For example:

10 A$="FI LE": B$=" NAME"
20 PRI NT A$+B$
30 PRINT "NEW" + A$+B$

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/Chapter 6.html (11 of 12)28/03/2004 21.29.00

GW-BASIC User's Guide

RUN
FI LENAME
NEW FI LENAME

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢c/Chapter 6.html (12 of 12)28/03/2004 21.29.00

GW-BASIC User's Guide

DIM Statement

Purpose:

To specify the maximum values for array variable subscripts and allocate storage accordingly.

Syntax:

DI M vari abl e(subscripts)[, vari abl e(subscripts)]...

Comments:

If an array variable nameis used without a DI Mstatement, the maximum value of its subscript(s)
isassumed to be 10. If a subscript greater than the maximum specified isused, a"Subscr i pt
out of range" error occurs.

The maximum number of dimensionsfor an array is 255.

The minimum value for a subscript is aways 0, unless otherwise specified with the GPTI ON
BASE statement.

An array, once dimensioned, cannot be re-dimensioned within the program without first
executing a CLEAR or ERASE statement.

The DI Mstatement sets all the elements of the specified arraysto an initial value of zero.

Examples:

10 DI M A(20)

20 FOR | =0 TO 20
30 READ A(1)

40 NEXT |

This example reads 21 DATA statements el sewhere in the program and assigns their valuesto A
(0) through A(20), sequentially and inclusively. If the A array is single precision (default
accuracy) then line 10 will allocate 84 bytes of memory to this array (4 bytes times 21 elements).

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/DIM.html 28/03/2004 21.29.00

GW-BASIC User's Guide

OPTION BASE Statement

Purpose:

To declare the minimum value for array subscripts.

Syntax:
OPTI ON BASE n

Comments:
nislor 0. Thedefault baseisO.
If the statement OPTI ON BASE 1 isexecuted, the lowest value an array subscript can haveis 1.

An array subscript may never have a negative value.

OPTI ON BASE givesan error only if you change the base value. This allows chained programs to
have OPTI ON BASE statements as long as the value is not changed from the initial setting.

Note

Y ou must code the OPTI ON BASE statement before you can define or use any arrays. If an
attempt is made to change the option base value after any arrays arein use, an error results.

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/OPTIONBA SE.html 28/03/2004 21.29.01

GW-BASIC User's Guide

FI X Function

Purpose:

To truncate x to awhole number.

Syntax:
FI X(x)

Comments:

FI X does not round off numbers, it ssmply eliminates the decimal point and all charactersto the
right of the decimal point.

FI X(x) isequivalent to SG\(x) * I NT(ABS(x)) . The mgor difference between FI X and | NT is
that FI X does not return the next lower number for negative x.

FI X isuseful in modulus arithmetic.

Examples:
PRI NT FI X(58. 75)
58
PRI NT FI X(-58. 75)
- 58

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/FI X .html 28/03/2004 21.29.01

GW-BASIC User's Guide

LET Statement

Purpose:

To assign the value of an expression to avariable.

Syntax:

[LET] vari abl e=expressi on

Comments:

Theword LET isoptional; that is, the equal sign is sufficient when assigning an expression to a
variable name.

The LET statement is seldom used. It isincluded here to ensure compatibility with previous
versions of BASIC that require it.

When using LET, remember that the type of the variable and the type of the expression must
match. If they don't, a"Type m snat ch™ error occurs.

Example 1:

The following example lets you have downward compatibility with an older system. If this
downward compatibility is not required, use the second example, as it requires less memory.

110 LET D=12

120 LET E=1272
130 LET F=12"4
140 LET SUMFD+E+F

Example 2:

110 D=12

120 E=12"2
130 F=12"4
140 SUM=D+E+F

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/L ET.html| 28/03/2004 21.29.01

GW-BASIC User's Guide

DEF FN Statement

Purpose:

To define and name a function written by the user.

Syntax:

DEF FNnane[ar gunent s] expressi on

Comments:

name must be alegal variable name. This hame, preceded by FN, becomes the name of the
function.

ar gunent s consists of those variable names in the function definition that are to be replaced
when the function is called. Theitemsin thelist are separated by commas.

expr essi on isan expression that performs the operation of the function. It islimited to one
Statement.

Inthe DEF FN statement, arguments serve only to define the function; they do not affect program

variables that have the same name. A variable name used in afunction definition may or may not
appear in the argument. If it does, the value of the parameter is supplied when the function is
called. Otherwise, the current value of the variable is used.

The variables in the argument represent, on a one-to-one basis, the argument variables or values
that are to be given in the function call.

User-defined functions may be numeric or string. If atypeis specified in the function name, the
value of the expression isforced to that type before it is returned to the calling statement. If atype
Is specified in the function name and the argument type does not match, a"Type M smat ch"

error Occurs.

A user-defined function may be defined more than once in a program by repeating the DEF FN
Statement.

A DEF FN statement must be executed before the function it defines may be called. If afunction
is called before it has been defined, an "Undef i ned User Functi on" error occurs.

DEF FNisillegal in the direct mode.

Recursive functions are not supported in the DEF FN statement.

Examples:

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basic/DEFFN.html (1 of 2)28/03/2004 21.29.01

GW-BASIC User's Guide

400 R=1: S=2
410 DEF FNAB(X, Y)=X"3/YA2
420 T=FNAB(R, S)

Line 410 defines the user-defined function FNAB. The function is called in line 420. When
executed, the variable T will contain the value R3 divided by S2, or .25.

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basic/DEFFN.html (2 of 2)28/03/2004 21.29.01

GW-BASIC User's Guide

Chapter 5
Creating and Using Files

There are two types of filesin MS-DOS systems:

. Programfiles, which contain the program or instructions for the computer

. Data files, which contain information used or created by program files

5.1 Program File Commands

The following are the commands and statements most frequently used with program files. The
GW-BAS C User's Reference contains more information on each of them.

SAVE fil enane[, a] [, p]
Writes to diskette the program currently residing in memory.
LOAD fil enane[, r]

L oads the program from a diskette into memory. LOAD deletes the current contents of memory
and closes all files before loading the program.

RUN fil enane[, r]

L oads the program from a diskette into memory and runsit immediately. RUN del etes the current
contents of memory and closes al files before loading the program.

MERGE fil enane

L oads the program from a diskette into memory, but does not delete the current program already
in memory.

KILL fil enane
Deletes the file from a diskette. This command can also be used with data files.

NAME ol d fil enane AS new fil enane

Changes the name of a diskette file. Only the name of the file is changed. Thefile is not
modified, and it remains in the same space and position on the disk. This command can also be
used with datafiles.

5.2 DataFiles
GW-BASIC programs can work with two types of datafiles:

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ Chapter%6205.html (1 of 9)28/03/2004 21.29.02

GW-BASIC User's Guide
. Sequentid files

. Random accessfiles

Sequential files are easier to create than random access files, but are limited in flexibility and
speed when accessing data. Data written to a sequential fileis a series of ASCII characters. Data
is stored, one item after another (sequentially), in the order sent. Datais read back in the same

way.

Creating and accessing random access files requires more program steps than sequential files, but
random files require less room on the disk, because GW-BASIC stores them in a compressed
format in the form of a string.

The following sections discuss how to create and use these two types of datafiles.

5.2.1 Creating a Sequential File

The following statements and functions are used with sequential files:

CLCSE LOF

ECF OPEN

| NPUT# PRI NT#

LI NE | NPUT#PRI NT# USI NG
LOC UNL OCK

LOCK VWRI TE#

The following program steps are required to create a sequentia file and access the datain thefile:

1. Open thefilein output (O) mode. The current program will use thisfile first for output:
OPEN "O', #1, "fi | enanme”

2. Write datato the file using the PRI NT# or W\RI TE# statement:

PRI NT#1, A$
PRI NT#1, B$
PRI NT#1, C$

3. To accessthe datain thefile, you must close the file and reopen it in input (I) mode:
CLOSE #1
OPEN "I ", #1,"fil enanme
4. Usethel NPUT# or LI NE | NPUT# statement to read data from the sequential file into the
program:
| NPUT#1, X$, Y$, Z$

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ Chapter%205.html (2 of 9)28/03/2004 21.29.02

GW-BASIC User's Guide

Example 1 isashort program that creates a sequential file, data, from information input at the
terminal.

Example 1

10 OPEN "O', #1, " DATA"

20 | NPUT " NANME"; N$

30 | F N$="DONE" THEN END

40 | NPUT " DEPARTMENT" ; D$
50 | NPUT "DATE HI RED'; H$
60 PRI NT#1, N$;","D$","; H$

70 PRI NT: GOTO 20

RUN
NAME? M CKEY MOUSE
DEPARTMENT? AUDI O VI SUAL Al DS
DATE HI RED? 01/ 12/ 72
NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE H RED? 12/ 03/ 65
NAME? EBENEEZER SCROOGE
DEPARTMENT? ACCOUNTI NG
DATE HI RED? 04/27/78
NAME? SUPER MANN
DEPARTMENT? MAI NTENANCE
DATE HI RED? 08/ 16/ 78
NAME? DONE

K

5.2.2 Accessing a Sequential File

The program in Example 2 accesses the file data, created in the program in Example 1, and
displays the name of everyone hired in 1978.

Example 2

10 OPEN "I ", #1, " DATA"
20 | NPUT#1, N$, D$, H$
30 | F RIGHT$(HS$, 2) ="78" THEN PRI NT N$
40 GOTO 20
50 CLCSE #1

RUN

EBENEEZER SCROOGE

SUPER MANN

| nput past end in 20
Ck

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ Chapter%6205.html (3 of 9)28/03/2004 21.29.02

GW-BASIC User's Guide

The program in Example 2 reads, sequentially, every item in the file. When all the data has been
read, line 20 causesan "I nput past end" error. To avoid this error, insert line 15, which uses

the EOF function to test for end of file:
15 | F EOF(1) THEN END

and change line 40 to GOTO 15.

A program that creates a sequential file can also write formatted data to the diskette with the
PRI NT# USI NG statement. For example, the following statement could be used to write numeric

data to diskette without explicit delimiters:
PRI NT#1, USI NG'####. ##,"; A, B, C, D

The comma at the end of the format string serves to separate the items in the disk file.

The LOC function, when used with a sequentia file, returns the number of 128-byte records that
have been written to or read from the file since it was opened.

5.2.3 Adding Data to a Sequential File

When a sequential fileis opened in O mode, the current contents are destroyed. To add datato an
existing file without destroying its contents, open the file in append (A) mode.

The program in Example 3 can be used to create, or to add onto afile called names. This program
illustratesthe use of LI NE | NPUT. LI NE | NPUT will read in characters until it sees a carriage

return indicator, or until it has read 255 characters. It does not stop at quotation marks or commas.

Example 3

10 ON ERROR GOTO 2000

20 OPEN "A", #1, "NAMES'

110 REM ADD NEW ENTRI ES TO FI LE
120 | NPUT "NAME"; N$

130 I F N$="" THEN 200 " CARRI ACE RETURN EXI TS | NPUT LOOP
140 LI NE | NPUT "ADDRESS? "; A$
150 LI NE I NPUT "BI RTHDAY? "; B$
160 PRI NT#1, N$

170 PRI NT#1, A$

180 PRI NT#1, B$

190 PRINT: GOTO 120

200 CLGCSE #1

2000 ON ERROR GOTO 0O

In lines 10 and 2000 the ON ERROR GOTO statement is being used. This statement enables error
trapping and specifies the first line (2000) of the error handling subroutine. Line 10 enables the

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ Chapter%205.html (4 of 9)28/03/2004 21.29.02

GW-BASIC User's Guide

error handling routine. Line 2000 disables the error handling routine and is the point where GW-
BASIC branchesto print the error messages.

5.3 Random Access Files

Information in random access filesis stored and accessed in distinct, numbered units called
records. Since the information is called by number, the data can be called from any disk location;
the program needn't read the entire disk, as when seeking sequential files, to locate data. GW-
BASIC supports large random files. The maximum logical record number is 232 -1,

The following statements and functions are used with random files:
CLOSEFI ELD MKI $

CvD LOC VKS$
Cvl LOCK OPEN
CVS LOF PUT
EOF LSET/ RSETUNLOCK
ET VKD$

5.3.1 Creating a Random Access File

The following program steps are required to create arandom datafile:

1. Open thefile for random access (R) mode. The following example specifies arecord length
of 32 bytes. If the record length is omitted, the default is 128 bytes.

OPEN "R', #1, "filenane", 32

2. Usethe FI ELD statement to allocate space in the random buffer for the variables that will
be written to the random file:

FI ELD#1, 20 AS N$, 4 AS A3, 8 AS P$

In this example, the first 20 positions (bytes) in the random file buffer are allocated to the
string variable N$. The next 4 positions are allocated to A$; the next 8 to P$.

3. Use LSET or RSET to move the data into the random buffer fields in left- or right-justified

format (L=left SET;R=right SET). Numeric values must be made into strings when placed
in the buffer. MKI $ converts an integer value into a string; MKS$ converts asingle-

precision value, and VKD$ converts a double-precision value.

LSET N$=X$
LSET A$=NKS$(AMT)
LSET P$=TEL$

4. Write the data from the buffer to the diskette using the PUT statement:

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ Chapter%6205.html (5 of 9)28/03/2004 21.29.02

GW-BASIC User's Guide

PUT #1, CODE%

The program in Example 4 takes information keyed as input at the terminal and writesit to a
random access data file. Each time the PUT statement is executed, arecord is written to the file.

In the example, the 2-digit CODE%input in line 30 becomes the record number.

Note

Do not use afielded string variable in an | NPUT or LET statement. This causes the pointer for that
variable to point into string space instead of the random file buffer.

Example 4

10 OPEN "R', #1, "INFOFILE", 32
20 FIELD#1, 20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-DIGI T CODE"; CODE%

40 1 NPUT "NAME"; X$

50 | NPUT "AMOUNT"; AMT

60 | NPUT "PHONE"; TEL$: PRINT

70 LSET N$=X$

80 LSET A$=MKS$(AMT)

90 LSET P$=TEL$

100 PUT #1, CODE%

110 GOTO 30

5.3.2 Accessing a Random Access File

The following program steps are required to access arandom file:

1. Open thefilein R mode:
OPEN "R', #1, "filename", 32

2. Usethe FI ELD statement to allocate space in the random buffer for the variables that will
be read from the file:
FI ELD, #1, 20 AS N$, 4 AS A3, 8 AS P$

In this example, the first 20 positions (bytes) in the random file buffer are allocated to the
string variable N$. The next 4 positions are allocated to A$; the next 8 to P$.

Note

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ Chapter%6205.html (6 of 9)28/03/2004 21.29.02

GW-BASIC User's Guide

In a program that performs both | NPUT and OUTPUT on the same random file, you can
often use just one OPEN statement and one FI ELD statement.

3. Usethe GET statement to move the desired record into the random buffer.
GET #1, CODE%

The data in the buffer can now be accessed by the program.

4. Convert numeric values back to numbers using the convert functions: CvI for integers,
CVSs for single-precision values, and CVD for double-precision values.

PRI NT N$
PRI NT CVS(A$)

The program in Example 5 accesses the random file, infofile, that was created in Example 4. By
inputting the 3-digit code, the information associated with that code is read from the file and

displayed.

Example 5

10 OPEN "R", #1, "I NFOFI LE", 32

20 FIELD #1, 20 AS N$, 4 AS A3, 8 AS P$
30 INPUT "2-DI A T CODE"; CODE%

40 CGET #1, CODE%

50 PRI NT N$

60 PRI NT USI NG " $$###. ##" ; CVS(AD)

70 PRI NT P$: PRI NT

80 GOTO 30

With random files, the LOC function returns the current record number. The current record
number is the last record number used in a GET or PUT statement. For example, the following line
ends program execution if the current record number in file#l is higher than 99:

| F LOC(1) >99 THEN END

Example 6 is an inventory program that illustrates random file access. In this program, the record
number is used as the part number, and it is assumed that the inventory will contain no more than
100 different part numbers.

Lines 900-960 initialize the data file by writing CHR$(255) asthe first character of each record.
Thisisused later (line 270 and line 500) to determine whether an entry already exists for that part

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ Chapter%6205.html (7 of 9)28/03/2004 21.29.02

GW-BASIC User's Guide

number.

Lines 130-220 display the different inventory functions that the program performs. When you
type in the desired function number, line 230 branches to the appropriate subroutine.

Example 6

120
125
130
135
140
150
160
170
180
220
225

OPEN'R", #1, "1 NVEN. DAT", 39

FIELD#1,1 AS F$,30 AS D$, 2 AS (5,2 AS R$, 4 AS P$
PRI NT: PRI NT " FUNCTI ONS: " : PRI NT

PRINT 1,"I NI TI ALl ZE FI LE"

PRI NT 2," CREATE A NEW ENTRY"

PRI NT 3, " DI SPLAY | NVENTORY FOR ONE PART"

PRI NT 4,"ADD TO STOCK"

PRI NT 5, " SUBTRACT FROM STOCK"

PRI NT 6, " DI SPLAY ALL | TEM5 BELOW REORDER LEVEL"
PRI NT: PRI NT: | NPUT" FUNCTI ON"; FUNCTI ON

| F (FUNCTI ON<1) OR(FUNCTI ON>6) THEN PRI NT " BAD FUNCTI ON NUMBER':

GOT0O 130

230
240
250
260
270

ON FUNCTI ON GOsuB 900, 250, 390, 480, 560, 680

GQOTO 220

REM BUI LD NEW ENTRY

GOsuUB 840

| F ASC(F$) < > 255 THEN I NPUT"OVERWRI TE"; A$: IF A$ < > "Y" THEN

RETURN

280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470

LSET F$=CHR$(0)

| NPUT " DESCRI PTI ON' ; DESC$

LSET D$=DESC$

| NPUT " QUANTI TY I N STOCK": Q%

LSET Q8=MKI $()

| NPUT " REORDER LEVEL"; R%

LSET R$=MKI $(R%

I NPUT "UNIT PRICE"; P

LSET P$=MKS$(P)

PUT#1, PART%

RETURN

REM DI SPLAY ENTRY

GOSUB 840

| F ASC(F$) =255 THEN PRI NT "NULL ENTRY": RETURN
PRI NT USI NG " PART NUVBER ###"; PART%

PRI NT D$

PRI NT USI NG " QUANTI TY ON HAND #####": CVI (Q8)
PRI NT USI NG "REORDER LEVEL #####": CVI (R$)
PRINT USI NG "UNI T PRI CE $$##. ##"; CVS(P$)
RETURN

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ Chapter%205.html (8 of 9)28/03/2004 21.29.02

GW-BASIC User's Guide

480 REM ADD TO STOCK

490 GOSUB 840

500 | F ASC(F$) =255 THEN PRI NT "NULL ENTRY": RETURN

510 PRI NT D$: | NPUT "QUANTI TY TO ADD'; A%

520 QUECVI (QB) +A%

530 LSET QB=MKI $(%

540 PUT#1, PART%

550 RETURN

560 REM REMOVE FROM STOCK

570 GOSUB 840

580 | F ASC(F$) =255 THEN PRI NT "NULL ENTRY": RETURN

590 PRI NT D$

600 | NPUT " QUANTI TY TO SUBTRACT"; S%

610 Q%=CVI ()

620 | F (Q% S% <0 THEN PRI NT "ONLY": Q% "IN STOCK" : GOTO 600
630 QEQH S%

640 |F Q% < CVI(R$) THEN PRI NT "QUANTI TY NOW ; Q% " REORDER LEVEL": CVI
(R$)

650 LSET QB=MKI $(%

660 PUT#1, PART%

670 RETURN

680 REM DI SPLAY | TEVMS BELOW REORDER LEVEL4

690 FOR | =1 TO 100

710 GET#1, |

720 1F CVI (@) <CVI (R$) THEN PRI NT D$; " QUANTI TY": CVI (Q§) TAB(50)
" REORDER LEVEL": CVI (R$)

730 NEXT |

740 RETURN

840 | NPUT "PART NUVBER'; PART%

850 | F(PART% < 1) OR(PART% > 100) THEN PRI NT "BAD PART NUVBER': GOTO
840 ELSE GET#1, PART% RETURN

890 END

900 REM I NI TI ALI ZE FI LE

910 I NPUT "ARE YOU SURE";B$:IF B$ < > "Y' THEN RETURN

920 LSET F$=CHR$(255)

930 FOR | =1 TO 100

940 PUT#1, |

950 NEXT |

960 RETURN

file:///C)/Documents¥%20and%20Setti ngs/L orenzo/Desktop/ GW%20Basi ¢/ Chapter%205.html (9 of 9)28/03/2004 21.29.02

GW-BASIC User's Guide

Appendix A
Error Codesand M essages

Code Message

1

NEXT wi t hout FOR

NEXT statement does not have a corresponding FOR statement. Check variable at FOR

statement for a match with the NEXT statement variable.
Syntax error

A lineis encountered that contains an incorrect sequence of characters (such as unmatched
parentheses, a misspelled command or statement, incorrect punctuation). This error causes

GW-BASIC to display the incorrect line in edit mode.
RETURN w t hout GOSUB

A RETURN statement is encountered for which there is no previous GOSUB statement.
Qut of DATA

A READ statement is executed when there are no DATA statements with unread data

remaining in the program.
Il egal function call

An out-of-range parameter is passed to a math or string function. Anillegal function call
error may also occur as the result of:

.« anegative or unreasonably large subscript

« anegative or zero argument with LOG

« anegative argument to SQR

« anegative mantissa with a noninteger power

. acall toaUSR function for which the starting address has not yet been given

. animproper argument to M D$, LEFTS$, RI GHTS$, | NP, OUT, WAI T, PEEK, POKE,
TAB, SPC, STRI NG$, SPACE$, | NSTR, or ON. . . GOTO

Overfl ow

The result of acalculation istoo large to be represented in GW-BASIC's number format. If

underflow occurs, the result is zero, and execution continues without an error.
Qut of nenory

A program istoo large, has too many FOR loops, GOSUBS, variables, or expressions that are
too complicated. Use the CLEAR statement to set aside more stack space or memory area.

file:///C)/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/A ppendix%20A.html (1 of 7)28/03/2004 21.29.03

GW-BASIC User's Guide

8

10

11

12

13

14

15

16

17

Undefi ned |ine nunber

A linereferencein aGOTO, GOSUB, | F- THEN. . . ELSE, or DELETE is anonexistent line.
Subscri pt out of range

An array element is referenced either with a subscript that is outside the dimensions of the

array, or with the wrong number of subscripts.
Duplicate Definition

Two DI Mstatements are given for the same array, or a DI Mstatement is given for an array

after the default dimension of 10 has been established for that array.
D vision by zero

A division by zero is encountered in an expression, or the operation of involution resultsin
zero being raised to a negative power. Machine infinity with the sign of the numerator is
supplied as the result of the division, or positive machine infinity is supplied as the result

of the involution, and execution continues.
1l egal direct

A statement that isillegal in direct mode is entered as a direct mode command.
Type m smat ch

A string variable name is assigned a numeric value or vice versa; afunction that expects a

numeric argument is given a string argument or vice versa.
Qut of string space

String variables have caused GW-BASIC to exceed the amount of free memory remaining.

GW-BASIC allocates string space dynamically until it runs out of memory.
String too | ong

An attempt is made to create a string more than 255 characters long.
String fornmula too conpl ex

A string expression is too long or too complex. Break the expression into smaller
expressions.

Can't conti nue

An attempt is made to continue a program that

. Has halted because of an error
. Has been modified during a break in execution

. Doesnot exist

file:///C)/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/A ppendix%20A..html (2 of 7)28/03/2004 21.29.03

GW-BASIC User's Guide

18

19

20

21

22

23

24

25

26

27

28

29

30

Undefi ned user function

A USR function is called before the function definition (DEF statement) is given.
No RESUME

An error-trapping routine is entered but contains no RESUME statement.
RESUME wi t hout error

A RESUME statement is encountered before an error-trapping routine is entered.

Unpri ntabl e error

No error message is available for the existing error condition. Thisis usually caused by an
error with an undefined error code.

M ssi ng oper and

An expression contains an operator with no operand following it.
Li ne buffer overflow

An attempt is made to input a line that has too many characters.
Devi ce Ti neout

GW-BASIC did not receive information from an 1/O device within a predetermined
amount of time.

Devi ce Fault

Indicates a hardware error in the printer or interface card.
FOR Wt hout NEXT

A FOR was encountered without a matching NEXT.

Qut of Paper

The printer is out of paper; or, aprinter fault.
Unpri ntabl e error

No error message is available for the existing error condition. Thisisusually caused by an
error with an undefined error code.

VH LE wi t hout V\END

A VH LE statement does not have a matching V\END.
VEEND wi t hout WHI LE

A VIEEND was encountered without a matching WHI LE.

file:///C)/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/A ppendix%20A..html (3 of 7)28/03/2004 21.29.03

GW-BASIC User's Guide

31-49Unprintabl e error

50

51

52

53

54

55

56

57

58

No error message is available for the existing error condition. Thisis usually caused by an
error with an undefined error code.

FI ELD over fl ow

A Fl ELD statement is attempting to allocate more bytes than were specified for the record
length of arandom file.

I nternal error

An internal malfunction has occurred in GW-BASIC. Report to your dealer the conditions
under which the message appeared.

Bad file nunber

A statement or command references afile with afile number that is not open or is out of
range of file numbers specified at initialization.

File not found

A LOAD, KI LL, NAME, FI LES, or OPEN statement references afile that does not exist on
the current diskette.

Bad file node

An attempt is made to use PUT, GET, or LO- with a sequential file, to LOAD arandom file,
or to execute an OPEN with afile mode other than | , O, A, or R.

File already open

A sequentia output mode OPEN isissued for afile that is already open, or aKl LL isgiven
for afilethat is open.

Unpri ntabl e error

An error message is not available for the error condition which exists. Thisis usually
caused by an error with an undefined error code.

Device 1/ O Error

Usually adisk I/O error, but generalized to include all 1/0 devices. It isafatal error; that
IS, the operating system cannot recover from the error.

File already exists

The filename specified in a NAVE statement isidentical to afilename already in use on the
diskette.

file:///C)/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/A ppendix%20A..html (4 of 7)28/03/2004 21.29.03

GW-BASIC User's Guide

59- 60Unpri ntabl e error

61

62

63

64

65

66

67

68

No error message is available for the existing error condition. Thisis usually caused by an
error with an undefined error code.

Di sk full

All disk storage spaceisin use.
| nput past end

An | NPUT statement is executed after all the datain the file has been input, or for a null
(empty) file. To avoid this error, use the EOF function to detect the end of file.

Bad record nunber

InaPUT or GET statement, the record number is either greater than the maximum allowed
(16,777,215) or equal to zero.

Bad fil enane

Anillegal formisused for the filename with LOAD, SAVE, Kl LL, or OPEN; for example, a
filename with too many characters.

Unpri ntabl e error

No error message is available for the existing error condition. Thisis usually caused by an
error with an undefined error code.

Direct statenent in file

A direct statement is encountered while loading a ASCII-format file. The LOAD s
terminated.

Too many files

An attempt is made to create a new file (using SAVE or OPEN) when all directory entries
are full or the file specifications are invalid.

Devi ce Unavai |l abl e

An attempt is made to open afile to a nonexistent device. It may be that hardware does not
exist to support the device, such aspt2: or Ipt3:, or isdisabled by the user. This occursiif
an OPEN "COM1.: statement is executed but the user disables RS-232 support with the /c:
switch directive on the command line.

file:///C)/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/A ppendix%20A..html (5 of 7)28/03/2004 21.29.03

GW-BASIC User's Guide

69 Communi cati on buffer overfl ow

Occurs when a communications input statement is executed, but the input queue is already
full. Usean ON ERROR GOTO statement to retry the input when this condition occurs.

Subsequent inputs attempt to clear this fault unless characters continue to be received
faster than the program can process them. In this case several options are available:

. Increase the size of the COM receive buffer with the/ c: switch.

« Implement a hand-shaking protocol with the host/satellite (such as: XON/XOFF, as
demonstrated in the TTY programming example) to turn transmit off long enough
to catch up.

. Usealower baud rate for transmit and receive.

70 Per m ssi on Deni ed

This is one of three hard disk errors returned from the diskette controller.

. An attempt has been made to write onto a diskette that is write protected.
« Another process has attempted to access afile aready in use.
. The UNLOCK range specified does not match the preceding L OCK statement.

71 D sk not Ready

Occurs when the diskette drive door is open or a diskette is not in the drive. Use an ON
ERROR GOTO statement to recover.

72 Di sk nedia error
Occurs when the diskette controller detects a hardware or mediafault. Thisusualy

indicates damaged media. Copy any existing files to a new diskette, and reformat the
damaged diskette. FORMVAT maps the bad tracks in the file allocation table. The remainder

of the diskette is now usable.
73 Advanced Feat ure

An attempt was made to use areserved word that is not available in this version of GW-
BASIC.

74 Renane across di sks

Occurs when an attempt is made to rename afile to a new name declared to be on adisk
other than the disk specified for the old name. The naming operation is not performed.

file:///C)/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/A ppendix%20A..html (6 of 7)28/03/2004 21.29.03

GW-BASIC User's Guide

75 Pat h/ Fil e Access Error

During an OPEN, MKDI R, CHDI R, or RVDI R operation, MS-DOS is unable to make a
correct path-to-filename connection. The operation is not completed.

76 Pat h not found

During an OPEN, MKDI R, CHDI R, or RVDI R operation, MS-DOS is unable to find the path
specified. The operation is not completed.

file:///C)/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/A ppendix%20A..html (7 of 7)28/03/2004 21.29.03

GW-BASIC User's Guide

Appendix B

M athematical Functions
Mathematical functions not intrinsic to GW-BASIC can be calculated as follows:

Function

Secant

Cosecant

Cotangent

Inverse Sine

Inverse Cosine

Inverse Secant

Inverse Cosecant

Inverse Cotangent
Hyperbolic Sine
Hyperbolic Cosine
Hyperbolic Tangent
Hyperbolic Secant
Hyperbolic Cosecant
Hyperbolic Cotangent
Inverse Hyperbolic Sine
Inverse Hyperbolic Cosine
Inverse Hyperbolic Tangent
Inverse Hyperbolic Cosecant
Inverse Hyperbolic Secant
Inverse Hyperbolic Cotangent

GW-BASIC Equivalent

SEC(X) =1/ COS(X)

CSC(X) =1/ SI N(X)

COT(X) =1/ TAN(X)

ARCSI N(X) =ATN(X/ SQR(- X* X+1))

ARCCOS(X) =ATN (X/ SQR(- X*X+1))+ PI/2
ARCSEC(X) =ATN(X/ SQR(X* X- 1)) +SGN(SGN(X) - 1) * PI /2
ARCCSC(X) =ATN(X/ SQR(X* X- 1)) +SGN(X) - 1) * Pl / 2
ARCCOT(X) =ATN(X) + Pl /2

SI NH(X) =(EXP(X) - EXP(- X))/ 2

COSH(X) =(EXP(X) +EXP(- X))/ 2

TANH(X) =EXP(X) - EXP(- X)) / +(EXP(X) +EXP(- X))
SECH(X) =2/ (EXP(X) +EXP(- X))

CSCH(X) =2/ (EXP(X) - EXP(- X))

COTH(X) =EXP(- X) / (EXP(X) - EXP(- X)) *2+1
ARCSI NH(X) =LOG(X/ SQR(X* X+1))

ARCCOSH(X) =LOG(X+SQR(X* X- 1))

ARCTANH(X) =LOG((1+X)/ (1- X))/ 2

ARCCSCH(X) =LOG(SA\(X) * SOR(X* X+1) +1) / X
ARCSECH(X) =LOG(SQR(- X* X+1) +1) / X

ARCCOTH(X) =LOG((X+1)/ (X-1))/ 2

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ A ppendix%20B.html 28/03/2004 21.29.04

GW-BASIC User's Guide

Appendix C
ASCII| Character Codes

Dec Oct Hex Chr Dec Oct Hex Chr
000 000 00 NUL 032 040 20 SP
001 001 01 SOH 033 041 21 !
002 002 02 STX 034 042 22 "
003 003 03 ETX 035 043 23 #
004 004 04 EOT 036 044 24 $
005 005 05 ENQ 037 045 25 %
006 006 06 ACK 038 046 26 &
007 007 07 BEL 039 047 27 '
008 010 08 BS 040 050 28 (
009 011 09 HT 041 051 29)
010 012 OA LF 042 052 2A *
011 013 OB VT 043 053 2B +
012 014 oOC FF 044 054 2C ,
013 015 0D CR 045 055 2D -
014 016 OE SO 046 056 2E .
015 017 OF S 047 057 2F /
016 020 10 DLE 048 060 30 0
017 021 11 DC1 049 061 31 1
018 022 12 DC2 050 062 32 2
019 023 13 DC3 051 063 33 3
020 024 14 DC4 052 064 34 4
021 025 15 NAK 053 065 35 5
022 026 16 SYN 054 066 36 6
023 027 17 ETB 055 067 37 7
024 030 18 CAN 056 070 38 8
025 031 19 EM 057 071 39 9
026 032 1A SUB 058 072 3A :
027 033 1B ESC 059 073 3B)
028 034 1C FS 060 074 3C <
029 035 1D GS 061 075 3D =
030 036 1E RS 062 076 3E >
031 037 1F us 063 077 3F ?

Dec Oct Hex Chr Dec Oct Hex Chr
064 100 40 @ 096 140 60)

file:///CJ/Documents¥20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ A ppendix%20C.html (1 of 2)28/03/2004 21.29.04

GW-BASIC User's Guide

065 101 41 097 141 61

066 102 42 098 142 62
067 103 43 09 143 63
068 104 44 100 144 o4
069 105 45 101 145 65

070 106 46
071 107 47
072 110 48
073 111 49
074 112 4A
075 113 4B
076 114 4C
077 115 4D
078 116 4E
079 117 4F
080 120 50
081 121 51
082 122 52
083 123 53
084 124 54
085 125 55
086 126 56
087 127 57
088 130 58
089 131 59
090 132 5A
091 133 5B
092 134 5C
093 135 5D 125 175 7D
094 136 5E 126 176 7E
095 137 5F 127 177 TF
Dec=Decimal, Oct= Octal Hex=Hexadecimal (H), Chr=Character,
LF=Line feed, FF=Form feed, CR=Carriage return, DEL=Rubout

102 146 66
103 147 67
104 150 68
105 151 69
106 152 6A
10/ 153 6B
108 154 6C
109 155 6D
110 156 ©6E
111 157 6F
112 160 70
113 161 71
114 162 72
115 163 73
116 164 74
117 165 75
118 166 76
119 167 77
120 1/0 78
121 171 79
122 172 7A
123 173 7B
124 174 7C

P TN Xs<CH0ITXTOTOZZIr"«e~"ITOTMOO®>
!N Xs<c~"0W-"0TO>S3 X" ~"5JQ+T0DQ0oTw

EL

file:///CJ/Documents¥20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ A ppendix%20C.html (2 of 2)28/03/2004 21.29.04

GW-BASIC User's Guide

Appendix D
Assembly Language (M achine Code) Subroutines
This appendix iswritten primarily for users experienced in assembly language programming.

GW-BASIC lets you interface with assembly language subroutines by using the USR function and
the CALL statement.

The USR function allows assembly language subroutinesto be called in the same way GW-
BASIC intrinsic functions are called. However, the CALL statement is recommended for
interfacing machine language programs with GW-BASIC. The CALL statement is compatible
with more languages than the USR function call, produces more readable source code, and can
pass multiple arguments.

D.1 Memory Allocation

Memory space must be set aside for an assembly language (or machine code) subroutine before it
can be loaded. There are three recommended ways to set aside space for assembly language
routines:

. Specify an array and use VARPTR to locate the start of the array before every access.

« Usethe/ mswitch in the command line. Get GW-BASIC's Data segment (DS), and add the
size of DS to reference the reserved space above the data segment.

. Execute a.COM file that stays resident, and store a pointer to it in an unused interrupt
vector location.

. There are three recommended ways to load assembly language routines:

. BLOADthefile. Use DEBUG to load in an .EXE file that isin high memory, run GW-
BASIC, and BSAVE the .EXE file.

. Executea.COM filethat contains the routines. Save the pointer to these routines in unused
interrupt-vector locations, so that your application in GW-BASIC can get the pointer and
use the routine(s).

. Place theroutine into the specified area.
If, when an assembly language subroutine is called, more stack space is needed, GW-BASIC

stack space can be saved, and a new stack set up for use by the assembly language subroutine.
The GW-BASIC stack space must be restored, however, before returning from the subroutine.

file:///CJ/Documents¥20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ A ppendix%20D.html (1 of 8)28/03/2004 21.29.05

GW-BASIC User's Guide

D.2 CALL Statement

CALL vari abl enanme[(argunent s) |

var i abl ename contains the offset in the current segment of the subroutine being called.

ar gunment s are the variables or constants, separated by commas, that are to be passed to the
routine,

For each parameter in ar gunent s, the 2-byte offset of the parameter's location within the data
segment (DYS) is pushed onto the stack.

The GW-BASIC return address code segment (CS), and offset (IP) are pushed onto the stack.

A long call to the segment address given in the last DEF SEG statement and the offset givenin
var i abl enanme transfers control to the user's routine.

The stack segment (SS), data segment (DS), extra segment (ES), and the stack pointer (SP) must
be preserved.

Figure D.1 shows the state of the stack at the time of the CALL statement:
Figure 1

Figure D.1 Stack Layout When the CALL Statement is Activated not shown

The user's routine now has control. Parameters may be referenced by moving the stack pointer
(SP) to the base pointer (BP) and adding a positive offset to BP.

Upon entry, the segment registers DS, ES, and SS all point to the address of the segment that
contains the GW-BASIC interpreter code. The code segment register CS contains the latest value
supplied by DEF SEG. If no DEF SEG has been specified, it then points to the same address as
DS, ES, and SS (the default DEF SEG).

Figure D.2 shows the condition of the stack during execution of the called subroutine:
Figure 2

Figure D.2 Stack Layout During Execution of a CALL Statement not shown
The following seven rules must be observed when coding a subroutine:

1. The called routine may destroy the contents of the AX, BX, CX, DX, S, DI, and BP
registers. They do not require restoration upon return to GW-BASIC. However, al
segment registers and the stack pointer must be restored. Good programming practice
dictates that interrupts enabled or disabled be restored to the state observed upon entry.

2. The called program must know the number and length of the parame- ters passed.
References to parameters are positive offsets added to BP, assuming the called routine

file:///CJ/Documents¥20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ A ppendix%20D.html (2 of 8)28/03/2004 21.29.05

GW-BASIC User's Guide

moved the current stack pointer into BP, that is, MOV BP, SP. When 3 parameters are
passed, the location of PO isat BP+10, Pl isat BP+8, and P2 is at BP+6.

3. Thecalled routine must do aRETURN n (n istwo times the number of parametersin the

argument list) to adjust the stack to the start of the calling sequence. Also, programs must
be defined by a PROC FAR statement.

4. Vauesare returned to GW-BASIC by including in the argument list the variable name that
receives the result.

5. If the argument is a string, the parameter offset points to three bytes called the string
descriptor. Byte O of the string descriptor contains the length of the string (0 to 255). Bytes
1 and 2, respectively, are the lower and upper eight bits of the string starting address in
string space.

Note

The called routine must not change the contents of any of the three bytes of the string
descriptor.

6. Strings may be atered by user routines, but their length must not be changed. GW-BASIC
cannot correctly manipulate stringsif their lengths are modified by external routines.

7. If theargument isastring literal in the program, the string descriptor points to program
text. Be careful not to alter or destroy your program this way. To avoid unpredictable
results, add +" " to the string literal in the program. For example, the following line forces

the string literal to be copied into string space allocated outside of program memory space:
20 A$="BASI C'+""

The string can then be modified without affecting the program.

Examples:

100 DEF SEG=&H2000
110 ACC=&HT7FA
120 CALL ACC(A, B$, O

Line 100 sets the segment to 2000 hex. The value of variable ACC is added into the address as
the low word after the DEF SEGvalueisleft-shifted four bits (thisis afunction of the
microprocessor, not of GW-BASIC). Here, ACC is set to & H7FA, so that the call to ACC

file:///C)/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/A ppendix%20D.html (3 of 8)28/03/2004 21.29.05

GW-BASIC User's Guide

executes the subroutine at location 2000: 7FA hex.

Upon entry, only 16 bytes (eight words) remain available within the allocated stack space. If the
called program requires additional stack space, then the user program must reset the stack pointer
to anew alocated space. Be sure to restore the stack pointer adjusted to the start of the calling
sequence on return to GW-BASIC.

The following assembly language sequence demonstrates access of the parameters passed and
storage of areturn result in the variable C.

Note

The called program must know the variable type for numeric parameters passed. In these
examples, the following instruction copies only two bytes:

MOVSW

Thisisadequate if variables A and C are integer. It would be necessary to copy four bytesif they
were single precision, or copy eight bytesif they were double precision.

MOV BP, SP Gets the current stack position in BP

MOV BX, 8[BP] Getsthe address of B$ description

MOV CL, [BX] Getsthelength of B$in CL

MOV DX, 1[BX] Getsthe address of B$ string descriptor in DX
MOV S, 10[BP] Gets the addressof A in Sl

MOV DI, 6] BP] Gets the pointer to C in DI

MOVSW Stores variable A in'C'

RET 6 Restores stack; returns

D.3 USR Function Calls
Although the CALL statement is the recommended way of calling assembly language subroutines,

the USR function call is till available for compatibility with previously-written programs.

Syntax:
USR] n] (ar gunent)

n isanumber from 0 to 9 which specifies the USR routine being called (see DEF USR statement).
If n isomitted, USRO is assumed.

ar gument isany numeric or string expression.
In GW-BASIC aDEF SEG statement should be executed prior to a USR function call to ensure

file:///C)/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/A ppendix%20D.html (4 of 8)28/03/2004 21.29.05

GW-BASIC User's Guide

that the code segment points to the subroutine being called. The segment address given in the
DEF SEG statement determines the starting segment of the subroutine.

For each USR function call, a corresponding DEF USR statement must have been executed to
define the USR function call offset. This offset and the currently active DEF SEG address
determine the starting address of the subroutine.

When the USR function call is made, register AL contains the number type flag (NTF), which
specifies the type of argument given. The NTF value may be one of the following:

NTF ValueSpecifies

2 atwo-byte integer (two's complement format)
3 astring

4 a single-precision floating point number

8 a double-precision floating point number

If the argument of a USR function call isanumber (AL<>73), the value of the argument is placed
in the floating-point accumulator (FAC). The FAC is 8 byteslong and isin the GW-BASIC data
segment. Register BX will point at the fifth byte of the FAC. Figure D.3 shows the representation
of all the GW-BASIC number typesin the FAC:

Figure 3

Figure D.3 Number Typesin the Floating Point Accumulator not shown

If the argument is a single-precision floating-point number:

. BX+3isthe exponent, minus 128. The binary point isto the left of the most significant bit
of the mantissa

. BX+2 contains the highest seven bits of mantissawith leading 1 suppressed (implied). Bit
7 isthe sign of the number (O=positive, 1=negative).

. BX+1 contains the middle 8 hits of the mantissa.

. BX+0 contains the lowest 8 hits of the mantissa.
If the argument is an integer:

. BX+1 contains the upper eight bits of the argument.

. BX+0 containsthe lower eight bits of the argument.
If the argument is a double-precision floating-point number:

. BX+0 through BX+3 are the same as for single precision floating point.

file:///CJ/Documents¥20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ A ppendix%20D.html (5 of 8)28/03/2004 21.29.05

GW-BASIC User's Guide

. BX-1to BX-4 contain four more bytes of mantissa. BX-4 contains the lowest eight bits of
the mantissa.

If the argument is astring (indicated by the value 3 stored in the AL register) the (DX) register
pair points to three bytes called the string descriptor. Byte O of the string descriptor contains the
length of the string (0 to 255). Bytes 1 and 2, respectively, are the lower- and upper-eight bits of
the string starting address in the GW-BA SIC data segment.

If the argument is a string literal in the program, the string descriptor points to program text. Be
careful not to alter or destroy programs thisway (see the preceding CALL statement).

Usually, the value returned by a USR function call is the same type (integer, string, single

precision, or double precision) as the argument that was passed to it. The registers that must be
preserved are the same asin the CALL statement.

A far returnisrequired to exit the USR subroutine. The returned value must be stored in the FAC.

D.4 Programs That Call Assembly L anguage Programs

This section contains two sample GW-BASIC programs that

. load an assembly language routine to add two numbers together
« return the sum into memory

« remain resident in memory

The code segment and offset to the first routine is stored in interrupt vector at 0:100H.
Example 1 calls an assembly language subroutine:

Example 1

10 DEF SEG=0

100 CS=PEEK(&H102) +PEEK(&H103) * 256

200 OFFSET=PEEK(&H100) +PEEK(&H101) * 256
250 DEF SEG

300 Cl%2: C2%3: C3%:0

400 TWOSUMEOFFSET

500 DEF SEG=CS

600 CALL TWOSUM Cl% C2% C3%

700 PRI NT C3%

800 END

The assembly language subroutine called in the above program must be assembled, linked, and

file:///C)/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/A ppendix%20D.html (6 of 8)28/03/2004 21.29.05

GW-BASIC User's Guide

converted to a.COM file. The program, when executed prior to the running of the GW-BASIC
program, will remain in memory until the system power is turned off, or the system is rebooted.

0100
0100

0100
0103
0103
0104
0106
0109
010B
010E
0110
0113
0115
0l16
0119

0119
0119
011C
011E
0121
0125
0127
012A
012C
012F
0131
0133
0136
0137
0138
013B
013D
013D
013F
013F

EB

55
8B
8B
8B
8B
03
8B
89
5D
ca

17 90

EC
76 08
04
76 OA
04
7E 06
05

00 06

00 00

01 00

/F 02 0

16
3F 00
11
01 03
07
c8
47 02

0141 R
27

20

org 100H

doubl e segnent
assunme cs: doubl e
start: jnp startl
usrprg proc far

push bp

nmov bp, sp

nov si, [bp] +8 ; get address of paraneter b
nov ax, [si | ;get value of b

mov si, [bp] +10 ;get address of paraneter a
add ax, [si] ;add value of a to value of b
nov di, [bp] +6 ; get address of paraneter c
nov di, ax ;store sumin paraneter c

pop bp

ret 6

usrprg endp
Programto put procedure in
;menory and remain resident. The
;offset and segnent are stored
;in location 100-103H.

start1:

nmov ax, 0

nov ds, ax ; data segnent to OOOOH

nov bx, 0100H ;pointer to int vector 100H

cnp word ptr [bx],O0

jne quit ; program al ready run, exit

cnp word ptr2 [bx],0

jne quit ; program al ready run exit

nov ax, of fset usrprg

nmov [bx], ax ; program of f set

nov ax, Ccs

nov [bx+2], ax ; data segnent

push cs

pop ds

nmov dx, of fset veryend

int 27h

qui t:

I nt 20h

veryend:

doubl e ends

end start

file:///C)/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/A ppendix%20D.html (7 of 8)28/03/2004 21.29.05

GW-BASIC User's Guide

Example 2 places the assembly language subroutine in the specified area:

Example 2

10 1=0:JC=0
100 DI M A% 23)

150 MEMV&=VARPTR(A% 1))

200 FOR | =1 TO 23

300 READ JC

400 POKE MEMY% JC

450 NEMVENEMYA1

500 NEXT

600 Cl%2: C2%3: C3%:0

700 TWOSUMEVARPTR(A% 1))

800 CALL TWOSUM Cl% C2% C3%)

900 PRI NT C3%

950 END

1000 DATA &H55, &H8b, &Hec &H8b, &H76, &HO8, &H8b, &H04, &H8b, &H76
1100 DATA &H0a, &H03, &H04, &H8b, &H7e, &H06, &HB9, &HO5, &H5d

1200 DATA &Hca, &H06, &H00

file:///C)/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/A ppendix%20D.html (8 of 8)28/03/2004 21.29.05

GW-BASIC User's Guide

DEF USR Statement

Purpose:

To specify the starting address of an assembly language subroutine to be called from memory by
the USR function.

Syntax:
DEF USR] n] =i nt eger

Comments:

n may be any digit from 0 to 9. The digit corresponds to the USR routine address being specified.
If n isomitted, DEF USRO is assumed.

i nt eger isthe offset address of the USR routine. If more than 10 USR routines are required, DEF
USR] n] may appear in the program as many times as necessary to redefine the USR] n] starting
address.

Add the current segment value to the integer to get the starting address of the user routine.

When an Assembly Language Subroutineis called, the GW-BASIC program execution is paused,
and control istransferred to the Assembly Language program. When that program is executed,
control is returned to the GW-BASIC program at the point of interruption.

Examples:

190 DEF SEG=0
200 DEF USR0=24000
210 X=USRO(Y"2/ 2. 82)

Lines 190 and 200 set the absolute address.

Line 210 calls the USR routine located at that address, and passes the integer value of the
expression contained within the parentheses to the user program (see USR).

Note
This statement is given here primarily to provide compatibility with other GW-BASIC

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/DEFUSR.html (1 of 2)28/03/2004 21.29.05

GW-BASIC User's Guide

implementations. The more versatile CALL statement should be used if this downward
compatibility is unimportant.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/DEFUSR.html (2 of 2)28/03/2004 21.29.05

GW-BASIC User's Guide

USR Function

Purpose:

To call an assembly language subroutine.

Syntax:
v=USR[n] (ar gunent)

Comments:

n specifies which USR routine is being called.

ar gument can be any numeric or string expression.

Although the CALL statement is recommended for calling assembly language subroutines, the
USR function call may also be used. See Appendix D in the GW-BASIC User's Guide for a
comparison of CALL and USR and for adetailed discussion of calling assembly language
subroutines.

Only values 0-9 arevalid for n. If n isomitted, USRO is assumed (see DEF USR for the rules
governing n).

If a segment other than the default segment (GW-BASIC data segment, DS) isused, aDEF SEG
statement must be executed prior to a USR call. This ensures that the code segment points to the
subroutine being called.

The segment address given in the DEF SEG statement determines the starting segment of the
subroutine.

For each USR function, a corresponding DEF USR statement must have been executed to define
the USR call offset. This offset and the currently active DEF SEG segment address determine the
starting address of the subroutine.

If more than 10 user routines are required, the value(s) of DEF USR may be redefined for the
other starting addresses as many times as needed.

The type (numeric or string) of the variable receiving the function call must be consistent with the
argument passed. If no argument is required by the assembly language routine, then a dummy
argument must be supplied.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/USR.html| 28/03/2004 21.29.05

GW-BASIC User's Guide

Appendix E
Converting BASIC Programsto GW-BASIC

Programs written in a BASIC language other than GW-BASIC may require some minor
adjustments before they can be run. The following sections describe these adjustments.

E.1 String Dimensions

Delete all statements used to declare the length of strings. A statement such as the following:
DI M A$(1,J)

which dimensions a string array for J elements of length I, should be converted to the following
Statement:

DI M A$(J)

Some GW-BASIC languages use a comma or ampersand (&) for string concatenation. Each of
these must be changed to a plus sign (+), which is the operator for GW-BASIC string
concatenation.

In GW-BASIC, the M D$, Rl GHT$, and LEFT$ functions are used to take substrings of strings.

Forms such as A$(l) to access the Ith character in A$, or A$(1,J) to take a substring of A$ from
position | to position J, must be changed as follows:

Other BASICGW-BASIC

X$=A%(1) X$=M D$(AS, |, 1)

X$=AB(1,J) X$=M D$(AS$, |, J-1+1)

If the substring reference is on the left side of an assignment, and X$ is used to replace characters
in A$, convert asfollows:

Other BASICGW-BASIC
AS(1)=X$ M DS(AS$, |, 1) =x$
AS(1,J)=X$ M DS(AS$, |, J-1+1) =X$

E.2 Multiple Assignments

Some GW-BASIC languages allow statements of the following form to set B and C equal to zero:
10 LET B=C=0

GW-BASIC would interpret the second equal sign as alogical operator and set B equal to-1if C
equaled 0. Convert this statement to two assignment statements:

10 C=0: B=0

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ A ppendix%20E.html (1 of 2)28/03/2004 21.29.06

GW-BASIC User's Guide

E.3 Multiple Statements

Some GW-BASIC languages use a backslash (\) to separate multiple statements on aline. With
GW-BASIC, be sure all elementson aline are separated by a colon (:).

E.4 MAT Functions

Programs using the VAT functions available in some GW-BASIC languages must be rewritten
using FOR- NEXT loops to execute properly.

E.5 FOR-NEXT Loops

Some GW-BASIC languages will always execute a FOR- NEXT loop once, regardless of the
limits. GW-BASIC checksthe limits first and does not execute the loop if past limits.

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ A ppendi x%20E.html (2 of 2)28/03/2004 21.29.06

GW-BASIC User's Guide

Appendix G
Hexadecimal Equivalents

Table G.1 lists decimal and binary equivalents to hexadecimal values.

TableG.1

Decimal and Binary Equivalentsto Hexadecimal Values
Bin
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Hex

©CO~NOUNMWNRLROQD

=
N)

TMUOT@>O©OO~NOUTNWNERO
el
A OWDN

[EEN
o1

Table G.2 lists decimal equivalents to hexadecimal values.

TableG.2

Decimal Equivalentsto Hexadecimal Values

Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec

0 0 10 16 100 256 1000 4096
1 1 11 17 20 32 200 512 2000 8192
2 2 12 18 30 48 300 768 3000 12288
3 3 13 19 40 64 400 1024 4000 16384
4 4 14 20 50 80 500 1280 5000 20480
5 5 15 21 60 96 600 1536 6000 24576
6 6 16 22 70 112 700 1792 7000 28672
7 7 17 23 80 128 800 2048 8000 32768

file:///CJ/Documents¥20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ A ppendix%20G.html (1 of 2)28/03/2004 21.29.06

GW-BASIC User's Guide

8

9

10
11
12
13
14
15

MTmMmOO®>»>©©

18
19

1B
1C
1D
1E
1F

24
25
26
27
28
29
30
31

90
AO
BO
CO
DO
EO
FO

144
160
176
192
208
224
240

900
A00
BOO
C00
D00
EOO
FOO

2304
2560
2816
3072
3328
3584
3840

9000
A000
BOOO
C000
D000
EOOO
FO0O0

file:///CJ/Documents¥20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ A ppendix%20G.html (2 of 2)28/03/2004 21.29.06

36864
40960
45056
49152
53248
57344
61440

GW-BASIC User's Guide

Appendix |
Characters Recognized by GW-BASIC

The GW-BASIC character set includes al charactersthat are legal in GW-BASIC commands,
statements, functions, and variables. The set comprises alphabetic, numeric, and specia
characters.

The alphabetic charactersin GW-BASIC are the uppercase and lowercase | etters of the alphabet.
The numeric charactersin GW-BASIC are the digits O through 9.
The following specia characters and terminal keys are recognized by GW-BASIC:

Character Description

Blank.

Equal sign or assignment symbol.

Plus sign or string concatenation.

Minus sign.

Asterisk or multiplication symbol.

Slash or division symbol.

Caret, exponentiation symbol, or cTrL key.

L eft parenthesis.

Right parenthesis.

Percent or integer declaration.

Number sign or double-precision declaration.
Dollar sign or string declaration.

Exclamation point or single-precision declaration.
L eft bracket.

Right bracket.

Comma.

Double quotation marks or string delimiter.
Period, dot, or decimal point.

Single quotation mark, apostrophe, or remark indicator.
Semicolon or carriage return suppressor.

Colon or line statement delimiter.

Ampersand or descriptor for hexadecimal and octal number conversion.
Question mark.

L ess than symbol.

Greater than symbol.

Backslash or integer division symbol.

"At" sign.

+ 1l

— = O~ = % 1
® # X >

© VAR

file:///CJ/Documents¥20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ A ppendix%20l .html (1 of 2)28/03/2004 21.29.07

GW-BASIC User's Guide

_ Underscore.

BACKSPACEDel etes |ast character typed.

ESC Erases the current logical line from the screen.

TAB Moves print position to next tab stop. Tab stops are every eight columns.

CURSOR Moves cursor to next physical line.
Terminates input to aline and moves cursor to beginning of the next line, or executes

RETURN T
statement in direct mode.

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ A ppendix%6201.html (2 of 2)28/03/2004 21.29.07

GW-BASIC User's Guide

Glossary

abend

An acronym for abnormal end of task. An abend is the termination of computer processing on a
job or task prior to its completion because of an error condition that cannot be resolved by
programmed recovery procedures.

access
The process of seeking, reading, or writing data on a storage unit.

access methods
Techniques and programs used to move data between main memory and input/output devices.

accuracy
The degree of freedom from error. Accuracy is often confused with precision, which refers to the
degree of preciseness of a measurement.

acronym
A word formed by theinitial letters of words or by initial letters plus parts of several words.
Acronyms are widely used in computer technology. For example, COBOL is an acronym for
COmmon Business Oriented Language.

active partition
A section of the computer's memory that houses the operating system being used.

address
A name, label, or number identifying aregister, location or unit where information is stored.

algebraic language
A language whose statements are structured to resembl e the structure of algebraic expression.
Fortran is a good example of an algebraic language.

algorithm

A set of well-defined rules or procedures to be followed in order to obtain the solution of a
problem in afinite number of steps. An algorithm can involve arithmetic, algebraic, logical and
other types of procedures and instructions. An algorithm can be simple or complex. However, all
algorithms must produce a solution within a finite number of steps. Algorithms are fundamental
when using a computer to solve problems, because the computer must be supplied with a specific
set of instructions that yields a solution in areasonable length of time,

alphabetic

file:///CJ/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/Glossary.html (1 of 17)28/03/2004 21.29.08

GW-BASIC User's Guide

Data representation by alphabetical charactersin contrast to numerical; the letters of the alphabet.

alphanumeric
A contraction of the words al phabetic and numeric; a set of characters including letters, numerals,
and special symbols.

application

The system or problem to which a computer is applied. Reference is often made to an application
as being either of the computational type, in which arithmetic computations predominate, or of
the data processing type, in which data handling operations predominate.

application program
A computer program designed to meet specific user needs.

argument
1. A type of variable whose value is not a direct function of another variable. It can represent
the location of a number in a mathematical operation, or the number with which afunction
works to produce its results.

2. A known reference factor that is required to find adesired item (function) in atable. For
example, in the square root function SORT(X) , X isthe argument. The value of X

determines the square root value returned by this function.

array
1. An organized collection of datain which the argument is positioned before the function.

2. A group of items or elementsin which the position of each item or element is significant.
A multiplication table is agood example of an array.

ASCII
Acronym for American Standard Code for Information Interchange. ASCII is a standardized 8-bit
code used by most computers for interfacing.

ASCII was developed by the American National Standards Institute (ANSI). It uses 7 binary bits
for information and the 8th bit for parity purposes.

assembler
A computer program that produces a machine-language program which may then be directly
executed by the computer.

assembly language
A symbolic language that is machine-oriented rather than problem-oriented. A program in an
assembly language is converted by an assembler to a machine-language program. Symbols

file:///CJ/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/Glossary.html (2 of 17)28/03/2004 21.29.08

GW-BASIC User's Guide

representing storage locations are converted to numerical storage locations, symbolic operation
codes are converted to numeric operation codes.

asynchronous
1. Not having aregular time or clocked relationship. See synchronous.

2. A type of computer operation in which a new instruction is initiated when the former
instruction is completed. Thus, thereis no regular time schedule, or clock, with respect to
instruction sequence. The current instruction must be complete before the next is begun,
regardless of the length of time the current instruction takes.

asynchronous communication

A way of transmitting data serially from one device to another, in which each transmitted
character is preceded by a start bit and followed by a stop bit. Thisis aso called start/stop
transmission.

back-up
1. A second copy of data on adiskette or other medium, ensuring recovery from loss or
destruction of the original media.

2. On-site or remote equipment available to complete an operation in the event of primary
equipment failure.

BASIC

Acronym for Beginner's All-purpose Symbolic Instruction Code. BASIC is a computer
programming language developed at Dartmouth College as an instructional tool in teaching
fundamental programming concepts. Thislanguage has since gained wide acceptance as atime-
sharing language and is considered one of the easiest programming languages to learn.

batch processing
A method of operating a computer so that a single program or set of related programs must be
completed before the next type of program is begun.

baud

A unit of measurement of data processing speed. The speed in bauds is the number of signal
elements per second. Since a signal element can represent more than one bit, baud is not
synonymous with bits-per-second. Typical baud rates are 110, 300, 1200, 2400, 4800, and 9600.

binary
1. A characteristic or property involving achoice or condition in which there are two
possibilities.
2. A numbering system which uses 2 asits base instead of 10 asin the decimal system. The

file://ICJ/Documents¥620and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/Glossary.html (3 of 17)28/03/2004 21.29.08

GW-BASIC User's Guide

binary system uses only two digits, 0 and 1, in its written form.

3. A device whose design uses only two possible states or levels to perform its functions. A
computer executes programs in binary form.

binary digit
A quantity which is expressed in the binary digits of 0 and 1.

bit
A contraction of "binary digit". A bit can either be O or 1, and is the smallest unit of information
recognizable by a computer.

block
An amount of storage space or data, of arbitrary length, usually contiguous, and often composed
of several similar records, all of which are handled as a unit.

boolean logic

A field of mathematical analysisin which comparisons are made. A pro- grammed instruction
can cause a comparison of two fields of data, and modify one of those fields or another field asa
result of comparison. This system was formulated by British mathematician George Boole (1815-
1864). Some boolean operators are OR, AND, NOT, XOR, EQV, and IMP.

boot

A machine procedure that allows a system to begin operations at the desired level by means of its
own initiation. The first few instructions are loaded into a computer from an input device. These
instructions allow the rest of the system to be loaded. The word boot is abbreviated from the
word bootstrap.

bps
Bits per second.

buffer
A temporary storage area from which datais transferred to or from various devices.

built-in clock

A real-time clock that lets your programs use the time of day and date. Built into MS-DOS, it lets
you set the timing of a program. It can be used to keep a personal calendar, and it automatically
measures elapsed time.

byte

An element of data which is composed of eight data bits plus a parity bit, and represents either
one alphabetic or special character, two decimal digits, or eight binary bits. Byte is also used to

file:///C)/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/Glossary.html (4 of 17)28/03/2004 21.29.08

GW-BASIC User's Guide

refer to a sequence of eight binary digits handled as a unit. It is usually encoded in the ASCI|
format.

calculation
A series of numbers and mathematical signs that, when entered into a computer, is executed
according to a series of instructions.

central processor (CPU)

The heart of the computer system, where data is manipulated and calculations are performed. The
CPU contains a control unit to interpret and execute the program and an arithmetic-logic unit to
perform computations and logical processes. It also routes information, controls input and output,
and temporarily stores data.

chaining
The use of a pointer in arecord to indicate the address of another record logically related to the
first.

character
Any single letter of the alphabet, numeral, punctuation mark, or other symbol that a computer can
read, write, and store. Character is synonymous with the term byte.

COBOL

Acronym for COmmon Business-Oriented Language, a computer language suitable for writing
complicated business applications programs. It was developed by CODASY L, a committee
representing the U. S. Department of Defense, certain computer manufacturers, and major users
of data processing equipment. COBOL is designed to express data manipulations and processing
problemsin English narrative form, in a precise and standard manner.

code
1. Towriteinstructions for acomputer system
2. To classify data according to arbitrary tables
3. To use amachine language
4. To program

command

A pulse, signal, word, or series of letters that tells a computer to start, stop, or continue an
operation in an instruction. Command is often used incorrectly as a synonym for instruction.

compatible
A description of data, programs or equipment that can be used between different kinds of

file://ICJ/Documents¥620and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/Glossary.html (5 of 17)28/03/2004 21.29.08

GW-BASIC User's Guide

computers or equipment.

compiler
A computer program that translates a program written in a problem- oriented language into a
program of instructions similar to, or in, the language of the computer.

computer network

A geographically dispersed configuration of computer equipment connected by communication
lines and capable of load sharing, distributive processing, and automatic communication between
the computers within the network.

concatenate

To join together data sets, such asfiles, in a seriesto form one data set, such as one new file. The
term concatenate literally means "to link together." A concatenated data set is a collection of
logically connected data sets.

configuration
In hardware, a group of interrelated devices that constitute a system. In software, the total of the
software modules and their interrelationships.

constant
A never-changing value or dataitem.

COpr ocessor
A microprocessor device connected to a central microprocessor that per- forms specialized
computations (such as floating-point arithmetic) much more efficiently than the CPU alone.

Ccur sor
A blinking line or box on a computer screen that indicates the next location for data entry.

data
A general term used to signify all the basic information elements that can be produced or
processed by a computer. See information.

data element
The smallest named physical data unit.

datafile

A collection of related data records organized in a specific manner. Data files contain computer
records which contain information, as opposed to containing data handling information or a
program.

file://ICJ/Documents¥620and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/Glossary.html (6 of 17)28/03/2004 21.29.08

GW-BASIC User's Guide

debug
The process of checking the logic of a computer program to isolate and remove mistakes from the
program or other software.

default
An action or value that the computer automatically assumes, unless a different instruction or
valueisgiven.

delimit
To establish parameters; to set a minimum and a maximum.

delimiter
A character that marks the beginning or end of a unit of data on a storage medium. Commas,
semi-colons, periods, and spaces are used as delimiters to separate and organize items of data.

detail file
A data file composed of records having similar characteristics, but containing datawhichis
relatively changeable by nature, such as employee weekly payroll data. Compare to master file.

device
A piece of hardware that can perform a specific function. A printer is an example of a device.

diagnostic programs
Specia programs used to align equipment or isolate equipment malfunctions.

directory
A table that gives the name, location, size, and the creation or last revision date for each file on
the storage media.

diskette
A flat, flexible platter coated with magnetic material, enclosed in a protective envel ope, and used
for storage of software and data.

Disk Operating System
A collection of procedures and techniques that enable the computer to operate using adisk drive
system for data entry and storage. Disk Operating System is usually abbreviated to DOS,

DOS
The acronym for Disk Operating System. DOS rhymes with "boss."

double-density
A type of diskette that has twice the storage capacity of standard single- density diskettes.

file:///CJ/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/Glossary.html (7 of 17)28/03/2004 21.29.08

GW-BASIC User's Guide

double-precision

The use of two computer words to represent each number. This technique allows the use of twice
as many digits as are normally available and is used when extra precision is needed in
calculations.

double-sided
A term that refers to a diskette that can contain data on both surfaces of the diskette.

drive
A device that holds and manipulates magnetic media so that the CPU can read data from or write
data to them.

end-of-file mark (EOF)
A symbol or machine equivalent that indicates that the last record of afile has been read.

erase
To remove or replace magnetized spots from a storage medium.

error message
An audible or visual indication of hardware or software malfunction or of an illegal data-entry
attempt.

execute
To carry out an instruction or perform aroutine.

exponent
A symbol written above afactor and on the right, telling how many times the factor is repeated.
In the example of A2, A isthe factor and 2 is the exponent. A2 means A times A (A x A).

extension
A one-to-three-character set that follows afilename. The extension further defines or clarifies the
filename. It is separated from the filename by a period(.).

field
An area of arecord that is allocated for a specific category of data.

file
A collection of related data or programs that is treated as a unit by the computer.

file protection
The devices or procedures that prevent unintentional erasure of data on a storage device, such as
a diskette.

file://ICJ/Documents¥620and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/Glossary.html (8 of 17)28/03/2004 21.29.08

GW-BASIC User's Guide

filestructure
A conceptual representation of how data values, records, and files are related to each other. The
structure usually implies how the data is stored and how the data must be processed.

filename
The unique name, usually assigned by a user, which is used to identify onefile for all subsequent
operations that use that file.

fixed disk
A hard disk enclosed in a permanently-sealed housing that protectsit from environmental
interference. Used for storage of data.

floating-point arithmetic
A method of calculation in which the computer or program automatically records, and accounts
for, the location of the radix point. The programmer need not consider the radix location.

floating-point routine
A set of program instructions that permits a floating-point mathematics operation in a computer
which lacks the feature of automatically accounting for the radix point.

format
A predetermined arrangement of data that structures the storage of information on an externa
storage device.

function
A computer action, as defined by a specific instruction. Some GW-BASIC functions are CCs,

ECF, | NSTR, LEFT$, and TAN.

function keys
Specific keys on the keyboard that, when pressed, instruct the computer to perform a particular
operation. The function of the keys is determined by the applications program being used.

GIGO

Aninformal term that indicates sloppy data processing; an acronym for Garbage In Garbage Out.
The term GIGO is normally used to make the point that if the input datais bad (garbage in) then
the output datawill also be bad (garbage out).

global search
Used in reference to a variable (character or command), a global search causes the computer to
locate all occurrences of that variable.

file://ICJ/Documents¥620and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/Glossary.html (9 of 17)28/03/2004 21.29.08

GW-BASIC User's Guide

graphics

A hardware/software capability to display objects in pictures, rather than words, usually on a
graphic (CRT) display terminal with line-drawing capability and permitting interaction, such as
the use of alight pen.

hard copy
A printed copy of computer output in areadable form, such as reports, checks, or plotted graphs.

hardware
The physical equipment that comprises a system.

hexadecimal

A number system with abase, or radix, of 16. The symbols used in this system are the decimal
digits O through 9 and six additional digits which are generaly represented as A, B, C, D, E, and
F.

hidden files
Files that cannot be seen during normal directory searches.

hierar chical directories
See tree-structured directories.

housekeeping functions
Routine operations that must be performed before the actual processing begins or after it is
complete.

information

Facts and knowledge derived from data. The computer operates on and gen- erates data. The
meaning derived from the dataisinformation. That is, information results from data; the two
words are not synonymous, although they are often used interchangeably.

inter preter

A program that reads, translates and executes a user's program, such as one written in the BASIC
language, one line at atime. A compiler, on the other hand, reads and translates the entire user's
program before executing it.

input
1. The process or device concerning the entry of datainto a computer.

2. Actual data being entered into a computer.

input/output

file:///CJ/Documents¥%20and%20Setti ngs/L orenzo/Desktop/ GW%20Basi ¢/Glossary.html (10 of 17)28/03/2004 21.29.08

GW-BASIC User's Guide

A general term for devices that communicate with a computer. Input/output is usually abbreviated
as|/O.

instruction
A program step that tells the computer what to do next. Instruction is often used incorrectly as a
synonym for command.

integer
A complete entity, having no fractional part. The whole or natural number. For example, 65 is an
integer; 65.1 is not.

integrated cir cuit
A complete electronic circuit contained in a small semiconductor component.

interface

An information interchange path that allows parts of a computer, computers, and external
equipment (such as printers, monitors, or modems), or two or more computers to communicate or
interact.

1/0
The acronym for input/output.

job
A collection of tasks viewed by the computer as a unit.

K

The symbol signifying the quantity 210, which is equal to 1024. K is sometimes confused with the
symbol k, (kilo) whichisequal to 1000.

logarithm

A logarithm of a given number is the value of the exponent indicating the power required to raise
a specified constant, known as the base, to produce that given number. That is, if B isthe base, N
isthe given number and L isthe logarithm, then BL = N. Since 103 = 1000, the logarithm to the
base 10 of 1000is 3.

loop

A series of computer instructions that are executed repeatedly until a desired result is obtained or
a predetermined condition is met. The ability to loop and reuse instructions eliminates countless
repetitious instructions and is one of the most important attributes of stored programs.

M
The symbol signifying the quantity 1,000,000 (106). When used to denote storage, it more

file:///CJ/Documents%20and%20Setti ngs/L orenzo/Desktop/ GW%20Basi ¢/Glossary.html (11 of 17)28/03/2004 21.29.08

GW-BASIC User's Guide

precisely refersto 1,048,576 (220).

mantissa
The fractional or decimal part of alogarithm of a number. For example, the logarithm of 163 is
2.212. The mantissais 0.212, and the characteristic is 2.0.

In floating-point numbers, the mantissais the number part. For example, the number 24 can be
written as 24, 2 where 24 is the mantissa and 2 is the exponent. The floating-point number isread
as .24 x 102, or 24.

master file

A datafile composed of records having similar characteristics that rarely change. A good
example of amaster file would be an employee name and address file that also contains social
security numbers and hiring dates.

media
The plural of medium.

medium
The physical material on which datais recorded and stored. Magnetic tape, punched cards, and
diskettes are examples of media.

memory
The high-speed work areain the computer where data can be held, copied, and retrieved.

menu
A list of choices from which an operator can select atask or operation to be performed by the
computer.

MiCr opr ocessor
A semiconductor central processing unit (CPU) in a computer.

modem

Acronym for modulator demodulator. A modem converts data from a computer to analog signals
that can be transmitted through telephone lines, or converts the signals from telephone linesinto a
form the computer can use.

MS-DOS
Acronym for Microsoft Disk Operating System.

nested programsor subroutines
A program or subroutine that is incorporated into alarger routine to permit ready execution or

file:///CJ/Documents¥%20and%20Setti ngs/L orenzo/Desktop/ GW%20Basi ¢/Glossary.html (12 of 17)28/03/2004 21.29.08

GW-BASIC User's Guide

access of each level of the routine. For example, nesting loops involves incorporating one loop of
instructions into another loop.

null
Empty or having no members. Thisisin contrast to a blank or zero, which indicates the presence
of no information. For example, in the number 540, zero contains needed information.

numeric
A reference to numerals as opposed to letters or other symbols.

octal number system

A representation of values or quantities with octal numbers. The octal number system uses eight
digits. 0, 1, 2, 3, 4, 5, 6, and 7, with each position in an octal numeral representing a power of 8.
The octal system is used in computing as a simple means of expressing binary quantities.

operand

A quantity or dataitem involved in an operation. An operand is usually designated by the address
portion of an instruction, but it may also be aresult, a parameter, or an indication of the name or
location of the next instruction to be executed.

operating system
An organized group of computer instructions that manage the overall operation of the computer.

oper ator
A symbol indicating an operation and itself the subject of the operation. It indicates the process
that is being performed. For example, + isaddition, - is subtraction, x ismultiplication, and/ is
division.

option
An add-on device that expands a system's capabilities,

output
Computer results, or data that has been processed.

parallel output
The method by which all bits of a binary word are transmitted simultaneously.

parameter
A variable that is given avalue for a specific program or run. A definable characteristic of an
item, device, or system.

parity

file:///CJ/Documents%20and%20Setti ngs/L orenzo/Desktop/ GW%20Basi ¢/Glossary.html (13 of 17)28/03/2004 21.29.08

GW-BASIC User's Guide

An extra-bit of code that is used to detect data errors in memory by mak- ing the sum of the
active bit in adataword either an odd or an even number.

partition
An areaon afixed disk set aside for a specific purpose, such as alocation for an operating system.

peripheral
An external input/output, or storage device.

pixel
The acronym for picture element. A pixel isasingle dot on amonitor that can be addressed by a
single bit.

port
The entry channel to and from the central computer for connection of a communications line or
other peripheral device.

power
The functional area of a system that transforms an external power source into internal DC supply
voltage.

program

A series of instructions or statements in aform acceptable to a computer, designed to cause the
computer to execute a series of operations. Computer programs include software such as
operating systems, assemblers, compilers, interpreters, data management systems, utility
programs, sort-merge programs, and maintenance/diagnostic programs, as well as application
programs such as payroll, inventory control, and engineering analysis programs.

prompt
A character or series of characters that appear on the screen to request input from the user.

RAM
Acronym for random-access memory.

radian

The natural unit of measure of the angle between two intersecting half-lines on the angles from
one half-line to another intersecting half-line. It is the angle subtended by an arc of acircle equal
in length to the radius of the circle. Asthe circumference of acircleis equal to 2rttimesits
radius, the number of radiansin an angle of 360° or in acomplete turnis 21t

radix
A number that is arbitrarily made the fundamental number of a system of numbers; a base. Thus,

file:///CJ/Documents¥%20and%20Setti ngs/L orenzo/Desktop/ GW%20Basi ¢/Glossary.html (14 of 17)28/03/2004 21.29.08

GW-BASIC User's Guide

10 istheradix, or base, of the common system of logarithms, and also of the decimal system of
enumeration.

random-access memory

The system's high-speed work area that provides access to memory storage locations by using a
system of vertical and horizontal coordinates. The computer can write information into or read
information from the random access memory. Random-access memory is often called RAM.

raster unit
On agraphic display screen, araster unit isthe horizontal or vertical distance between two
adjacent addressabl e points on the screen.

read-only memory
A type of memory that contains permanent data or instructions. The computer can read from but
not write to the read-only memory. Read-only memory is often called ROM.

real number

An ordinary number, either rational or irrational; a number in which there is no imaginary part, a
number generated from the single unit, 1; any point in a continuum of natural numbersfilled in
with all rationals and all irrationals and extended indefinitely, both positive and negative.

real time
1. Theactual time required to solve a problem.
2. The process of solving a problem during the actual time that a related physical process
takes place so that results can be used to guide the physical process.

remote
A term used to refer to devices that are located at sites away from the central computer.

rever sevideo
A display of characters on a background, opposite of the usual display.

ROM
Acronym for read-only memory.

RS-232
A standard communications interface between a modem and terminal devices that complies with
ElIA Standard RS-232.

serial output
Sending only one bit at atime to and from interconnected devices.

file:///CJ/Documents¥%20and%20Setti ngs/L orenzo/Desktop/ GW%20Basi ¢/Glossary.html (15 of 17)28/03/2004 21.29.08

GW-BASIC User's Guide

single-density
The standard recording density of a diskette. Single-density diskettes can store approximately
3400 bits per inch (bpi).

single-precision value

The number of words or storage positions used to denote a number in a computer. Single-
precision arithmetic is the use of one word per number; double-precision arithmetic is the use of
two words per number, and so on. For variable word-length computers, precision is the number of
digits used to denote a number. The higher the precision, the greater the number of decimal

places that can be carried.

single-sided
A term used to describe a diskette that contains data on one side only.

software
A string of instructions that, when executed, direct the computer to perform certain functions.

stack architecture

An architecture wherein any portion of the external memory can be used as alast-in, first-out
stack to store/retrieve the contents of the accumulator, the flags, or any of the data registers.
Many units contain a 16-bit stack pointer to control the addressing of this external stack. One of
the major advantages of the stack is that multiple-level interrupts can be handled easily, since
complete system status can be saved when an interrupt occurs and then be restored after the
interrupt. Another major advantage is that almost unlimited subroutine nesting is possible.

Sstatement
A high-level language instruction to the computer to perform some sequence of operations.

synchronous

A type of computer operation in which the execution of each instruction or each event is
controlled by aclock signal: evenly spaced pulses that enable the logic gates for the execution of
each logic step. A synchronous operation can cause time delays by causing waiting for clock
signals although all other signals at a particular logic gate were available. See asynchronous.

switch
An instruction, added to a command, that designates a course of action, other than default, for the
command process to follow.

syntax
Rules of statement structure in a programming language.

system

file:///CJ/Documents¥%20and%20Setti ngs/L orenzo/Desktop/ GW%20Basi ¢/Glossary.html (16 of 17)28/03/2004 21.29.08

GW-BASIC User's Guide

A collection of hardware, software, and firmware that is interconnected to operate as a unit.

task
A machine run; a program in execution.

toggle
Alternation of function between two stable states.

track
A specific area on a moving-storage medium, such as a diskette, disk, or tape cartridge, that can
be accessed by the drive heads.

tree-structured directory
A file-organization structure, consisting of directories and subdirectories that, when diagrammed,
resembles atree.

truncation
To end a computation according to a specified rule; for example, to drop numbers at the end of a
line instead of rounding them off, or to drop characters at the end of aline when afileis copied.

upgrade
To expand a system by installing options or using revised software.

utility function
Computer programs, dedicated to one particular task, that are helpful in using the computer. For
example, FDISK, for setting up partitions on the fixed disk.

variable
A quantity that can assume any of a set of values as aresult of processing data.

volume label
The name for the contents of a diskette or a partition on afixed disk.

word
The set of bits comprising the largest unit that the computer can handle in a single operation.

write-protect notch
A cut-out opening in the sealed envelope of a diskette that, when covered, prevents writing or
adding text to the diskette, but allows information to be read from the diskette.

file:///CJ/Documents%20and%20Setti ngs/L orenzo/Desktop/ GW%20Basi ¢/Glossary.html (17 of 17)28/03/2004 21.29.08

GW-BASIC User's Guide

ABS Function

Purpose:

To return the absolute value of the expression n.

Syntax:
ABS(n)

Comments:

n must be a numeric expression.

Examples:

PRI NT ABS(7*(-5))
35

Prints 35 as the result of the action.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/ABS.html| 28/03/2004 21.29.11

GW-BASIC User's Guide

ASC Function

Purpose:

To return anumeric value that isthe ASCII code for the first character of the string x $.

Syntax:
ASC(x$)

Comments:

If x$ isnull, an "lllegal Function Call" error isreturned.

If x$ begins with an uppercase letter, the value returned will be within the range of 65 to 90.
If x$ begins with alowercase letter, the range is 97 to 122.

Numbers 0 to 9 return 48 to 57, sequentialy.

See the CHR$ function for ASCII-to-string conversion.

See Appendix C in the GW-BASIC User's Guide for ASCII| codes.

Examples:

10 X$="TEN'

20 PRI NT ASC(X$)
RUN

84

84 isthe ASCII codefor the letter T.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ A SC.html 28/03/2004 21.29.12

GW-BASIC User's Guide

CHR$ Function

Purpose:

To convert an ASCII codeto its equivalent character.

Syntax:
CHR$(n)

Comments:
n isavauefrom O to 255.

CHR$ is commonly used to send a special character to the terminal or printer. For example, you
could send CHR$(7) to sound a beep through the speaker as a preface to an error message, or you
could send aform feed, CHR$(12) , to the printer.

See the ASC function for ASCII-to-numeric conversion.

ASCII| Codes arelisted in Appendix C of the GW-BASIC User's Guide.

Examples:

PRI NT CHRS$(66) ;
B

This prints the ASCII character code 66, which is the uppercase letter B.
PRI NT CHR$(13);

This command prints a carriage return.

file:///IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/CHRS.html 28/03/2004 21.29.12

GW-BASIC User's Guide

ATN Function

Purpose:

To return the arctangent of x, when x is expressed in radians.

Syntax:
ATN(x)

Comments:
The result is within the range of -1/2 to 17/2.

The expression x may be any numeric type. The evaluation of ATNis performed in single
precision unlessthe/ d switch is used when GW-BASIC is executed.

To convert from degrees to radians, multiply by 17180.

Examples:

10 | NPUT X

20 PRI NT ATN(X)
RUN

? 3

1. 249046

Prints the arctangent of 3 radians (1.249046).

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/ATN.html| 28/03/2004 21.29.12

GW-BASIC User's Guide

AUTO Command

Purpose:

To generate and increment line numbers automatically each time you press the RETURN key.

Syntax:

AUTO [line nunmber][,[increnment]]
AUTO .[,[increnent]]

Comments:

AUTOIs useful for program entry because it makes typing line numbers unnecessary.

AUTObeginsnumbering at | i ne nunber and increments each subsequent line number by
i ncr ement . The default for both valuesis 10.

The period (.) can be used as a substitute for | i ne nunber to indicate the current line.

If I i ne nunber isfollowed by acomma, andi ncr enent isnot specified, the last increment
gpecified in an AUTO command is assumed.

If AUTOgeneratesal i ne nunber that isalready being used, an asterisk appears after the

number to warn that any input will replace the existing line. However, pressing return immediately
after the asterisk saves the line and generates the next line number.

AUTOIs terminated by entering CTRL-BREAK Or CTRL-C. GW-BASIC will then return to command
level.

Note

Thelinein which CTRL-BREAK Or CTRL-C isentered is not saved. To be sure that you save all
desired text, use cTRL-BREAK and cTRL-C only on lines by themselves.

Examples:
AUTO 100, 50

Generates line numbers 100, 150, 200, and so on.
AUTO

Generates line numbers 10, 20, 30, 40, and so on.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/AUTO.html 28/03/2004 21.29.12

GW-BASIC User's Guide

BEEP Statement

Purpose:

To sound the speaker at 800 Hz (800 cycles per second) for one-quarter of a second.

Syntax:
BEEP

Comments:
BEEP, CTRL-G, and PRI NT CHR$(7) have the same effect.

Examples:
2340 | F X>20 THEN BEEP

If X isout of range, the computer beeps.

file:///C|/Documents%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/BEEP.html28/03/2004 21.29.13

GW-BASIC User's Guide

BLOAD Command

Purpose:

To load an image file anywhere in user memory.

Syntax:
BLOAD fil enane[, of f set]

Comments:
fil enane isavalid string expression containing the device and filename.

of f set isavalid numeric expression within the range of 0 to 65535. Thisis the offset into the
segment, declared by the last DEF SEG statement, where loading is to start.

If offset is omitted, the offset specified at BSAVE is assumed; that is, the file isloaded into the
same location it was saved from.

Note

BLOAD does not perform an address range check. It is possible to BLOAD anywhere in memory.
Y ou must not BLOAD over the GW-BASIC stack space, a GW-BASIC program, or the GW-
BASIC variable area.

While BLOAD and BSAVE are useful for loading and saving machine language programs, they are
not restricted to them. The DEF SEG statement lets you specify any segment as the source or
target for BLOAD and BSAVE. For example, this allows the video screen buffer to be read from or
written to the diskette. BLOAD and BSAVE are useful in saving and displaying graphic images.

Examples:

10 DEF SEG=&HB80O0
20 BLOAD'PI CTURE", O

The DEF SEG statement in line 10 points the segment at the screen buffer.

The DEF SEG statement in line 10 and the offset of O in line 20 guarantee that the correct address
Isused.

The BLOAD command in line 20 loads the file named picture into the screen buffer.

Note

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/BL OAD.html (1 of 2)28/03/2004 21.29.13

GW-BASIC User's Guide

The BSAVE examplein the next section illustrates how the file named picture is saved.

file:///IC|/Documents%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/BL OAD.html (2 of 2)28/03/2004 21.29.13

GW-BASIC User's Guide

BSAVE Command

Purpose:

To save portions of user memory on the specified device.

Syntax:
BSAVE fil enane, of fset, | ength

Comments:
fil ename isavalid string expression containing the filename.

of f set isavalid numeric expression within the range of 0 to 65535. Thisis the offset into the
segment, declared by the last DEF SEG, where saving is to start.

| engt h isavalid numeric expression within the range of 0 to 65535, specifying the length of the
memory image to be saved.

If fil enane islessthan one character, a"Bad Fi |l e Nunber" error isissued and theload is
aborted.

Execute a DEF SEG statement before the BSAVE. The last known DEF SEG addressis always
used for the save.

The DEF SEG statement must be used to set up the segment address to the start of the screen
buffer. An offset of 0 and alength of 16384 specify that the entire 16K screen buffer isto be
saved.

Examples:

10 DEF SEG=&HB800O
20 BSAVE"PI CTURE", 0, 16384

The DEF SEG statement in line 10 points the segment at the screen buffer.

The BSAVE command in line 20 saves the screen buffer in the file named picture.

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/BSAV E.html 28/03/2004 21.29.13

GW-BASIC User's Guide

CALL Statement

Purpose:

To call an assembly (or machine) language subroutine.

Syntax:

CALL nunvar|[(vari abl es)]

Comments:

numvar isthe starting point in memory of the subroutine being called as an offset into the current
segment.

var i abl es arethe variables or constants, separated by commas and enclosed in parentheses,
that are to be passed to the routine.

The CALL statement is recommended for interfacing assembly language programs with GW-
BASIC. Although the USR function may also be used, CALL is compatible with more languages,
produces a more readable source code, and can pass multiple arguments.

Invocation of the CALL statement causes the following to occur:

. Each parameter location in the variable is pushed onto the stack. The parameter location is
a 2-byte offset into GW-BASIC's data segment.

« Thereturn address code segment (CS) and the offset are pushed onto the stack.

. Control istransferred to the user routine by the segment address given in the last DEF SEG
statement and the offset given in the variable name.

. The user routine now has control. Parameters may be referenced by moving the stack
pointer (SP) to the base pointer (BP) and adding a positive offset to BP.

. The cdled routine may destroy the contents of any registers.

. The called program must know how many parameters were passed. Parameters are
referenced by adding a positive offset to BP, assuming the called routine moved the
current stack pointer into BP (that is, MOV BP, SP).

. The called program must know the variable type for numeric parameters passed.

. Thecalled routine must do aRET n, where n isthe number of parametersin the variable

times 2. Thisis necessary in order to adjust the stack to the point at the start of the calling
sequence.

file:///C)/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/CA L L .html (1 of 3)28/03/2004 21.29.13

GW-BASIC User's Guide

. Vauesarereturned to GW-BASIC by including in the argument list the name of the
variable that isto receive the result.

. If theargument is astring, the parameter offset points to three bytes called the string
descriptor. Byte O of the string descriptor contains the length of the string (0 to 255). Bytes
1 and 2, respectively, are the lower- and upper-eight bits of the string starting addressin
the string space.

. If theargument isastring literal in the program, the string descriptor points to program
text. Be careful not to alter or destroy a program this way. To avoid unpredictable results,
add +"" to the string literal in the program, as in the following:

20 A$="BASI C'+""

Thisforcesthe string literal to be copied into the string space. Now the string may be
modified without affecting the program.

Note

Strings may be altered by user routines, but their length must not be changed. GW-BASIC cannot
correctly erase strings if their lengths are modified by external routines.

For more information on the CALL statement and USR function, see Appendix D in the GW-
BASIC User's Guide.

Example 1:

100 DEF SEG=&H2000
110 ARK=0
120 CALL ARK(A, B$, O

Line 100 sets the segment to hex 2000. ARK is set to zero so that the call to ARK executes the
subroutine at location 2000:0.
Example 2:

The following sequence of 8086 Assembly Language demonstrates access of the parameters
passed and stored in variable C:

PUSH BP
MOV BP, SP ; Gets current stack position in BP.
MOV BX, 8[BP] ; Cets address of B$ descriptor.

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/CALL.html (2 of 3)28/03/2004 21.29.13

GW-BASIC User's Guide

MOV CL, [BX] , Gets length of B$ in CL.
MOV DX, 1[BX] ; Cets address of B$ text in DX

MOV SI, 10[BP] ; Gets address of Ain Sl.

MOV DI, 6] BP] ;, Gets pointer to Cin Dl.
MOVSW - Stores variable Ain C
RET 6 © Restores stack and returns.

MOVSWcopies only two bytes. Thisis sufficient if variables A and C are integer. Four bytes must
be copied if they are single precision; eight bytes, if they are double precision.

Example 3:

100 DEF SEG=&H2000
110 ACC=&H7FA
120 CALL ACC(A, B$, O

Line 100 sets the segment to hex 2000. The value of variable ACC is added into the address as
the low word after the DEF SEGvalue is shifted four bitsto the left (thisis afunction of the
microprocessor, not of GW-BASIC). Here, ACC is set to & H7FA, so that the call to ACC
executes the subroutine at the location hex 2000:7FA (absolute address hex 207FA).

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/CALL .html (3 of 3)28/03/2004 21.29.13

GW-BASIC User's Guide

CDBL Function

Purpose:

To convert x to a double-precision number.

Syntax:
CDBL(x)

Comments:

X must be a numeric expression.

Example:

10 A=454.67
20 PRI NT A; CDBL(A)

RUN

454. 67 454, 6700134277344

Prints a double-precision version of the single-precision value stored in the variable named A.

Thelast 11 numbers in the double-precision number have no meaning in this example, since A
was previoudy defined to only two-decimal place accuracy.

Note

See the CINT and CSNG functions for converting numbers to integer and single precision,
respectively.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/CDBL .html 28/03/2004 21.29.14

GW-BASIC User's Guide

CINT Function

Purpose:

To round numbers with fractional portions to the next whole number or integer.

Syntax:
Cl NT(x)

Comments:

If x isnot within the range of -32768 to 32767, an "Over f | ow" error occurs.

Seethe FIX and INT functions, both of which return integers.

Examples:

PRI NT Cl NT(45. 67)
46

45.67 is rounded up to 46.

Note

See the CDBL and CSNG functions for converting numbers to the double-precision and single-
precision data types, respectively.

file:///C|/Documents¥%20and%20Settings/L orenzo/Desktop/GW%20Basi c/CINT.html 28/03/2004 21.29.14

GW-BASIC User's Guide

INT Function

Purpose:

To truncate an expression to a whole number.
Syntax:
INT(X)

Comments:
Negative numbers return the next lowest number.
The FI X and CI NT functions aso return integer values.

Examples:
PRI NT | NT(98. 89)
98
PRI NT I NT(-12. 11)
-13

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ NT.html 28/03/2004 21.29.14

GW-BASIC User's Guide

CSNG Function

Purpose:

To convert x to asingle-precision number.

Syntax:
CSNGE(x)

Comments:

x must be a numeric expression (seethe CINT and CDBL functions).

Examples:

10 A#=975. 3421222#
20 PRI NT A#; CSNG(A#)
RUN

975. 3421222 975. 3421

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ CSNG.html 28/03/2004 21.29.14

GW-BASIC User's Guide

CHAIN Statement

Purpose:
To transfer control to the specified program and pass (chain) variables to it from the current
program.
Syntax:
CHAI Nl MERGE] filenane[,[line][,[ALL][, DELETE range]]]

Comments:

VERGE overlays the current program with the called program.

Note

The called program must be an ASCI|I file (previously saved with the a option) if it isto be
merged (see the MERGE command).

fi | enane isthe name of the program that is called to be chained to. The .BAS extension is
assumed unless another is specified.

| i ne isaline number or an expression that corresponds to aline number in the called program. It
IS the starting point for execution of the called program. For example the following begins
execution of PROG1.BAS at line 1000:

10 CHAI'N "PROGL", 1000
If | i ne isomitted, execution begins at the first line.
| i ne isnot affected by a RENUMcommand. However, the line numbers in the specified range are
affected by a RENUMcommand.

ALL specifiesthat every variable in the current program is chained to the called program. For
example:

20 CHAI N "PROGL", 1000, ALL

If the ALL option is omitted, the current program must contain a COVIVON statement to list the
variables that are passed.

CHAI N executes a RESTORE before it runs the program that it is to be chained to. The READ
statement then gets the first item in the DATA statement. Reading will not resume where it left off
in the program that is being chained.

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basic/CHAIN.html (1 of 2)28/03/2004 21.29.15

GW-BASIC User's Guide

After an overlay is executed and used for a specific purpose, it is usually desirable to delete it so
that a new overlay may be brought in. To do this, use the DELETE command.

The CHAI N statement with the VERGE command |eaves the files open and preserves the current
option base setting.

If the MERGE command is omitted, the OPTI ON BASE setting is preserved, and CHAI N preserves
no variable types or user-defined functions for use by the chained program. That is, any DEFI NT,
DEFSNG, DEFDBL, DEFSTR, or DEF FN statement containing shared variables must be restated in
the chained program.

When using the merge command, place user-defined functions before any CHAI N VERGE
statements in the program. Otherwise, they will be undefined after the merge is complete.

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basic/CHAIN.html (2 of 2)28/03/2004 21.29.15

GW-BASIC User's Guide

MERGE Command

Purpose:

To merge the lines from an ASCI I program file into the program already in memory.

Syntax:
MERGE fil enane

Comments:

fil enane isavalid string expression containing the filename. If no extension is specified, then
GW-BASIC assumes an extension of .BAS.

The diskette is searched for the named file. If found, the program lines on the diskette are merged
with the lines in memory. After the VERGE command, the merged program resides in memory,

and GW-BASIC returns to the direct mode.

If the program being merged was not saved in ASCII code with the a option to the SAVE
command, a"Bad fil e node" error isissued. The program in memory remains unchanged.

If any line numbersin the file have the same number as linesin the program in memory, the lines
from the file replace the corresponding lines in memory.

Examples:
MERGE " SUBRTN'

Merges the file subrtn.bas with the program currently in memory, provided subrtn was
previously saved with the a option. If some of the program lines are the same as those in the
subrtn.bas file being merged, then the original program lines are replaced by the lines from
subrtn.bas.

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi /M ERGE.html 28/03/2004 21.29.15

GW-BASIC User's Guide

CHDIR Command

Purpose:

To change from one working directory to another.

Syntax:
CHDI R pat hnane

Comments:
pat hnane isastring expression of up to 63 characters.

To make sales the working directory on Drive A: and inventory the working directory on Drive
B: (assume A: isthe default drive), type the following commands:

CHDI R " SALES"
CHDI R " B: | NVENTORY"

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/CHDI R.html 28/03/2004 21.29.15

GW-BASIC User's Guide

CIRCLE Statement

Purpose:

To draw acircle, elipse, and angles on the screen during use of the Graphics mode.

Syntax:
Cl RCLE(xcenter, ycenter), radius[,[color][,[start],[end][, aspect]]]

Comments:

xcent er andycent er arethe x- and y- coordinates of the center of the éllipse, and r adi us is
the radius (measured along the major axis) of the ellipse. The quantitiesxcent er andycent er
can be expressions. The center attributes can use either absolute or relative coordinates.

col or specifiesthe color of the ellipse. Its value depends on the current screen mode. See the
COLOR and SCREEN statements for more information on using colors in different screen
modes. In the high-resolution mode, O indicates black and 1 indicates white. The default for the
high resolution modeis 1.

Thest art and end angle parameters are radian arguments between -2t and 2t which specify
where the drawing of the ellipseisto begin and end. If st art or end isnegative, the elipseis
connected to the center point with aline, and the angles are treated as if they are positive (note
that thisis different from adding 2m).

aspect describestheratio of the x radiusto they radius (x:y). The default aspect ratio depends
on the screen mode, but gives avisual circle in either graphics mode, assuming a standard
monitor screen aspect ratio of 4:3. If the aspect ratio islessthan 1, then theradiusis given in x-
pixels. If it is greater than 1, the radiusis given in y-pixels. In many cases, an aspect ratio of 1
gives better ellipses in the medium-resolution mode. This also causes the ellipse to be drawn
faster. The start angle may be less than the end angle.

Example 1:
10 SCREEN1: Cl RCLE(100, 100), 50

Draws acircle of radius 50, centered at graphics points 100x and 100y .

Example 2:

1 ' This will draw 17 elli pses
10 CLS

20 SCREEN 1

30 FOR R=160 TO 0 STEP-10

40 Cl RCLE (160,100),R,,,,5/18

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/CIRCLE.html (1 of 2)28/03/2004 21.29.15

GW-BASIC User's Guide

50 NEXT

Example 3:

10 'This will draw 5 spheres

20 GOTO 160

50 I F VERT GOTO 100

60 CIRCLE (X,Y),R C,,,.07

70 FOR1 =1 TO5

80 CIRCLE (X,Y),R C,,,1*.2: NEXT |
90 I F VERT THEN RETURN

100 I RCLE (X, Y),RC,,,1.3

110 I RCLE (X, Y), R C,,,1.9

120 CIRCLE (X,Y),R C,,,3.6

130 CIRCLE (X, Y),R C,,,9.8
140 I F VERT GOTO 6

150 RETURN

160 CLS: SCREEN 1: COLCR 0,1: KEY OFF: VERT=0
170 X=160: Y=100: C=1. R=50: GOSUB 50

180 X=30: Y=30: C=2: R=30: GOSUB 50

190 X=30: Y=169: GOSUB 50

200 X=289: Y=30: GOSUB 50

210 X=289: Y=169: GOSUB 50

220 LINE (30, 30)-(289,169),1

230 LINE (30, 169)-(289,30),1

240 LINE (30,169)-(289,30),1,B

250 Z$=I NKEY$: | F zZ$="" THEN 250

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/CIRCLE.html (2 of 2)28/03/2004 21.29.15

GW-BASIC User's Guide

COLOR Statement

Purpose:

To select display colors

Syntax:

COLOR [foreground] [, [background][, border]]
COLOR [background] [, [pal ette]]
COLOR [foreground] [, [background]]

Comments:

In general, COLOR allows you to select the foreground and background colors for the display. In
SCREEN 0 aborder color can aso be selected. In SCREEN 1 no foreground color can be selected,

but one of two four-color palettes can be selected for use with graphics statements. The different
syntaxes and effects that apply to the various screen modes are described below:

M ode
SCREEN 0O

Effect

Modifies the current default text foreground and background colors, and the
screen border. Thef or egr ound color must be an integer expression in the range
0-31. It isused to determine the "foreground” color in text mode, which isthe
default color of text. Sixteen colors can be selected with the integers 0-15. A
blinking version of each color can be selected by adding 16 to the color number;
for example, ablinking color 7 isequal to 7 + 16, or 23. Thus, the legal integer
range for f or egr ound is 0-31.

Thebackgr ound color must be an integer expression in the range 0-7, and isthe
color of the background for each text character. Blinking colors are not permitted.

Thebor der color isan integer expression in the range 0-15, and is the color
used when drawing the screen border. Blinking colors are not permitted.

If no arguments are provided to COLOR, then the default color for background and
border is black (COLOR 0), and for foreground, is as described in the SCREEN
statement reference pages.

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/COL OR.html (1 of 3)28/03/2004 21.29.16

GW-BASIC User's Guide

SCREEN 1

SCREEN 2

SCREEN 7-
SCREEN 10

In mode 1, the COLOR statement has a unique syntax that includesapal et t e

argument, which isan odd or even integer expression. This argument determines
the set of display colors to use when displaying particular color numbers.

For hardware configurations that do not have an IBM® Enhanced Graphics
Adapter (EGA), the default color settings for the pal ette parameter are equivalent
to the following:

COLOR ,0 'Sane as the next three PALETTE statenents
"l = green, 2 =red, 3 = yellow

COLOR ,1 'Sane as the next three PALETTE statenents
'l = cyan, 2 = magenta, 3 = white

With the EGA, the default color settings for the palette parameter are equivalent
to the following:

COLOR , 0 "Sanme as the next three PALETTE statenents
PALETTE 1,2 'Attribute 1 = color 3 (green)

PALETTE 2,4 'Attribute 2 = color 5 (red)

PALETTE 3,6 '"Attribute 3 = color 6 (brown)

COLOR ,1 "*Sane as the next three PALETTE statenents
PALETTE 1,3 'Attribute 1 = color 3 (cyan)

PALETTE 2,5 'Attribute 2 = color 5 (nagenta)

PALETTE 3,7 "Attribute 3 = color 15 (white)

Note that a COLOR statement will override previous PALETTE statements.

No effect. An"I | | egal function call" error message occursif COLORS
used in this mode.

In these modes, no bor der color can be specified. The graphics background is
given by thebackgr ound color number, which must be in the valid range of
color numbers appropriate to the screen mode. See the SCREEN statement
reference pages for more details. The f or egr ound color argument is the default
line drawing color.

Arguments outside valid numeric rangesresult in "1 | | egal function cal | " errors.

The foreground color may be the same as the background color, making displayed characters
invisible. The default background color is black, or color number O, for al display hardware
configurations and all screen modes.

With the Enhanced Graphics Adapter (EGA) installed, the PALETTE statement gives you

flexibility in assigning different display colors to the actual color-number ranges for the
f or egr ound, backgr ound, and bor der colors discussed above. See the PALETTE statement

reference pages for more details.

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/COL OR.html (2 of 3)28/03/2004 21.29.16

GW-BASIC User's Guide

For more information, see CIRCLE, DRAW, LINE, PAINT, PALETTE, PRESET, PSET, and
SCREEN

Examples:

The following series of examples show COLOR statements and their effectsin the various screen
modes:

SCREEN 0

COLOR 1, 2, 3 'foreground=1, background=2, border=3
SCREEN 1

COOR 1, O 'foreground=1, even pal ette nunber
COOR 2, 1 ‘foreground=2, odd pal ette nunber
SCREEN 7

COLOR 3, 5 ' foreground=3, background=5
SCREEN 8

COLOR 6, 7 ' f oreground=6, background=7
SCREEN 9

COOR 1, 2 ' foreground=1, background=2

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/COL OR.html (3 of 3)28/03/2004 21.29.16

GW-BASIC User's Guide

SCREEN Statement

Purpose:

To set the specifications for the display screen.

Syntax:
SCREEN [node] [,[colorswitch]][,[apage]]][,[Vvpage]]

Comments:

The SCREEN statement is chiefly used to select a screen mode appropriate for a particular display-
hardware configuration. Supported hardware configurations and screen modes are described

below.

MDPA with Monochrome Display: Mode O

The IBM Monochrome Display and Printer Adapter (MDPA) is used to connect only to a
monochrome display. Programs written for this configuration must be text mode only.
CGA with Color Display: ModesO, 1, and 2

The IBM Color Graphics Adapter (CGA) and Color Display are typically paired with each other.
This hardware configuration permits the running of text mode programs, and both medium-
resolution and high-resol ution graphics programs.

EGA with Color Display: ModesO, 1, 2, 7, and 8

Thefive screen modes 0, 1, 2, 7, and 8 allow you to interface to the IBM Color Display wheniitis
connected to an IBM Enhanced Graphics Adapter (EGA). If EGA switches are set for CGA
compatibility, programs written for modes 1 and 2 will run just as they would with the CGA.
Modes 7 and 8 are similar to modes 1 and 2, except that awider range of colorsis availablein
modes 7 and 8.

EGA with Enhanced Color Display: ModesO, 1, 2, 7, and 8

With the EGA/IBM Enhanced Display configuration, modes 0, 1, 2, 7, and 8 are virtually
identical to their EGA/Color Display counterparts. Two possible differences are as follows:

. Inmode O, the border color cannot be the same as for the EGA/Color Display because the
border cannot be set on an Enhanced Color Display when it isin 640 x 350 text mode.

« Thequality of the text is better on the Enhanced Color Display (an 8 x 14 character box
for Enhanced Color Display versus an 8 x 8 character box for color display).

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ SCREENS.html (1 of 7)28/03/2004 21.29.16

GW-BASIC User's Guide

EGA with Enhanced Color Display: Mode 9

The full capability of the Enhanced Color Display is taken advantage of in this mode. Mode 9
allows the highest resolution possible for the EGA/Enhanced Color Display configuration.
Programs written for this mode will not work for any other hardware configuration.

EGA with M onochrome Display: Mode 10

The IBM Monochrome Display can be used to display monochrome graphics at avery high
resolution in this mode. Programs written for this mode will not work for any other hardware
configuration.

Arguments

The mode argument is an integer expression with legal values 0, 1, 2, 7, 8, 9, and 10. All other
values areillegal. Selection of a mode argument depends primarily on your program's anticipated
display hardware, as described above.

Each of the SCREEN modes is described individually in the following paragraphs.

SCREEN 0

. Text mode only

. Either 40 x 25 or 80 x 25 text format with character-box size of 8 x 8 (8 x 14 with EGA)
. Assignment of 16 colorsto any of 2 attributes

. Assignment of 16 colorsto any of 16 attributes (with EGA)

SCREEN 1
« 320 x 200 pixel medium-resolution graphics
. 80 x 25 text format with character-box size of 8 x 8
. Assignment of 16 colorsto any of 4 attributes

« Supports both EGA and CGA
. 2 bits per pixel

SCREEN 2

« 640 x 200 pixel high-resolution graphics

. 40 x 25 text format with character-box size of 8 x 8

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ SCREENS.html (2 of 7)28/03/2004 21.29.16

GW-BASIC User's Guide

Assignment of 16 colorsto any of 2 attributes
Supports both EGA and CGA
1 bit per pixel

SCREEN 7

320 x 200 pixel medium-resolution graphics
40 x 25 text format with character-box size of 8 x 8

2, 4, or 8 memory pages with 64K, 128K, or 256K of memory, respectively, installed on
the EGA

Assignment of any of 16 colorsto 16 attributes
EGA required
4 bit per pixel

SCREEN 8

640 x 200 pixel high-resolution graphics
80 x 25 text format with character-box size of 8 x 8

1, 2, or 4 memory pages with 64K, 128K, or 256K of memory, respectively, installed on
the EGA

Assignment of any of 16 colorsto 16 attributes
EGA required
4 bits per pixel

SCREEN 9

640 x 350 pixel enhanced-resolution graphics
80 x 25 text format with character-box size of 8 x 14

Assignment of either 64 colorsto 16 attributes (more than 64K of EGA memory), or 16
colorsto 4 attributes (64K of EGA memory)

Two display pagesif 256K of EGA memory installed
EGA required
2 bits per pixel (64K EGA memory) 4 bits per pixel (more than 64K EGA memory)

file:///CJ/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ SCREENS.html (3 of 7)28/03/2004 21.29.16

GW-BASIC User's Guide

SCREEN 10

« 640 x 350 enhanced-resolution graphics

. 80 x 25 text format with character-box size of 8 x 14
. Two display pagesif 256K of EGA memory installed
. Assignment of up to 9 pseudo-colorsto 4 attributes

. EGA required

. 2 bits per pixel

The following are default attributes for SCREEN 10, monochrome display:
Attribute Value Displayed Pseudo-Color

0 Off

1 On, normal intensity
2 Blink

3 On, high intensity

The following are color values for SCREEN 10, monochrome display:

Color Value Displayed Pseudo-Color

Off

Blink, off to on

Blink, off to high intensity

Blink, on to off

On

Blink, on to high intensity

Blink, high intensity to off

Blink, high intensity to on

High intensity

For both composite monitorsand TV, thecol or swi t ch isanumeric expression that is either
true (non-zero) or false (zero). A value of zero disables color and permits display of black and
white images only. A nonzero value permits color. The meaning of the col or swi t ch argument
isinverted in SCREEN mode O.

coOoNO Ok~ WNPEFO

For hardware configurations that include an EGA and enough memory to support multiple-screen
pages, two arguments are available. These apage and vpage arguments determine the "active'
and "visua" memory pages. The active page is the areain memory where graphics statements are
written; the visual page isthe area of memory that is displayed on the screen.

Animation can be achieved by alternating the display of graphics pages. The goal isto display the

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/GW%20Basi c/SCREENS.html (4 of 7)28/03/2004 21.29.16

GW-BASIC User's Guide

visual page with completed graphics output, while executing graphics statementsin one or more
active pages. A page is displayed only when graphics output to that page is complete. Thus, the
following program fragment is typical:

SCREEN 7,, 1, 2 ‘'work in page 1, show page 2

G aphi cs output to page 1
whil e view ng page 2

SCREEN 7,,2,1 'work in page 2, show page 1

G aphi cs output to page 2
whil e view ng page 1

The number of pages available depends on the SCREEN mode and the amount of available
memory, as described in the following table:

Table?2

SCREEN M ode Specifications

Attribute Color EGA
Mode Resolution Range Range Memory Pages Page Size

0 40-column text NA 0-152 NA 1 2K
80-column text NA 0-152 NA 1 4K
1 320%x200 0-3b 0-3 NA 1 16K
2 640x200 0-1b 0-1 NA 1 16K
64K 2
7 320%x200 0-15 0-15 128K 4 32K
256K 8
64K 1
8 640%x200 0-15 0-15 128K 2 64K
256K 4
0-3 0-15 64K 1 64K
9 640%x350 0-15 0-63 128K 1 128K
0-15 0-63 256K 2
128K 1
10 640x350 0-3 0-8 256K 5 128K

a Numbers in the range 16-31 are blinking versions of the colors 0-15.
b Attributes applicable only with EGA.

Attributesand Colors

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/GW%20Basi ¢/ SCREENS.html (5 of 7)28/03/2004 21.29.16

GW-BASIC User's Guide

For various screen modes and display hardware configurations, different attribute and color
settings exist. (Seethe PALETTE statement for a discussion of attribute and color number.) The

majority of these attribute and color configurations are summarized in the following table:

Table3
Default Attributesand Colorsfor Most Screen M odes

Attributesfor Mode Color Display Monochrome Display
19 2 0,789 Numberc Color Numberc Color
0 0O O 0 Black 0 Off

1 1 Blue (Underlined)a

2 2 Green 1 Ona

3 3 Cyan 1 Ona

4 4 Red 1 Ona

)) Magenta 1 Ona

6 6 Brown 1 Ona

7 7 White 1 Ona

8 8 Gray 0 Off

. High intensity

9 9 Light Blue (underlined)

10 10 Light Green 2 High intensity
1 11 11 Light Cyan 2 High intensity

12 12 Light Red 2 High intensity
2 13 13 Light Magenta 2 High intensity

14 14 Yellow 2 High intensity
3 1 15 15 High-intensity White 0 Off

a Off when used for background.
b With EGA memory > 64K.
¢ Only for mode O monochrome.

The default foreground colors for the various modes are given in the following table:

Table4
Default Foreground Colors

Default foreground attribute Default foreground color
Screen Color/Extended Monochrome Color/Extended Monochrome
mode Displaya Display Displaya Display
0 7 7 7 1
1 3 NA 15 NA
2 1 NA 15 NA

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ SCREENS.html (6 of 7)28/03/2004 21.29.16

GW-BASIC User's Guide

7 15 NA 15 NA
8 15 NA 15 NA
9 3b NA 63 NA
10 NA 3 NA 8

a|BM Enhanced Color Display
b 15 if greater than 64K of EGA memory
NA=Not Applicable

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/GW%20Basi c/SCREENS.html (7 of 7)28/03/2004 21.29.16

GW-BASIC User's Guide

PALETTE, PALETTE USING Statements

Purpose:

Changes one or more of the colorsin the palette

Syntax:

PALETTE [attri bute, col or]
PALETTE USI NG i nt eger -array-nane (arrayi ndex)

Comments:

The PALETTE statement works only for systems equipped with the IBM® Enhanced Graphics

Adapter (EGA). A GW-BASIC palette contains a set of colors, with each color specified by an
attribute.Eachattribute isparedwithan actual display col or. Thiscol or determines
the actual visual color on the screen, and is dependent on the setting of your screen mode and
your actual physical hardware display.

PALETTE with no arguments sets the palette to a known initial setting. This setting is the same as
the setting when colors are first initialized.

If arguments are specified, col or will be displayed whenever at t ri but e isspecified in any
statement that specifies a color. Any color changes on the screen occur immediately. Note that
when graphics statements use color arguments, they are actually referring to attributes and not
actual colors. PALETTE pairs attributes with actual colors.

For example, assume that the current palette consistsof col ors 0, 1, 2, and3.The
following DRAWStatement:

DRAW " C3L100"

selects attribute 3, and draws aline of 100 pixels using the color associated with the attribute 3, in
this case, also 3. If the statement:

PALETTE 3, 2

IS executed, then the color associated with attribute 3 is changed to color 2. All text or graphics
currently displayed on the screen using attribute 3 are instantaneously changed to color 2. All text
or graphics subsequently displayed with attribute 3 will also be displayed in color 2. The new
palette of col or s will contain 0, 1, 2, and 2.

With the US| NG option, all entries in the palette can be modified in one PALETTE statement. The

i nt eger - ar r ay- nanme argument is the name of an integer array, and the ar r ayi ndex
specifiesthe index of thefirst array element inthei nt eger - ar r ay- nane to use in setting your
palette. Each attribute in the palette is assigned a corresponding color from thisinteger array. The

file:///C|/Documents%20and%620Settings/L orenzo/Desktop/ GW%20Basi c/PALETTE.html (1 of 3)28/03/2004 21.29.16

GW-BASIC User's Guide

array must be dimensioned large enough to set all the palette entries after ar r ayi ndex. For
example, if you are assigning colorsto all 16 attributes, and the index of the first array element
giveninyour PALETTE USI NG statement is 5, then the array must be dimensioned to hold at

least 20 elements (since the number of elements from 5-20, inclusive, is 16):
DI M PALY% 20)

PALETTE USI NG PAL% 5)

If thecol or argument in an array entry is -1, then the mapping for the associated at t ri but e is
not changed. All other negative numbers areillegal valuesfor col or .

Y ou can use the color argument in the COLOR statement to set the default text color. (Remember

that color argumentsin other BASIC statements are actually what are called at t r i but es inthis
discussion.) This color argument specifies the way that text characters appear on the display
screen. Under acommon initial palette setting, points colored withtheat t ri but e 0 appear as

black on the display screen. Using the PALETTE statement, you could, for example, change the
mapping of at t ri but e 0 from black to white.

Remember that a PALETTE statement executed without any parameters assigns all at t ri but es
their default col or s.

Thefollowing tablelistsat t ri but e and col or ranges for various monitor types and screen
modes:

Tablel
SCREEN Color and Attribute Ranges
SCREEN Attribute Color
Mode Monitor Attached Adapter Range Range
0 Monochrome MDPA NA NA
Monochrome EGA 0-15 0-2
Color CGA NA 0-312
Color/Enhancedd EGA 0-312 0-15
1 Color CGA NA 0-3
Color/Enhancedd EGA 0-3 0-15
2 Color CGA NA 0-1
Color/Enhancedd EGA 0-1 0-15
7 Color/Enhancedd EGA 0-15 0-15
8 Color/Enhancedd EGA 0-15 0-15
9 Enhancedd EGAP 0-3 0-15

file:///C|/Documents%20and%620Settings/L orenzo/Desktop/ GW%20Basi c/PALETTE.html (2 of 3)28/03/2004 21.29.16

GW-BASIC User's Guide

Enhancedd EGAcC 0-15 0-63
10 Monochrome EGA 0-3 0-8
a Attributes 16-31 refer to blinking versions of colors 0-15
b With 64K of EGA memory
¢ With greater than 64K of EGA memory
d |BM Enhanced Color Display
NA = Not Applicable
CGA =1BM Caolor Graphics Adapter
EGA = IBM Enhanced Graphics Adapter
MDPA = IBM Monochrome Display and Printer Adapter

See the SCREEN statement reference page for the list of colors available for various SCREEN
mode, monitor, and graphics adapter combinations.

Examples:
PALETTE 0, 2 ' Changes all points colored with attribute O
"to color 2
PALETTE O, -1 'Does not nodify the palette

PALETTE USI NG A% 0) ' Changes each palette entry. Since the
array is initialized to zero when it

'‘is first declared, all attributes are
'now mapped to display color zero. The
‘screen w |l now appear as one single

color. However, it will still be

' possi bl e to execute BASI C statenents.

PALETTE "Sets each palette entry to its appropriate
“initial display color. Actual initial colors
' depend on your screen hardware configuration.

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/PALETTE.html (3 of 3)28/03/2004 21.29.16

GW-BASIC User's Guide

DRAW Statement

Purpose:

To draw afigure.

Syntax:
DRAW stri ng expression

Comments:

The DRAWSstatement combines most of the capabilities of the other graphics statements into an

object definition language called Graphics Macro Language (GML). A GML command isa
single character within a string, optionally followed by one or more arguments.

The DRAWSstatement is valid only in graphics mode.

Movement Commands;

Each of the following movement commands begins movement from the current graphics position.
Thisisusually the coordinate of the last graphics point plotted with another GML command,
LI NE, or PSET. The current position defaults to the center of the screen (160,100 in medium

resolution; 320,100 in high resolution) when a program is run. Movement commands move for a
distance of scale factor *n, where the default for n is 1; thus, they move one point if nisomitted
and the default scale factor is used.

Command M oves

Un up

Dn down

Ln |eft

RN right

En diagonally up and right
Fn diagonally down and right
Gn diagonally down and left
Hn diagonally up and left

This command moves as specified by the following argument:

MK, y Move absolute or relative. If x ispreceded by a+ or -, x and y are added to the

current graphics position, and connected to the current position by aline.
Otherwise, alineisdrawnto point x, y from the current position.
The following prefix commands may precede any of the above movement commands:

B Move, but plot no points.

file:///C|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/ DRAW.html (1 of 3)28/03/2004 21.29.17

GW-BASIC User's Guide

N Move, but return to original position when done.
The following commands are also available:

An Set anglen. n may range from O to 3, where 0is0°, 1is90°, 2is180°,
and 3is 270°. Figures rotated 90° or 270° are scaled so that they will
appear the same size as with 0° or 180° on a monitor screen with the
standard aspect ratio of 4:3.

TAN Turn angle n. n can be any value from negative 360 to positive 360. If the
value specified by n is positive, it turns the angle counter-clockwise. If the
value specified by n is negative, it turns clockwise.

Cn Set color n. Seethe COLOR, PALETTE, and SCREEN statements for
discussions of valid colors, numbers and attributes.
Sn Set scale factor. n may range from 1 to 255. n isdivided by 4 to derive the

scale factor. The scale factor is multiplied by the distances given with U,
D, L, R, E, F, G H, or relative Mcommands to get the actual distance
traveled. The default for Sis4.

xstring; vari abl eExecute substring. This command executes a second substring from a
string, much like GOSUB. One string executes another, which executes a

third, and so on.

stri ng isavariable assigned to a string of movement commands.
Ppai nt, boundary Specifiesthe colorsfor agraphicsfigure and creates afilled-in figure.

pai nt specifieswhat color you want the figure filled in with.

boundar y specifiesthe border color (outline).

Seethe COLOR, PALETTE, and SCREEN statements for discussions of
valid colors, numbers and attributes.

Y ou must specify values for both pai nt and boundar y when used.
Thiscommand (Ppai nt , boundar y) does not paint color tiling.

Numeric Arguments:

Numeric arguments can be constantslike "123" or "=vari abl e; ", wherevar i abl e isthe
name of avariable.

When you use the second syntax, "=var i abl e; ", the semicolon must be used. Otherwise, the
semicolon is optional between commands.

Y ou can aso specify variables using VARPTR$(var i abl e) .
Example 1:

file:///C|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/ DRAW.html (2 of 3)28/03/2004 21.29.17

GW-BASIC User's Guide

To draw abox in medium resolution:

10 SCREEN 1
20 A=20
30 DRAW " U=A; R=A; D=A; L=A"

Example 2:

The aspect ratio to draw a square on a standard screen is 4:3, as shown below:

To draw a 96 pixel-wide square on a 640 x 200 pixel screen (SCREEN 2), do the following
calculations:

Hori zontal value = 96

Vertical value = 96*(200/640)*(4/3)
or

Vertical value = 40

Hori zontal value = 40*(640/200)*(3/4)

The horizontal values equals 4/3 of the vertical values.

Example 3:

To draw atriangle in medium resolution:

10 CLS
20 SCREEN 1

30 PSET (60, 125)

40 DRAW "E100; F100; L199"

file:///C|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/ DRAW.html (3 of 3)28/03/2004 21.29.17

GW-BASIC User's Guide

LINE Statement

Purpose:

To draw lines and boxes on the screen.

Syntax:
LINE [(x1,y1l)]-(x2,y2) [,[attribute][,B[F]][,style]]

Comments:
x1,y1l and x2, y2 specify the end points of aline.
Resolution mode is determined by the SCREEN statement.

at tri but e specifiescolor or intensity of the displayed pixel (seethe COLOR and PALETTE
statements).

B (box) draws a box with the points (x1, y1) and (x2, y2) at opposite corners.

BF (filled box) draws abox (as,B) and fillsin the interior with points.

Note
If at t ri but e isnot specified, two commas must be used before B or BF.

LI NE supports the additional argument st yI e. st yl e isa 16-bit integer mask used when putting
down pixels on the screen. Thisis called line-styling.

Each time LI NE stores a point on the screen, it uses the current circulating bit in style. If that bit
IS0, no store will be done. If the bit isa 1, then anormal store is done. After each point, the next
bit positionin st yl e is selected.

SinceaObitinst yl e does not clear out the old contents, you may wish to draw a background
line before a styled line, in order to force a known background.

st yl e isused for normal lines and boxes, but isillegal for filled boxes.

If the BF parameter isused with the st y| e parameter, a"Synt ax" error will occur.

When out-of-range values are given in the LI NE statement, the coordinates that are out of range
are not visible on the screen. Thisis called line-clipping.

In the syntax shown here, the coordinate form STEP (x of fset, y of fset) isnot shown.
However, this form can be used wherever a coordinate is used.

file:///Cl/Documents¥%20and¥620Settings/L orenzo/Desktop/GW%20Basi c/L INE.html (1 of 3)28/03/2004 21.29.17

GW-BASIC User's Guide

InaLl NE statement, if the relative form is used on the second coordinate, it isrelative to the first
coordinate.

After aL| NE statement, the last referenced pointisx2, y?2.
The ssimplest form of LI NE isthe following:
LI NE - (xz,yz)

This draws aline from the last point referenced to the point (x2, y2) in the foreground color.

Examples:
LI NE (0, 100) - (639, 100)

Draws a horizontal line which divides the screen in half from top to bottom in SCREEN 2.

LI NE (160, 0)- (160, 199)
Draws avertical line which divides the screen in half from left to right in SCREEN 1; makesa
one-quarter/three-quarter division in SCREEN 2.

LI NE (0, 0)-(319, 199)
Draws a diagonal line from the top left to lower right corner of the screen in SCREEN 1, and from
the upper left corner to the center bottom of the screen in SCREEN 2.

LI NE (10, 10) - (20, 20), 2

Drawsalinein color 2 if SCREEN 1 ispreviously specified (see the COLOR statement).

10 CLS
20 LINE - (RND*319, RND*199), RND* 4
30 GOTO 20

Draw lines forever using random attributes.

10 FOR X=0 TO 319
20 LINE (X, 0)-(X, 199), X AND 1
30 NEXT

Draws an alternating pattern: line on, line off.

10 CLS
20 LI NE - (RND*639, RND*199) , RND* 2, BF
30 GOTO 20

Draws lines all over the screen.
LI NE (0, 0)-(100, 175),,B

Draws a square box in the upper left corner of the screen.

file:///CJ/Documents%20and¥620Settings/L orenzo/Desktop/GW%20Basi c/L INE.html (2 of 3)28/03/2004 21.29.17

GW-BASIC User's Guide

LI NE (0, 0)- (100, 175), , BF

Draws the same box and fillsit in.
LI NE (0, 0)-(100, 175), 2, BF

Draws the same filled box in magentain SCREEN 1.
LI NE (0, 0)- (100, 350),, B

Draws the same box if SCREEN 2 is specified.

400 SCREEN 1
410 LI NE(160, 100) - (160, 199), , , &HCCCC

Draws a vertical dotted line down the center of the screen in SCREEN 1.

220 SCREEN 2
230 LI NE(300, 100) - (400, 50), , B, &HAAAA

Draws arectangle with adotted line in SCREEN 2.
LI NE (0, 0)-(160, 100), 3, , &HFF00

Draws a dotted line from the upper left corner to the screen center.

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/L INE.html (3 of 3)28/03/2004 21.29.17

GW-BASIC User's Guide

PAINT Statement

Purpose:

Tofill in agraphics figure with the selected attribute.

Syntax:

PAINT (x start,y start)[,paint attribute[,border attribute][, bckgrnd
attribute]]

Comments:

The PAI NT statement fillsin an arbitrary graphics figure of the specified border attribute with the

specified paint attribute. If pai nt at tri but e isnot given, it will default to the foreground
attribute (3 or 1). border attri but e defaultsto pai nt attri but e. Seethe COLOR and

PALETTE statements for more information.
PAI NT must start on anon-border point, otherwise, PAI NT will have no effect.

PAI NT can fill any figure, but painting jagged edges or very complex figures may result in an
"Qut of nenory" error. The CLEAR statement may be used to increase the amount of stack
Space available.

Points that are specified outside the limits of the screen will not be plotted and no error will occur.

See the SCREEN statement for a description of the different screen modes.

Paint Tiling

PAI NT tiling issimilar to LI NE styling. Like L1 NE, PAI NT looks at atiling mask each time a
point is put down on the screen.

If pai nt attribute isomitted, the standard foreground attribute is used.

If pai nt attri buteisanumericformula, then the number must be avalid color, and it is used
to paint the area as before.

If pai nt attributeisastring formula, then tiling is performed as follows:
Thetile mask is always eight bits wide and may be from 1 to 64 bytes long.

Each byte in the tile string masks eight bits along the x axis when putting down points. Each byte
of thetile string is rotated as required to align along the y axis, such that:

tile byte mask=y MOD tile_length

wherey isthe position of the graphics cursor on the y-axis.

file///Cl/Documents%20and¥620Settings/L orenzo/Desktop/GW2%620Basic/PAINT.html (1 of 3)28/03/2004 21.29.17

GW-BASIC User's Guide

tile_ | engthisthelengthin bytesof thetile string defined by the user (1 to 64 bytes).

Thisis done so that the tile pattern is replicated uniformly over the entire screen (asif aPAI NT
(0,0).. wereused).
X I ncreases --> Bit of Tile Byte
X,y 87654321
0,0 | x| x| x|x|x]|x|x|x] Tile byte 1
0,1 | x| x| x| x|x]|x|x|x] Tile byte 2
0,2 | x| x| x| x| x| x|x|x] Tile byte 3

0,63 | x| x| x| x| x| x| x| x| Tile byte 64
(maxi mrum al | owed)

In high-resolution mode (SCREEN 2), the screen can be painted with Xs by the following
Sstatement:

PAI NT (320, 100), CHR$(&H81) +CHR$(&H42) +CHR$(&H24) +CHR$(&H18) +CHR
$(&H18) +CHR$(&H24) +CHRS$(&H81)
This appears on the screen as follows:

X | ncreases -->

0,0 Ix] | | | I | Ix] CHR$(&HB1) Tile byte 1
0,12 | Ix] | | | Ix]I | CHR$(&H42) Tile byte 2
0,2 | Ix| | Ix| | | CHRS(&H24) Tile byte 3
0,3 | | IxIx| | | | CHRS(&H18) Tile byte 4
0,4 | | | IxIx] | | | CHR$(&HL8) Tile byte 5
0,5 | | Ixl | Ix]| | | CHR$(&H4) Tile byte 6
0,6 | |Ix] | | | Ix] | CHRS(&H42) Tile byte 7
0,7 IxI | | | | | Ix] CHR$(&HB1) Tile byte 8

Since there are two bits per pixel in medium-resolution mode (SCREEN 1), each byte of thetile

pattern only describes four pixels. In this case, every two bits of the tile byte describes one of the
four possible colors associated with each of the four pixelsto be put down.

bckgrnd attri but e specifiesthe background tile pattern or color byte to skip when checking
for boundary termination. bckgr nd attri but e isastring formulareturning one character.
When omitted, the default is CHR$(0) .

Occasionally, you may want to paint tile over an already painted areathat is the same color as
two consecutive linesin the tile pattern. PAI NT quits when it encounters two consecutive lines of

the same color as the point being set (the point is surrounded). It is not possible to draw
alternating blue and red lines on ared background without bckgr nd at t ri but e. PAI NT stops

file:///Cl/Documents%20and¥620Settings/L orenzo/Desktop/GW2620Basic/PAINT.html (2 of 3)28/03/2004 21.29.17

GW-BASIC User's Guide

as soon as the first red pixel isdrawn. By specifying red (CHR$(&HAA)) as the background
attribute, the red line is drawn over the red background.

Y ou cannot specify more than two consecutive bytesin the tile string that match the background
attribute. Specifying more than two resultsinan "l | | egal function cal | " error.

Examples:

10 CLS
20 SCREEN 1

30 LINE (0, 0)-(100, 150), 2, B
40 PAINT (50, 50), 1, 2

50 LOCATE 20, 1

The PAI NT statement in line 40 fills in the box drawn in line 30 with color 1.

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/PAINT.html (3 of 3)28/03/2004 21.29.17

GW-BASIC User's Guide

PRESET and PSET Statements

Purpose:

To display apoint at a specified place on the screen during use of the graphics mode.

Syntax:

PRESET(x,y) [, col or]
PSET(x, y)[, col or]

Comments:

(x,y) representsthe coordinates of the point.

col or isthe color of the point.

Coordinates can be given in either absolute or relative form.

Absolute Form

(absol ute x, absol ute y)ismorecommon and refers directly to a point without regard to
the last point referenced. For example:

(10, 10)

Relative Form

STEP (x offset, y offset) isapoint relative to the most recent point referenced. For
example:
STEP(10, 10)

Coordinate values can be beyond the edge of the screen. However, values outside the integer
range (-32768 to 32767) cause an "Over f | ow" error.

(0,0) is aways the upper-left corner and (0,199) is the lower-left corner in both high resolution
and medium resolution.

See the COLOR and PALETTE statements for more information.

If the value for color isgreater than 3, an "I | | egal function cal | " error isreturned.
Example 1:
Thefollowing draws a diagonal line from (0,0) to (100,100).

10 CLS

20 SCREEN 1

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basic/PRESET .html (1 of 2)28/03/2004 21.29.18

GW-BASIC User's Guide

30 FOR [=0 TO 100
40 PSET (1,1)

50 NEXT

60 LOCATE 14, 1

Example 2:

The following clears out the line by setting each pixel to 0.

40 FOR 1=100 TO 0 STEP -1
50 PSET(1,1),0
60 NEXT |

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basi¢/PRESET .html (2 of 2)28/03/2004 21.29.18

GW-BASIC User's Guide

CLEAR Command

Purpose:

To set al numeric variables to zero, al string variables to null, and to close all open files. Options
set the end of memory and reserve the amount of string and stack space available for use by GW-
BASIC.
Syntax:

CLEAR], [expressionl] [, expressi on2]]

Comments:

expressi onl isamemory location that, if specified, sets the maximum number of bytes
available for use by GW-BASIC.

expr essi on2 sets aside stack space for GW-BASIC. The default is the previous stack space
size. When GW-BASIC isfirst executed, the stack spaceis set to 512 bytes, or one-eighth of the
available memory, whichever is smaller. GW-BASIC alocates string space dynamically. An
"Qut of String Space" error occursonly if thereisno free memory left for GW-BASIC to

use.
The CLEAR command:

. Closesadll files
. Clearsal coOvMoN and user variables

. Resetsthe stack and string space
. Releasesall disk buffers

« Turnsoff any sound

« Resets sound to music foreground
. ResetsPENtO of f

. Resets STRI Gto of f
. Disables ON ERROR trapping

Examples:
CLEAR

Zeroes variables and nulls al strings.

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basic/CLEAR.html (1 of 2)28/03/2004 21.29.18

GW-BASIC User's Guide

CLEAR 32768

Zeroes variables, nulls strings, protects memory above 32768, does not change the stack space.
CLEAR , , 2000

Zeroes variables, nulls strings, allocates 2000 bytes for stack space, and uses all available
memory in the segment.

CLEAR , 32768, 2000

Zeroes variables, nulls strings, protects memory above 32768, and allocates 2000 bytes for stack
space.

file:///IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/CLEAR.html (2 of 2)28/03/2004 21.29.18

GW-BASIC User's Guide

CLOSE Statement

Purpose:

To terminate input/output to adisk file or adevice.

Syntax:
CLOSE [[#]filenunber[,[#]filenunber]...]

Comments:

filenunmber isthe number under which the file was opened. The association between a
particular file or device and file number terminates upon execution of a CLOSE statement. The

file or device may then be reopened using the same or adifferent file number. A CLOSE statement
with no file number specified closes al open files and devices.

A CLOSE statement sent to afile or device opened for sequential output writes the final buffer of
output to that file or device.

The END, NEW RESET, SYSTEM or RUN and LOAD (without r option) statements always close all
files or devices automatically. STOP does not closefiles.

Examples:
250 CLCSE

This closes all open devices and files.
300 CLOSE 1, #2, #3

Closes dll files and devices associated with file numbers 1, 2, and 3.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ CL OSE.html 28/03/2004 21.29.18

GW-BASIC User's Guide

CL S Statement

Purpose:

To clear the screen.

Syntax:
CLS [n]

Comments:
n isone of the following values:
Valueof n Effect

0 Clears the screen of all text and graphics
1 Clears only the graphics viewport
2 Clears only the text window

If the graphics viewport is active, CLS without argument clears only the viewport. If the graphics
viewport isinactive, CLS clears the text window.

If the screen isin apha mode, the active page is cleared to the currently selected background
color (see the SCREEN and COL OR statements).

If the screen isin graphics mode, the entire screen buffer is cleared to background color.

The screen may aso be cleared by pressing cTRL-HOME, or by changing the screen mode with the
SCREEN or W DTH statements.

CLS returns the cursor to the upper-left corner of the screen, and sets the last point referenced to
the center of the screen.

If the VI EWstatement has been used, CLS clears only the last viewport specified.

Examples:
1 CLS

This clears the screen.

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/CL S.html 28/03/2004 21.29.18

GW-BASIC User's Guide

COM(n) Statement

Purpose:
To enable or disable trapping of communications activity to the specified communications
adapter.

Syntax:
COM n) ON
COM n) OFF
COM n) STOP
Comments:

n isthe number of the communications adapter 1 or 2.

ExecuteaCOM n) ON statement before ON COM n) statement to allow trapping. After COM n)
ON, if anonzero number is specified inthe ON COM n) statement, BASIC checks every new
statement to see if any characters have come in the communication adapter.

With COM n) COFF, no trapping takes place, and all communications activity will be lost.

With COM n) STOP, no trapping takes place. However, any communication that takes place will
be remembered so that immediate trapping will occur when COM n) ONis executed.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/COMN.html 28/03/2004 21.29.19

GW-BASIC User's Guide

COMMON Statement

Purpose:

To pass variables to a chained program.

Syntax:
COMMON vari abl es

Comments:

vari abl es are one or more variables, separated by commas, that you want to passto the
chained program.

The COVWON statement is used in conjunction with the CHAI N statement.

COVVON statements may appear anywhere in a program, although it is recommended that they
appear at the beginning.

Any number of COVIVON statements may appear in a program, but the same variable cannot
appear in more than one COVMMON statement. To pass all variables using the CHAI N statement, use
the al option, and omit the COVIVON statement.

Place parentheses after the variable name to indicate array variables.

Examples:

100 COOMON A, B, C, D), G
110 CHAI N " A: PROG3"

This example chains to program PROG3.BAS on disk drive A:, and passes the array D along with
the variables A, B, C, and string G$.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basic/COM M ON.html 28/03/2004 21.29.19

GW-BASIC User's Guide

CONT Command

Purpose:

To continue program execution after a break.

Syntax:
CONT

Comments:

Resumes program execution after CTRL-BREAK, STOP, or END halts a program. Execution
continues at the point where the break happened. If the break took place during an | NPUT
statement, execution continues after reprinting the prompt.

CONT isuseful in debugging, in that it lets you set break points with the STOP statement, modify
variables using direct statements, continue program execution, or use GOTOto resume execution
at a particular line number. If aprogram line is modified, CONT will be invalid.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/CONT.html| 28/03/2004 21.29.19

GW-BASIC User's Guide

COS Function

Purpose:

To return the cosine of the range of x.

Syntax:
COS(x)

Comments:

x must be the radians. COS is the trigonometric cosine function. To convert from degreesto
radians, multiply by 1/180.

COs(x) iscaculated in single precision unlessthe/ d switch is used when GW-BASIC is
executed.

Example 1.

10 X=2*COS(. 4)
20 PRINT X
RUN

1. 842122

Example 2:

10 Pl =3. 141593

20 PRI NT COS(PI)

30 DEGREES=180

40 RADI ANS=DEGREES* PI / 180
50 PRI NT COS(RADI ANS)

RUN

-1

-1

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ COS.html 28/03/2004 21.29.19

GW-BASIC User's Guide

CSRLIN Variable

Purpose:

To return the current line (row) position of the cursor.

Syntax:
y=CSRLI N

Comments:

y isanumeric variable receiving the value returned. The value returned is within the range of 1 to
25.

The CSRLI N variable returns the vertical coordinate of the cursor on the active page (see the
SCREEN statement).

x=P0OS(0) returns the column location of the cursor. The value returned is within the range of 1
to 40, or 1 to 80, depending on the current screen width (see the POS function).

Examples:

10 Y=CSRLI N
20 X=POS(0)

30 LOCATE 24, 1
40 PRI NT "HELLO'
50 LOCATE Y, X

RUN

HELLO

The CSRLI Nvariablein line 10 records the current line.
The PGS function in line 20 records the current column.
In line 40, the PRI NT statement displays the comment "HELL ' on the 24th line of the screen.

The LOCATE statement in line 50 restores the position of the cursor to the original line and
column.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ CSRLIN.html 28/03/2004 21.29.20

GW-BASIC User's Guide

POS Function

Purpose:

To return the current cursor position.

Syntax:
POS(¢)

Comments:
The leftmost positionis 1.

¢ isadummy argument.

Examples:

10 CLS
20 W DTH 80

30 A$=I NKEY$: | F A$=""THEN GOTO 30 ELSE PRI NT A$:
40 | F POS(X)>10 THEN PRI NT CHR$(13):

50 GOTO 30

Causes a carriage return after the 10th character is printed on each line of the screen.

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/POS.html 28/03/2004 21.29.20

GW-BASIC User's Guide

CVI, CVS, CVD Functions

Purpose:

To convert string values to numeric values.,

Syntax:
CVI (2-byte string)
CVS(4-Dbyte string)
CVD(8-byte string)
Comments:

Numeric values read in from a random-access disk file must be converted from strings back into
numbers if they are to be arithmetically manipulated.

CVI convertsa2-byte string to an integer. MKl $ isits complement.
CVS converts a4-byte string to a single-precision number. VKS$ is its complement.
CVD converts an 8-byte string to a double-precision number. MKD$ is its complement.

(See MKI1$, MK S$, and MKD$).

Examples:

70 FIELD #1, 4 AS N$, 12 AS B$. ..
80 GET #1
90 Y=CVS(N$)

Line 80 reads afield from file #1 (the field read is defined in line 70), and converts the first four
bytes (N$) into a single-precision number assigned to the variable Y.

Since a single-precision number can contain as many as seven ASCI| characters (seven bytes),
writing afile using MKS$ conversion, and reading with the CVS conversion, as many as three

bytes per number recorded are saved on the storage medium. Even more may be saved if double-
precision numbers are required. MKD$ and CVD conversions would be used in this case.

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%620Basi ¢/CV | .html 28/03/2004 21.29.20

GW-BASIC User's Guide

MKI$, MKS$, MKD$ Functions

Purpose:

To convert numeric values to string values.

Syntax:

MKI $(i nt eger expression)
VKS$(si ngl e- preci si on expression)
VKD$(doubl e- preci si on expressi on)

Comments:

MKl $ converts an integer to a 2-byte string.
VKS$ converts a single-precision number to a 4-byte string.
VKD$ converts a double-precision number to an 8-byte string.

Any numeric value placed in arandom file buffer with a LSET or a RSET statement must be
converted to astring (see CVI, CVS, CVD, for the complementary functions).

These functions differ from STR$ because they change the interpretations of the bytes, not the
bytes themselves.

Examples:

90 AMT=(K+T)

100 FIELD #1, 8 AS D$, 20 AS N$
110 LSET DS=MKS$H(AMT)

120 LSET N$=A$

130 PUT #1

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/M K| S.html 28/03/2004 21.29.20

GW-BASIC User's Guide

DATA Statement

Purpose:

To store the numeric and string constants that are accessed by the program READ statement(s).

Syntax:
DATA constants

Comments:

const ant s are numeric constants in any format (fixed point, floating-point, or integer),
separated by commas. No expressions are allowed in the list.

String constants in DATA statements must be surrounded by double quotation marks only if they

contain commas, colons, or significant leading or trailing spaces. Otherwise, quotation marks are
not needed.

DATA statements are not executable and may be placed anywhere in the program. A DATA

statement can contain as many constants that will fit on aline (separated by commas), and any
number of DATA statements may be used in a program.

READ statements access the DATA statements in order (by line number). The data contained

therein may be thought of as one continuous list of items, regardless of how many items are on a
line or where the lines are placed in the program. The variable type (numeric or string) givenin
the READ statement must agree with the corresponding constant in the DATA statement, or a

"Type M smat ch" error occurs.
DATA statements may be reread from the beginning by use of the RESTORE statement.
For further information and examples, see the RESTORE statement and the READ statement.

Example 1.

80 FOR I =1 TO 10

90 READ A(1)

100 NEXT |

110 DATA 3.08, 5. 19, 3. 12, 3. 98, 4. 24
120 DATA 5. 08, 5. 55, 4. 00, 3. 16, 3. 37

file:///CJ/Documents%20and¥s20Settings/L orenzo/Desktop/ GW2620Basi c/DATA .html (1 of 2)28/03/2004 21.29.21

GW-BASIC User's Guide

This program segment reads the values from the DATA statementsinto array A. After execution,
the value of A(1) is 3.08, and so on. The DATA statements (lines 110-120) may be placed
anywhere in the program; they may even be placed ahead of the READ statement.

Example 2:

5 PRI NT
10 PRINT "CI TY", " STATE", " ZI P"
20 READ C$, S$, Z
30 DATA "DENVER, ", " COLORADO', 80211
40 PRI NT C$, S$, Z
RUN
CI TY STATE ZI P
DENVER, COLORADO 80211

This program reads string and numeric data from the DATA statement in line 30.

file:///CJ/Documents¥%20and¥620Settings/L orenzo/Desktop/ GW2620Basi c/DATA .html (2 of 2)28/03/2004 21.29.21

GW-BASIC User's Guide

RESTORE Statement

Purpose:

To allow DATA statements to be reread from a specified line.

Syntax:
RESTORE[| i ne nunber]

Comments:

If I i ne nunber isspecified, the next READ statement accesses the first item in the specified
DATA statement.

If | i ne nunber isomitted, the next READ statement accesses the first item in the first DATA
statement.

Examples:

10 READ A, B, C
20 RESTORE

30 READ D, E, F
40 DATA 57, 68, 79

Assigns the value 57 to both A and D variables, 68 to B and E, and so on.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/REST ORE.html 28/03/2004 21.29.21

GW-BASIC User's Guide

READ Statement

Purpose:

To read values from a DATA statement and assign them to variables.

Syntax:
READ | i st of vari abl es

Comments:
A READ statement must always be used with a DATA statement.
READ statements assign variables to DATA statement values on a one-to-one basis.

READ statement variables may be numeric or string, and the values read must agree with the
variable types specified. If they do not agree, a"Synt ax error" results.

A single READ statement may access one or more DATA statements. They are accessed in order.
Several READ statements may access the same DATA statement.

If the number of variablesin| i st of vari abl es exceedsthe number of e ementsin the DATA
statement(s), an "CQut of dat a" messageis printed.

If the number of variables specified is fewer than the number of elementsin the DATA statement
(s), subsequent READ statements begin reading data at the first unread element. If there are no
subsequent READ statements, the extra data is ignored.

To reread DATA statements from the start, use the RESTORE statement.

Examples:

80 FOR | =1 TO 10

90 READ A(1)

100 NEXT |

110 DATA 3.08, 5.19, 3.12, 3.98, 4.24
120 DATA 5.08, 5.55, 4.00, 3.16, 3.37

This program segment reads the values from the DATA statementsinto array A. After execution,

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/READ.html (1 of 2)28/03/2004 21.29.21

GW-BASIC User's Guide

the value of A(1) is3.08, and so on. The DATA statement (lines 110-120) may be placed
anywhere in the program; they may even be placed ahead of the READ statement.

5 PRI NT
10 PRINT "CI TY", "STATE", "ZIP"
20 READ C3, S8, Z
30 DATA "DENVER, ", "COLORADO', 80211
40 PRINT C$, S$, Z
RUN
Cl TY STATE ZI P
DENVER, COLORADO 80211

This program reads string and numeric data from the DATA statement in line 30.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/READ.html (2 of 2)28/03/2004 21.29.21

GW-BASIC User's Guide

DATES$ Statement and Variable

Purpose:

To set or retrieve the current date.

Syntax:

As a statement:
DATES=v$

Asavariable:
v$=DATE$

Comments:
v$ isavalid string literal or variable.
v$ can be any of the following formats when assigning the date;

mm dd- yy
nmi dd/ yy
mm dd- yyyy
nmi dd/ yyyy

If v$ isnot avalid string, a"Type M smat ch™ error results. Previous values are retained.

If any of the values are out of range or missing, an"l | | egal Function Cal | " error isissued.
Any previous date is retained.

The current date (as assigned when the operating system was initialized) is fetched and assigned
to the string variable if DATES isthe expressionin aLET or PRI NT statement.

The current date is stored if DATES isthe target of a string assignment.

With v$=DATES$, DATE$ returns a 10-character string in the form nm dd- yyyy. nmisthe month
(01to 12), dd istheday (01 to 31), and yyyy isthe year (1980 to 2099).

Examples:

v$=DATE$
PRI NT V$
01-01-1985

file:///C|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/DATES.html 28/03/2004 21.29.21

GW-BASIC User's Guide

DEFINT/SNG/DBL/STR Statements

Purpose:

To declare variable types as integer, single-precision, double-precision, or string.

Syntax:
DEFtype letters

Comments:

t ype is| NT (integer), SNG (single-precision number), DBL (double-precision number), or STR
(string of 0-255 characters).

| et t er s areletters (separated by commas) or range of letters of the al phabet.

A DEFt ype statement declares that variable names beginning with the letter(s) specify that type
of variable. However, atype declaration character (%! ,#,$) always takes precedence over a
DEFt ype statement in the typing of avariable.

If no type declaration statements are encountered, BASIC assumes all variables are single-
precision. Single-precision is the default value.

Examples:
10 DEFDBL L-P

All variables beginning with the letters L, M, N, O, and P will be double-precision variables.

10 DEFSTR A
20 A="120#"

All variables beginning with the letter A will be string variables. The $ declaration is unnecessary
in this example.

10 DEFINT I-N, WZ

20 Wb="120#"

All variables beginning with the letters 1, J, K, L, M, N, W, X, Y, Z will be integer variables. W$
in Line 20 establishes a string variable beginning with the letter W. However, the variable W will
remain an integer elsewhere in the program.

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/DEFINT.html 28/03/2004 21.29.22

GW-BASIC User's Guide

DEF SEG Statement

Purpose:

To assign the current segment address to be referenced by a subsequent BLOAD, BSAVE, CALL,
PEEK, POKE, or USR.

Syntax:
DEF SEG [=addr ess]

Comments:
addr ess isanumeric expression within the range of 0 to 65535.

The address specified is saved for use as the segment required by BLOAD, BSAVE, PEEK, POKE,
and CALL statements.

Entry of any value outside the address range (0-65535) resultsinan "I | | egal Functi on
Cal | " error, and the previous value is retained.

If the address option is omitted, the segment to be used is set to GW-BASIC's data segment (DS).
Thisistheinitial default value.

If you specify the address option, base it on a 16-byte boundary.

Segment addresses are shifted 4 bits to the left; so to get the segment address, divide the memory
location by 16.

For BLOAD, BSAVE, PEEK, POKE, or CALL statements, the value is shifted left four bits (thisis

done by the microprocessor, not by GW-BASIC) to form the code segment address for the
subsequent call instruction (seethe BLOAD, BSAVE, CALL, PEEK, and POKE statements).

GW-BASIC does not perform additional checking to assure that the resultant segment addressis
valid.

Examples:
10 DEF SEG=&HB800O

Sets segment to screen buffer.
20 DEF SEG

Restores segment to BASIC DS.

Note

file:///CJ/Documents%20and¥s20Settings/L orenzo/Desktop/ GW%620Basi c/DEFSEG.html (1 of 2)28/03/2004 21.29.22

GW-BASIC User's Guide

DEF and SEG must be separated by a space. Otherwise, GW-BASIC will interpret the statement
DEFSEG=100 to mean, "assign the value 100 to the variable DEFSEG."

file:///CJ/Documents%20and¥s20Settings/L orenzo/Desktop/ GW%620Basi ¢/DEFSEG.html (2 of 2)28/03/2004 21.29.22

GW-BASIC User's Guide

PEEK Function

Purpose:

To read from a specified memory location.

Syntax:
PEEK(a)

Comments:

Returns the byte (decimal integer within the range of 0 to 255) read from the specified memory
location a. a must be within the range of 0 to 65535.

The DEF SEG statement last executed determines the absolute address that will be peeked into.
PEEK is the complementary function to the POKE statement.
Examples:

10 A=PEEK(&H5A00)

The value of the byte, stored in user-assigned hex offset memory location 5A00 (23040 decimal),
will be stored in the variable A.

file:///C|/Documents%20and%620Settings/L orenzo/Desktop/ GW%20Basi ¢/PEEK .html 28/03/2004 21.29.22

GW-BASIC User's Guide

POKE Statement

Purpose:

To write (poke) a byte of datainto a memory location.

Syntax:
POKE a, b

Comments:
a and b are integer expressions.

The integer expression ais the offset address of the memory location to be poked. The DEF SEG
statement last executed determines the address. GW-BASIC does not check any offsets that are

specified.
The integer expression b isthe data to be poked.
b must be within the range of 0 to 255. a must be within the range of 0 to 65535.

The complementary function to POKE is PEEK. The argument to PEEK is an address from which a
byte isto be read.

POKE and PEEK are useful for efficient data storage, loading assembly language subroutines, and
for passing arguments and results to and from assembly language subroutines.

Examples:
20 PCKE &H5A00, &HFF

Places the decimal value 255 (& HFF) into the hex offset |ocation (23040 decimal) See PEEK
function example.

file:///IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%620B asi ¢/ POK E.html 28/03/2004 21.29.22

GW-BASIC User's Guide

DELETE Command

Purpose:

To delete program lines or line ranges.

Syntax:

DELETE [l ine nunberl1][-1ine nunber?2]
DELETE |i ne nunber 1-

Comments:
| i ne nunber 1 isthefirst line to be deleted.
| i ne nunber 2 isthelast line to be deleted.

GW-BASIC aways returns to command level after a DELETE command is executed. Unless at
least one line number isgiven, an"l | | egal Function Cal | " error occurs.

The period (.) may be used to substitute for either line number to indicate the current line.
Examples:
DELETE 40

Deletes line 40.
DELETE 40-100

Deletes lines 40 through 100, inclusively.
DELETE -40

Deletes all lines up to and including line 40.
DELETE 40-

Deletes all lines from line 40 to the end of the program.

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basic/DEL ETE.html 28/03/2004 21.29.23

GW-BASIC User's Guide

EDIT Command

Purpose:
To display a specified line, and to position the cursor under the first digit of the line number, so
that the line may be edited.
Syntax:
EDI T |ine nunber
EDT .
Comments:
| i ne nunber isthe number of aline existing in the program.
A period (.) refersto the current line. The following command enters EDI T at the current line:
EDIT .
When alineis entered, it becomes the current line.

The current lineis aways the last line referenced by an EDI T statement, LI ST command, or error
message.

If I i ne nunber refersto aline which does not exist in the program, an "Undef i ned Li ne
Nunber " error occurs.

Examples:
EDI T 150

Displays program line number 150 for editing.

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/EDI T.html 28/03/2004 21.29.23

GW-BASIC User's Guide

END Statement

Purpose:

To terminate program execution, close all files, and return to command level.

Syntax:
END

Comments:

END statements may be placed anywhere in the program to terminate execution.

Unlike the STOP statement, END does not causea"Break in |ine xxxx" messageto be
printed.

An END statement at the end of a program is optional. GW-BASIC always returns to command
level after an END is executed.

END closes all files.

Examples:
520 I F K>1000 THEN END ELSE GOTO 20

Ends the program and returns to command level whenever the value of K exceeds 1000.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/END.html| 28/03/2004 21.29.23

GW-BASIC User's Guide

ENVIRON Statement

Purpose:
To alow the user to modify parametersin GW-BASIC's environment string table. This may beto
change the path parameter for a child process, (see ENVIRONS$, SHELL, and the MS-DOS

utilities PATH command), or to pass parameters to a child by inventing a new environment
parameter.

Syntax:
ENVI RON string

Comments:
st ri ng isavalid string expression containing the new environment string parameter.
st ri ng must be of the following form
par m d=t ext
where par m d isthe name of the parameter such as PATH.

par m d must be separated from text by an equal sign or ablank. ENVI RON takes everything to
the left of the first blank or equal sign asthe par m d; everything following is taken as text.

t ext isthe new parameter text. If t ext isanull string, or consists only of a single semicolon,
then the parameter (including par m d=) isremoved from the environment string table, and the

table is compressed. t ext must not contain any embedded blanks.

If par m d does not exist, then st ri ng is added at the end of the environment string table.

If par m d doesexigt, it is deleted, the environment string table is compressed, and the new string
is added at the end.

Examples:

Assuming the environment string table is empty, the following statement will create a default
path to the root directory on Disk A:

ENVI RON " PATH=A: \"
If your work subdirectory were john, you would be able to get DEBUG from the root.

A new parameter may be added:
ENVI RON " COMSPEC=A: \ COVIVAND. COM'

The environment string table now contains

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basic/ENVIRON.html (1 of 2)28/03/2004 21.29.23

GW-BASIC User's Guide

PATH=A:\ ; COMVSPEC=A: \ COMVAND. COM

The path may be changed to a new value:
ENVI RON " PATH=A: \ SALES; A:\ ACCOUNTI NG'

The path parameter may be appended by using the ENVI RON$ function with the ENVI RON
Statement:

ENVI RON " PATH="+ENVI RON$(" PATH") +"; B:\ SAMPLES"

Finally, delete the parameter COM SPEC:
ENVI RON " COVBPEC=; "

The environment string table now contains
PATH=A: \ SALES; A:\ ACCOUNTI NG B:\ SAMPLES

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basic/ENVIRON.html (2 of 2)28/03/2004 21.29.23

GW-BASIC User's Guide

ENVIRONS$ Function

Purpose:

To allow the user to retrieve the specified environment string from the environment table.

Syntax:
v$=ENVI RON$(par mi d)
v$=ENVI RON$(nt hpar m
Comments:
par m d isavalid string expression containing the parameter to search for.
nt hpar misan integer expression in the range of 1 to 255.

If astring argument is used, ENVI RONS$ returns a string containing the text following par m d=
from the environment string table.

If par m d isnot found, then anull string is returned.

If anumeric argument is used, ENVI RONS$ returns a string containing the nt h parameter from the
environment string table.

If thereisno nt h parameter, then anull string is returned.

The ENVI RONS$ function distinguishes between upper- and lowercase.

Examples:

The following lines:
ENVI RON " PATH=A: \ SALES; A:\ ACOUNTING B:\MKT:" 'Create entry
PRI NT ENVI RON$(" PATH") "Print entry
will print the following string:
A:\ SALES; A:\ ACCOUNTI NG B:\ MKT

The following line will print the first string in the environment:
PRI NT ENVI RON$(1)

The following program saves the environment string table in an array so that it can be modified
for achild process. After the child process completes, the environment is restored.

10 DI M ENVTBL$(10)
20 NPARMB= 1
30 VHI LE LEN(ENVI RON$(NPARVS)) >0

file///CJ/Documents%20and¥s20Settings/L orenzo/Desktop/GW%620Basi c/ENVIRONS.html (1 of 2)28/03/2004 21.29.24

GW-BASIC User's Guide

40 ENVTBL$ (NPARMVS) = ENVI RON$(NPARVS)

50 NPARMS = NPARMS + 1

60 VEND

70 NPARMB = NPARMS- 1

72 WH LE LEN(ENVI RON$(1)) >0

73 A$=M DS(ENVI RON$(1), 1, |NSTR (ENVI RONS(1), "="))
74 ENVI RON A$+" ;"

75 VEND

90 ENVI RON " MYCHI LDPARML=SORT BY NAME"

100 ENVI RON " MYCHI LDPARMR=LI ST BY NAME"

1000 SHELL "MYCHI LD"' RUNS "MYCHI LD. EXE"

1002 WHI LE LEN(ENVI RON$(1)) >0

1003 A$=M D$(ENVI RON$(1), 1, I NSTR(ENVIRON$ (1), "="))
1004 ENVI RON A$+": "

1005 VEEND

1010 FOR I =1 TO NPARVS

1020 ENVI RON ENVTBLS$()

1030 NEXT |

The DI Mstatement in line 10 assumes no more than 10 parameters will be accessed.

In line 20, the initial number of parametersis established as 1.

In lines 30 through 70, a series of statements are used to adjust and correct the parameter
numbers.

Line 71 deletes the present environment.
Lines 72 through 80 create a new environment. Line 74 deletes the string.
Lines 80 through 100 store the new environment.

Lines 1000 through 1030 repeat the procedure by deleting the present environment and restore
the parameters established in the first part of the program.

file///CJ/Documents%20and¥s20Settings/L orenzo/Desktop/GW%620Basi c/ENVIRONS.html (2 of 2)28/03/2004 21.29.24

GW-BASIC User's Guide

SHELL Statement

Purpose:

To load and execute another program or batch file. When the program finishes, control returnsto
the GW-BASIC program at the statement following the SHEL L statement. A program executed

under control of GW-BASIC isreferred to as a child process.

Syntax:
SHELL [string]

Comments:

st ri ng isavalid string expression containing the name of a program to run and (optionally)
command arguments.

The program name in string may have any extension that MS-DOS COMMAND.COM supports.
If no extension is supplied, COMMAND will look for a.COM file, then an .EXE file, and finally,
a.BAT file. If noneisfound, SHELL will issuea"Fi | e not found" error.

Any text separated from the program name by at least one blank space will be processed by
COMMAND as program parameters.

GW-BASIC remains in memory while the child processis running. When the child process
finishes, GW-BASIC continues at the statement following the SHEL L statement.

SHELL with no string will go to MS-DOS. Y ou may now do anything that COMMAND allows.
When ready to return to GW-BASIC, type the MS-DOS command EXIT.

Examples:

SHELL

A>DI R

ASEXI T
Write some data to be sorted, use SHELL SORT to sort it, then read the sorted data to write a
report.

10 OPEN " SORTI N. DAT" FOR QUTPUT AS #1
20 'wite data to be sorted

1000 CLCSE 1
1010 SHELL " SORT <SORTI N. DAT >SORTOUT. DAT"

file///CJ/Documents%20and%620Settings/L orenzo/Desktop/ GW%620Basic/SHEL L..html (1 of 2)28/03/2004 21.29.24

GW-BASIC User's Guide

1020 OPEN " SORTQUT. DAT" FOR | NPUT AS #1
1030 ' Process the sorted data

file///Cl/Documents%20and¥620Settings/L orenzo/Desktop/ GW%620Basic/SHEL L..html (2 of 2)28/03/2004 21.29.24

GW-BASIC User's Guide

EOF Function

Purpose:

To return -1 (true) when the end of a sequential or a communications file has been reached, or to
return O if end of file (EOF) has not been found.

Syntax:
v=ECOF(fil e nunber)

Comments:

If aGET isdone past the end of the file, EOF returns-1. This may be used to find the size of afile
using a binary search or other algorithm. With communicationsfiles, a-1 indicates that the buffer
IS empty.

Use ECF to test for end of file while inputting to avoid "I nput Past End" errors.

Examples:

10 OPEN "I", 1, "DATA"
20 C=0

30 | F EOF(1) THEN 100
40 | NPUT#1, M C)

50 C=C+1: GOTO 30

100 END

Thefile named DATA isread into the M array until the end of the fileis reached, then the
program branchesto line 100.

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20B asi ¢/ EOF.html 28/03/2004 21.29.24

GW-BASIC User's Guide

ERASE Statement

Purpose:

To eliminate arrays from a program.

Syntax:
ERASE |ist of array variables

Comments:

Arrays may be re-dimensioned after they are erased, or the memory space previously allocated to
the array may be used for other purposes.

If an attempt is made to re-dimension an array without first erasing it, an error occurs.

Examples:
200 DIM B (250)

450 ERASE A, B
460 DIM B(3, 4)

Arrays A and B are eliminated from the program. The B array is re-dimensioned to a 3-column
by 4-row array (12 elements), all of which are set to a zero value.

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20B asi ¢/ ERA SE.html 28/03/2004 21.29.24

GW-BASIC User's Guide

ERDEV and ERDEVS$ Variables

Purpose:

To return the actual value (ERDEV) of a device error, and the name of the device (ERDEVS)
causing the error.

Syntax:
ERDEV

ERDEV$
Comments:

ERDEV will contain the error code from interrupt 24H in the lower 8 bits. Bits 8 to 15 from the
attribute word in the Device Header Block are mapped directly into the upper 8 bits.

ERDEV$ will contain the 8-byte character device name if the error was on a character device. It
will contain the 2 byte block device name (A:, B:, etc.) if the device was not a character device.
Examples:

Installed device driver Ipt2: caused a"Pri nter out of paper" error vialNT 24H.

ERDEV contains the error number 9 in the lower 8 bits, while the upper 8 bits contain the upper
byte of the Device Header word attributes.

ERDEV$ cont ai ns "LPT2:

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/ERDEV .html 28/03/2004 21.29.25

GW-BASIC User's Guide

ERR and ERL Variables

Purpose:

To return the error code (ERR) and line number (ERL) associated with an error.

Syntax:
v=ERR
v=ERL

Comments:

The variable ERR contains the error code for the last occurrence of an error. All the error codes
and their definitions are listed in Appendix A of the GW-BASIC User's Guide.

The variable ERL contains the line number of the line in which the error was detected.

The ERR and ERL variablesare usually used in | F- THEN, or ON ERROR. . . GOTO, or GOSUB
statements to direct program flow in error trapping.

If the statement that caused the error was a direct mode statement, ERL will contain 65535. To
test if an error occurred in adirect mode statement, use a line of the following form:
| F 65535=ERL THEN ...

Otherwise, use the following:

10 | F ERR=error code THEN. .. GOSUB 4000
20 | F ERL=l i ne nunber THEN. .. G0OSUB 4010

Note

If the line number is not on the right side of the relational operator, it cannot be renumbered by
RENUM

Because ERL and ERR are reserved variables, neither may appear to the left of theequal signina
LET (assignment) statement.

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/ERRERL .html28/03/2004 21.29.25

GW-BASIC User's Guide

ERROR Statement

Purpose:

To ssmulate the occurrence of an error, or to allow the user to define error codes.

Syntax:
ERROR i nt eger expression

Comments:
Thevalueof i nt eger expressi on must be greater than 0 and less than 255.

If thevalueof i nt eger expressi on equalsan error code already in use by GW-BASIC, the
ERROR statement simulates the occurrence of that error, and the corresponding error message is

printed.

A user-defined error code must use a value greater than any used by the GW- BASIC error codes.
There are 76 GW-BASIC error codes at present. It is preferable to use a code number high
enough to remain valid when more error codes are added to GW-BASIC.

User-defined error codes may be used in an error-trapping routine.

If an ERROR statement specifies a code for which no error message has been defined, GW-BASIC
responds with the message "Unpri nt abl e Error".

Execution of an ERROR statement for which there is no error-trapping routine causes an error
message to be printed and execution to halt.

For acomplete list of the error codes and messages already defined in GW-BASIC, refer to
Appendix A inthe GW-BASIC User's Guide.

Examples:
The following examples ssmulate error 15 (the codefor "Stri ng t oo | ong"):
10 S=10
20 T=5
30 ERROR S+T
40 END

RUN
String too long in 30

Or, in direct mode:

ERROR 15 (you type this line)
String too long (GWMBASIC types this |ine)

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/ERROR.html (1 of 2)28/03/2004 21.29.25

GW-BASIC User's Guide

The following example includes a user-defined error code message.

110 ON ERROR GOTO 400
120 | NPUT "WHAT IS YOUR BET"; B
130 | F B>5000 THEN ERROR 210

400 | F ERR=210 THEN PRINT "HOUSE LIMT IS $5000"
410 | F ERL=130 THEN RESUVE 120

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/ERROR.html (2 of 2)28/03/2004 21.29.25

GW-BASIC User's Guide

EXP Function

Purpose:

To return e (the base of natural logarithms) to the power of x.

Syntax:
EXP(x)

Comments:
X must be less than 88.029609.

If EXP overflows, the"Over f | ow" error message appears; machine infinity with the appropriate
sign is supplied as the result, and execution continues.

EXP(x) iscalculated in single precision, unlessthe/ d switch is used when GW-BASIC is
executed.

Examples:

10 X = 5

20 PRI NT EXP(X-1)
RUN

54. 59815

Prints the value of e to the 4th power.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%620B asi ¢/ EX P.html 28/03/2004 21.29.26

GW-BASIC User's Guide

EXTERR Function

Purpose:

To return extended error information.

Syntax:
EXTERR(n)

Comments:

EXTERR returns "extended" error information provided by versions of DOS 3.0 and greater. For
versions of DOS earlier than 3.0, EXTERR aways returns zero. The single integer argument must
be in the range 0-3 as follows:

Value of nReturn Value

0 Extended error code
1 Extended error class
2 Extended error suggested action
3 Extended error locus

The values returned are not defined by GW-BASIC, but by DOS. Refer to the MS-DOS
Programmer's Reference (version 3.0 or later) for adescription of the values returned by the DOS
extended error function.

The extended error code is actually retrieved and saved by GW-BA SIC each time appropriate
DOS functions are performed. Thus when an EXTERR function call is made, these saved values

are returned.

file:///CJ/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/EX TERR.html 28/03/2004 21.29.26

GW-BASIC User's Guide

FIELD Statement

Purpose:

To alocate space for variables in arandom file buffer.

Syntax:
FIELD [#] filenum w dth AS stringvar [,wdth AS stringvar]...

Comments:

fi | enumisthe number under which the file was opened.

wi dt h isthe number of charactersto be allocated to the string variable.

string vari abl e isastring variable which will be used for random file access.
A FI ELD statement must have been executed before you can

. Get data out of arandom buffer after a GET statement
. Enter data before a PUT statement

For example, the following line all ocates the first 20 positions (bytes) in the random file buffer to
the string variable N$, the next 10 positionsto ID$, and the next 40 positionsto ADDS$:

FIELD 1, 20 AS N$, 10 AS ID$, 40 AS ADD$
FI ELD only allocates space; it does not place any data in the random file buffer.

The total number of bytes alocated in aFl ELD statement must not exceed the record length
specified when the file was opened. Otherwise, a"Fi el d over f | ow" error occurs (the default
record length is 128).

Any number of FI ELD statements may be executed for the samefile, and all FI ELD statements
executed are in effect at the same time.

Note

Do not use afielded variable name in an | NPUT or LET statement. Once avariable nameis
fielded, it points to the correct place in the random file buffer. If a subsequent | NPUT or LET

statement with that variable name is executed, the variable's pointer is moved to string space (see
LSET/RSET and GET statements).

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/FIEL D.html| 28/03/2004 21.29.26

GW-BASIC User's Guide

LSET and RSET Statements

Purpose:

To move data from memory to arandom-file buffer and left- or right-justify it in preparation for a
PUT statement.

Syntax:

LSET string variabl e=string expression
RSET string variabl e=string expression

Comments:

If string expression requiresfewer bytesthan werefieldedtostri ng vari abl e, LSET
left-justifies the string in the field, and RSET right-justifies the string (spaces are used to pad the
extra positions).

If the string istoo long for the field, characters are dropped from the right.

To convert numeric valuesto strings before the LSET or RSET statement is used, see the MKI$,
MKSS$, and MKD$ functions.

LSET or RSET may also be used with a nonfielded string variable to left-justify or right-justify a
string in agiven field.

Examples:

110 A$=SPACES$(20)
120 RSET A$=N$

These two statements right-justify the string N$ in a 20-character field. This can be valuable for
formatting printed output.

file://IC|/Documents%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/L SET.html 28/03/2004 21.29.26

GW-BASIC User's Guide

GET Statement (Files)

Purpose:

To read arecord from arandom disk file into a random buffer.

Syntax:
CGET [#]file nunber[,record nunber]

Comments:

file nunber isthe number under which the file was opened.

record nunber isthe number of the record, within the range of 1 to 16,777,215.

If record nunber isomitted, the next record (after the last GET) isread into the buffer.

After a GET statement, | NPUT# and LI NE | NPUT# may be used to read characters from the
random file buffer.

GET may also be used for communicationsfiles. r ecord nunber isthe number of bytesto be

read from the communications buffer. r ecor d nunber cannot exceed the buffer length set in
the OPEN COM n) statement.

Examples:

The following example opens the vendor file for random access, defines the fields, reads a record,
then displaysit:

10 OPEN "R", 1, "A:VENDOR FIL"

20 FIELD 1, 30 AS VENDNAMESS$, 20 AS ADDR$, 15 AS CITY$
30 CGET 1

40 PRI NT VENDNAMESS$, ADDR$, CITY$

50 CLCSE 1

This example opens the file vendor .fil for random access, with fields defined in line 20.
In line 30, the GET statement reads arecord into the file buffer.

Line 40 displays the information from the record just read.
Line 50 closesthefile,

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ GETF.html 28/03/2004 21.29.27

GW-BASIC User's Guide

FILES Command

Purpose:

To print the names of the files residing on the specified drive.

Syntax:
FI LES [pat hnane]

Comments:

If pat hnane is omitted, the command lists all filesin the current directory of the selected drive.
pat hname may contain question marks (?) to match any character in the filename or extension.
An asterisk (*) asthefirst character of the filename or extension will match any file or any
extension.

This syntax also displays the name of the directory and the number of bytesin the file. When a
tree-structured directory is used, two special symbols also appear.

Subdirectories are denoted by <DI R> following the directory name.

Examples:
FI LES
FI LES "*. BAS"
FILES "B: *.*"

FI LES " TEST?. BAS"

FI LES now allows pathnames. The directory for the specified path is displayed. If an explicit
path is not given, the current directory is assumed.

FI LES "ACCTS\ "

Lists al filesin the directory named accts.
FI LES " B: ACCTS\ *. PAY"

Lists al filesin the directory named accts that are on the diskette in drive B: and have the
extension of .PAY.

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/FIL ES.html 28/03/2004 21.29.27

GW-BASIC User's Guide

FOR ... NEXT Statements

Purpose:

To execute a series of instructions a specified number of timesin aloop.

Syntax:
FOR variable=x TOy [STEP Zz]

NEXT [variable][,variable...]

Comments:
vari abl e isused as a counter.
X,y, and z are numeric expressions.

STEP z specifies the counter increment for each loop.

The first numeric expression (x) istheinitial value of the counter. The second numeric
expression (y) isthe final value of the counter.

Program lines following the FOR statement are executed until the NEXT statement is encountered.
Then, the counter is incremented by the amount specified by STEP.

If STEP is not specified, the increment is assumed to be 1.

A check is performed to see if the value of the counter is now greater than the final value (y). If it
is not greater, GW-BASIC branches back to the statement after the FOR statement, and the

process is repeated. If it is greater, execution continues with the statement following the NEXT
statement. Thisis a FOR- NEXT loop.

The body of the loop is skipped if the initial value of the loop times the sign of the step exceeds
the final value times the sign of the step.

If STEP is negative, the final value of the counter is set to be less than the initial value. The

counter is decremented each time through the loop, and the loop is executed until the counter is
|ess than the final value.

Nested L oops:

FOR- NEXT loops may be nested; that is, a FOR- NEXT loop may be placed within the context of
another FOR- NEXT loop. When loops are nested, each loop must have a unique variable name as

file:///CJ/Documents%20and¥s20Settings/L orenzo/Desktop/ GW%620Basi c/FORNEX T.html (1 of 2)28/03/2004 21.29.27

GW-BASIC User's Guide

its counter.
The NEXT statement for the inside loop must appear before that for the outside loop.

If nested loops have the same end point, a single NEXT statement may be used for all of them.

Thevari abl e(s) inthe NEXT statement may be omitted, in which case the NEXT statement will
match the most recent FOR statement.

If a NEXT statement is encountered before its corresponding FOR statement, a"NEXT wi t hout
FOR" error message isissued and execution is terminated.

Examples:

The following example prints integer values of the variable 1% from 1 to 10 in steps of z. For
fastest execution, | is declared as an integer by the % sign.

10 K=10

20 FOR | %1 TO K STEP 2
30 PRI NT | %

40 NEXT

RUN

~N o1l w

9

In the following example, the loop does not execute because the initial value of the loop exceeds
the final value. Nothing is printed by this example.

10 R=0

20 FOR S=1 TO R
30 PRI NT S

40 NEXT S

In the next example, the loop executes 10 times. The final value for the loop variable is aways
set before theinitial valueis set.

10 S=5

20 FOR S=1 TO S+5

30 PRI NT S;

40 NEXT

RUN
123456789 10

file:///CJ/Documents%20and¥s20Settings/L orenzo/Desktop/ GW%620Basi c/FORNEX T.html (2 of 2)28/03/2004 21.29.27

GW-BASIC User's Guide

FRE Function

Purpose:

To return the number of available bytesin allocated string memory.

Syntax:
FRE(x$)
FRE(x)
Comments:
Arguments (x$) and (x) are dummy arguments.

Before FRE (x$) returns the amount of space available in allocated string memory, GW-BASIC

initiates a "garbage collection” activity. Data in string memory space is collected and
reorganized, and unused portions of fragmented strings are discarded to make room for new input.

If FRE is not used, GW-BASIC initiates an automatic garbage collection activity when all string

memory space is used up. GW-BASIC will not initiate garbage collection until all free memory
has been used. Garbage collection may take 1 to 1.5 minutes.

FRE("") or any string forces a garbage collection before returning the number of free bytes.
Therefore, using FRE(" ") periodically will result in shorter delays for each garbage collection.

It should be noted that the ctrl-break function cannot be used during this housecleaning process.

Examples:

PRI NT FRE(0)
14542

Y our computer may return adifferent value.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/FRE.html 28/03/2004 21.29.28

GW-BASIC User's Guide

GET Statement (Graphics)

Purpose:

To transfer graphics images from the screen.

Syntax:
GET (x1,yl)-(x2,y2),array nane

Comments:

The PUT and CET statements are used to transfer graphics images to and from the screen. PUT and
GET make animation and high-speed object motion possible in either graphics mode.

The GET statement transfers the screen image bounded by the rectangle described by the specified
points into the array. The rectangle is defined the same way as the rectangle drawn by the LI NE
statement using the , B option.

The array is used simply as a place to hold the image, and can be of any type except string. It
must be dimensioned large enough to hold the entire image. The contents of the array after a GET

will be meaningless when interpreted directly (unless the array is of the type integer, as shown
below).

The storage format in the array is as follows:

. 2 bytesgiven x dimension in bits
. 2 bytesgiveny dimension in bits
. thearray dataitself
The data for each row of pixelsisleft-justified on a byte boundary. If less than a multiple of eight

bitsis stored, the rest of the byte will be filled out with zeros. The required array size in bytesis
asfollows:

4+ NT((x*bi t sper pi xel +7)/8) *y
See the SCREEN statement for bits-per-pixel values for different screen modes.

The bytes-per-element of an array are asfollows:

. 2forinteger
. 4for single-precision

. 8for double-precision

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ GETG.html (1 of 2)28/03/2004 21.29.28

GW-BASIC User's Guide

The number of bytes required to get a 10 by 12 image into an integer array is4+1 NT((10* 2
+7)/ 8) * 12, or 40 bytes. An integer array with at least 20 elements is necessary.

If OPTI ON BASE equals zero, an integer array can be used to examine the x and y dimensions

and the data. The x dimensionisin element O of the array, and they dimension isin element 1.
Integers are stored low byte first, then high byte, but datais transferred high byte first (left-most),
then low byte.

It is possible to get an image in one mode and put it in another, although the effect may be quite
strange because of the way points are represented in each mode.

Examples:

10 CLS: SCREEN 1
20 PSET(130, 120)

30 DRAW "U25: E7; R20; D32; L6; UL2; L14"
40 DRAW "D12; L6": PSET(137, 102)

50 DRAW"U4: E4; R8; D8; L12"

60 PSET(137, 88)

70 DRAW "E4: R20; D32; G4": PAINT(139, 87)
80 DI M A(500)

90 GET (125, 130)-(170, 80), A

100 FOR 1 =1 TO 1000: NEXT |

110 PUT (20,20), A, PSET

120 FOR 1 =1 TO 1000: NEXT |

130 GET (125, 130)-(170, 80), A

140 FOR 1=1 TO 1000: NEXT |

150 PUT (220, 130), A, PRESET

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ GETG.html (2 of 2)28/03/2004 21.29.28

GW-BASIC User's Guide

GOSUB ... RETURN Statement

Purpose:

To branch to, and return from, a subroutine.

Syntax:
GOSUB | i ne nunber

RETURN [l i ne nunber]

Comments:

| i ne nunber isthefirst line number of the subroutine.

A subroutine may be called any number of timesin a program, and a subroutine may be called
from within another subroutine. Such nesting of subroutinesis limited only by available memory.

A RETURN statement in a subroutine causes GW-BASIC to return to the statement following the
most recent GOSUB statement. A subroutine can contain more than one RETURN statement, should
logic dictate a RETURN at different points in the subroutine.

Subroutines can appear anywhere in the program, but must be readily distinguishable from the
main program.

To prevent inadvertent entry, precede the subroutine by a STOP, END, or GOTO statement to direct
program control around the subroutine.

Examples:

10
20
30
40
50
60
70

GOSUB 40

PRI NT " BACK FROM SUBROUTI NE"
END

PRI NT " SUBROUTI NE" ;

PRI NT " I N';

PRI NT " PROGRESS"

RETURN

RUN
SUBROUTI NE | N PROGRESS
BACK FROM SUBROUTI NE

The END statement in line 30 prevents re-execution of the subroutine.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/GOSUB.html 28/03/2004 21.29.28

GW-BASIC User's Guide

GOTO Statement

Purpose:

To branch unconditionally out of the normal program sequence to a specified line number.

Syntax:
GOTO |1 ne nunber

Comments:
| i ne nunmber isany valid line number within the program.

If | i ne nunber isan executable statement, that statement and those following are executed. If it
IS a non-executabl e statement, execution proceeds at the first executable statement encountered
after | i ne nunber.

Examples:

10 READ R

20 PRINT "R ="; R
30 A = 3. 14*R"2

40 PRI NT "AREA ="; A
50 GOro 10

60 DATA 5, 7, 12
RUN
R =5 AREA = 78.5

R = 7 AREA = 153. 86

R = 12 AREA = 452.16

Qut of data in 10

The"out of data" advisory isgenerated when the program attempts to read a fourth DATA
statement (which does not exist) in line 60.

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20B asi c/GOTO.html 28/03/2004 21.29.29

GW-BASIC User's Guide

HEXS$ Function

Purpose:

To return a string which represents the hexadecimal value of the numeric argument.

Syntax:
VS=HEX$(X)

Comments:

HEX$ converts decimal values within the range of -32768 to +65535 into a hexadecimal string
expression within the range of 0 to FFFF.

Hexadecimal numbers are numbers to the base 16, rather than base 10 (decimal numbers).
Appendix C and Appendix G in the GW-BAS C User's Guide contain more information on
hexadecimals and their equivalents.

x isrounded to an integer before HEX$(x) is evaluated. See the OCT$ function for octal
conversions.

If x isnegative, 2's (binary) complement form is used.

Examples:

10 CLS: | NPUT "I NPUT DECI MAL NUMBER': X
20 A$=HEX$(X)

30 PRINT X "DECIMAL | S "A$" HEXADECH MAL"
RUN

| NPUT DECI MAL NUMBER? 32

32 DECI VAL | S 20 HEXADECI MAL

file:///IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20B asi c/HEX S.html 28/03/2004 21.29.29

GW-BASIC User's Guide

OCTS$ Function

Purpose:

To convert adecimal value to an octal value.

Syntax:
OCT$(x)

Comments:

x i1srounded to an integer before OCT$(x) is evaluated.

This statement converts a decimal value within the range of -32768 to +65535 to an octal string
expression.

Octal numbers are numbers to the base 8 rather than base 10 (decimal numbers).

See the HEX$ function for hexadecimal conversion.

Examples:

10 PRI NT OCT$(18)
RUN
22

Decimal 18 equals octal 22.

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ OCT S.html 28/03/2004 21.29.29

GW-BASIC User's Guide

|F ... THEN ... EL SE Statement

Purpose:

To make a decision regarding program flow based on the result returned by an expression.

Syntax:

| F expression[,] THEN statenent(s)[,][ELSE statenent(s)]
| F expression[,] GOTO |ine nunber[[,] ELSE statenent(s)]

Comments:

If the result of expr essi on isnonzero (logical true), the THEN or GOTOline number is executed.
If the result of expr essi on iszero (false), the THEN or GOTO line number isignored and the

ELSE line number, if present, is executed. Otherwise, execution continues with the next
executable statement. A commaiis allowed before THEN and EL SE.

THEN and ELSE may be followed by either aline number for branching, or one or more
statements to be executed.

GOTOis aways followed by aline number.
If the statement does not contain the same number of ELSE's and THEN'S line number, each ELSE
is matched with the closest unmatched THEN. For example:

| F A=B THEN | F B=C THEN PRI NT "A=C"' ELSE PRINT "A < > C

will not print"A < > C'when A <> B.

If an| F. . . THEN statement is followed by aline number in the direct mode, an "Undef i ned
| i ne nunmber" error results, unless a statement with the specified line number was previously
entered in the indirect mode.

Because| F .. THEN. . . ELSE isall one statement, the EL SE clause cannot be on a separate line.
It must be all on oneline.

Nesting of |F Statements

| F. .. THEN. . . ELSE statements may be nested. Nesting is limited only by the length of the line.
For example, the following isalegal statement:

100 IF X > Y THEN PRI NT "GREATER' ELSE | F Y > X THEN&
110 PRI NT "LESS THAN®
200 ELSE PRI NT " EQUAL"

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ F.html (1 of 2)28/03/2004 21.29.29

GW-BASIC User's Guide
Testing Equality

When using | F to test equality for avalue that is the result of afloating-point computation,
remember that the internal representation of the value may not be exact. Therefore, test against

the range over which the accuracy of the value may vary.
For example, to test a computed variable A against the value 1.0, use the following statement:
| F ABS (A-1.0)<1.0E-6 THEN ...

Thistest returnstrueif the value of A is 1.0 with ardative error of less than 1.0E-6.

Examples:

The following statement gets record number N, if N is not zero.
200 IF N THEN CGET#1, N

In the following example, atest determinesif N is greater than 10 and less than 20. If N iswithin
thisrange, DB is calculated and execution branches to line 300. If N is not within this range,
execution continues with line 110.

100 | F(N<20) and (N>10) THEN DB=1979-1: GOTO 300
110 PRI NT "OUT OF RANGE"

The next statement causes printed output to go either to the terminal or the line printer, depending
on the value of avariable (IOFLAG). If IOFLAG is zero, output goes to the line printer;
otherwise, output goes to the terminal.

210 I F |1 OFLAG THEN PRI NT A$ ELSE LPRI NT A$

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ F.html (2 of 2)28/03/2004 21.29.29

GW-BASIC User's Guide

INKEY$ Variable

Purpose:

To return one character read from the keyboard.

Syntax:
v$=I NKEY$

Comments:
If no character is pending in the keyboard buffer, a null string (length zero) is returned.

If several characters are pending, only thefirst isreturned. The string will be one or two
charactersin length.

Two character strings are used to return the extended codes described in Appendix C of the GW-
BASIC User's Guide. Thefirst character of atwo character code is zero.

No characters are displayed on the screen, and all characters except the following are passed to
the program:

CTRL-BREAK

CTRL-NUM LOCK

CTRL-ALT-DEL

CTRL-PRTSCR
PRTSCR

Examples:

10 CLS: PRI NT" PRESS RETURN

20 TI MELI M T% = 1000

30 GOsUB 1010

40 | F TI MEQUT% THEN PRI NT "TOO LONG' ELSE PRI NT " GOOD SHOW
50 PRI NT RESPONSE$

60 END

1000 REM TI MED | NPUT SUBROUTI NE

1010 RESPONSE$=""

1020 FOR N%=1 TO TI MELI M T%

1030 A$=I NKEYS$: | F LEN(A$) =0 THEN 1060

1040 | F ASC(A$) =13 THEN TI MEOUT%=0: RETURN
1050 RESPONSE$=RESPONSES$+AS$

1060 NEXT N%

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/INKEY S.html (1 of 2)28/03/2004 21.29.30

GW-BASIC User's Guide

1070 TI MEQUT%1: RETURN

When this program is executed, and if the RETURN key is pressed before 1000 loops are
completed, then "GOCD SHOW is printed on the screen. Otherwise, "TOO LONG' is printed.

Since an | NKEY$ statement scans the keyboard only once, place | NKEY$ statements within loops
to provide adequate response times for the operator.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/INKEY S.html (2 of 2)28/03/2004 21.29.30

GW-BASIC User's Guide

INP Function

Purpose:

To return the byte read from machine port n.

Syntax:
| NP(n)

Comments:
n represents a valid machine port number within the range of 0 to 65535.

The | NP function is one way in which a peripheral device may communicate with a GW-BASIC
program.

| NP is the complementary function to the OUT statement.

Examples:
100 A=l NP(56)

Upon execution, variable A contains the value present on port 56. The number returned will be
within the range of 0 to 255, decimal.

The assembly language equivalent to this statement is

MOV DX, 56
| N AL, DX

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/| NP.html 28/03/2004 21.29.30

GW-BASIC User's Guide

INPUT Statement

Purpose:

To prepare the program for input from the terminal during program execution.

Syntax:

| NPUT[;][pronpt string;] list of variables
| NPUT[;][pronpt string,] |ist of variables

Comments:
pronpt stringisarequest for datato be supplied during program execution.
i st of variabl es containsthe variable(s) that stores the data in the prompt string.

Each data item in the prompt string must be surrounded by double quotation marks, followed by a
semicolon or comma and the name of the variable to which it will be assigned. If more than one
vari abl e isgiven, dataitems must be separated by commas.

The data entered is assigned to the variable list. The number of data items supplied must be the
same as the number of variablesin thelist.

The variable namesin the list may be numeric or string variable names (including subscripted
variables). The type of each dataitem input must agree with the type specified by the variable
name.

Too many or too few data items, or the wrong type of values (for example, numeric instead of
string), causes the message "?Redo from st art" to be printed. No assignment of input values

Is made until an acceptable responseis given.
A comma may be used instead of a semicolon after prompt string to suppress the question mark.
For example, the following line prints the prompt with no question mark:
| NPUT " ENTER Bl RTHDATE", B$
If the prompt string is preceded by a semicolon, the RETURN key pressed by the operator is

suppressed. During program execution, data on that line is displayed, and data from the next
PRI NT statement is added to the line.

When an | NPUT statement is encountered during program execution, the program halts, the

prompt string is displayed, and the operator typesin the requested data. Strings that input to an
| NPUT statement need not be surrounded by quotation marks unless they contain commas or

leading or trailing blanks.

When the operator presses the RETURN key, program execution continues.

file:///C|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/INPUT.html (1 of 2)28/03/2004 21.29.30

GW-BASIC User's Guide

| NPUT and LI NE | NPUT statements have built-in PRI NT statements. When an | NPUT statement

with a quoted string is encountered during program execution, the quoted string is printed
automatically (see the PRINT statement).

The principal difference between the | NPUT and LI NE | NPUT statementsisthat LI NE | NPUT

accepts special characters (such as commas) within a string, without requiring double quotation
marks, while the | NPUT statement requires double quotation marks.

Example 1:

To find the square of a number:

10 I NPUT X
20 PRINT X "SQUARED | S" X*2
30 END

RUN
?

The operator types a number (5) in response to the question mark.
5 SQUARED | S 25

Example 2:

To find the area of a circle when the radius is known:

10 PI =3. 14
20 I NPUT "WHAT IS THE RADI US"; R

30 A=PI*R"2
40 PRINT "THE AREA OF THE CIRCLE I S"; A
50 PRI NT

60 GOTO 20

RUN

VWHAT IS THE RADI US? 7.4

THE AREA OF THE CIRCLE IS 171. 9464

Note that line 20 in the above example makes use of the built-in PRI NT statement contai ned
within | NPUT.

file:///C|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/INPUT.html (2 of 2)28/03/2004 21.29.30

GW-BASIC User's Guide

PRINT Statement

Purpose:

To output adisplay to the screen.

Syntax:

PRINT [list of expressions]|[;]
?[1ist of expressions]|[;]

Comments:
If i st of expressionsisomitted, ablank lineis displayed.

IfI'i st of expressions isincluded, the values of the expressions are displayed. Expressions
in the list may be numeric and/or string expressions, separated by commas, spaces, or
semicolons. String constantsin the list must be enclosed in double quotation marks.

For more information about strings, see the STRINGS function.

A question mark (?) may be used in place of the word PRI NT when using the GW-BASIC
program editor.

Print Positions

GW-BASIC divides the line into print zones of 14 spaces. The position of each item printed is
determined by the punctuation used to separate the itemsin the list:

Separator Print Position

: Beginning of next zone

, Immediately after last value

space(s) Immediately after last value

If acomma, semicolon, or SPC or TAB function ends an expression list, the next PRI NT statement

begins printing on the same line, accordingly spaced. If the expression list ends without a comma,
semicolon, or SPC or TAB function, a carriage return is placed at the end of the lines (GW-BASIC

places the cursor at the beginning of the next line).

A carriage return/line feed is automatically inserted after printing wi dt h characters, where
wi dt h 1s40 or 80, as defined in the W DTH statement. This results in two lines being skipped

when you print exactly 40 (or 80) characters, unless the PRI NT statement ends in a semicolon.

When numbers are printed on the screen, the numbers are always followed by a space. Positive
number are preceded by a space. Negative numbers are preceded by aminus (-) sign. Single-
precision numbers are represented with seven or fewer digitsin afixed-point or integer format.

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basic/PRINT.html (1 of 2)28/03/2004 21.29.31

GW-BASIC User's Guide

Seethe LPRINT and LPRINT USING statements for information on sending data to be printed
on aprinter.

Examples:

10 X$= STRI NGS$(10, 45)
20 PRI NT X$"MONTHLY REPORT" X$
RUN

45 isthe decimal equivalent of the ASCII symbol for the minus (-) sign.

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/PRINT.html (2 of 2)28/03/2004 21.29.31

GW-BASIC User's Guide

STRING$ Function

Purpose:

To return

. astring of length n whose characters al have ASCII codej , or

. thefirst character of x$

Syntax:
STRINGE(n, j)
STRI NG5(n, x$)

Comments:

STRI NG$ is also useful for printing top and bottom borders on the screen or the printer.
nandj areinteger expressionsin the range O to 255.

Examples:

10 X$ = STRING$(10, 45)
20 PRINT X$ "MONTHLY REPORT" X$
RUN

45 isthe decimal equivalent of the ASCII symbol for the minus (-) sign.
Appendix Cin the GW-BASIC User's Guide lists ASCII character codes.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ STRINGS.html 28/03/2004 21.29.31

GW-BASIC User's Guide

LPRINT and LPRINT USING Statements

Purpose:

To print data at the line printer.

Syntax:

LPRINT [list of expressions]|[;]
LPRI NT USI NG string exp; |list of expressions|;]

Comments:
| i st of expressions consistsof the string or numeric expression separated by semicolons.

string expressions isastring litera or variable consisting of special formatting characters.
The formatting characters determine the field and the format of printed strings or numbers.

These statements are the same as PRI NT and PRI NT US| NG, except that output goesto the line

printer. For more information about string and numeric fields and the variables used in them, see
the PRINT and PRINT USING statements.

The LPRI NT and LPRI NT US| NG statements assume that your printer is an 80-character-wide
printer.

To reset the number of characters that you can print across the printed page (assuming that your
printer is wider than 80 characters), see the WIDTH statement.

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basi¢/L PRINT.html 28/03/2004 21.29.31

GW-BASIC User's Guide

PRINT USING Statement

Purpose:

To print strings or numbers using a specified format.

Syntax:

PRI NT USI NG string expressions;|list of expressions|;]

Comments:

string expressions isastringliteral or variable consisting of special formatting characters.
The formatting characters determine the field and the format of printed strings or numbers.

| i st of expressions consists of the string or numeric expressions separated by semicolons.

String Fields
The following three characters may be used to format the string field:

! Specifies that only the first character in the string is to be printed.
\n spaces\ Specifiesthat 2+n characters from the string are to be printed.

If the backslashes are typed with no spaces, two characters are printed; if the
backsl ashes are typed with one space, three characters are printed, and so on.

If the string is longer than the field, the extra characters are ignored. If thefield is
longer than the string, the string is left-justified in the field and padded with spaces
on the right. For example:

10 A$="LOXK": B$="QUT"
30 PRINT USING "!"; A$; B$
40 PRINT USING'\ \"; A$; B$
50 PRI NT USI NG'\ \" A BS; I
RUN
LO
LOOKOUT
LOOK aUT! !

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/PRINTUSING.html (1 of 4)28/03/2004 21.29.32

GW-BASIC User's Guide

& Specifies avariable length string field. When the field is specified with &, the string is
output exactly asinput. For example:
10 A$="LOOK": B$="OUT"
20 PRINT USING "!"; A$
30 PRINT USING "&"; B$
RUN
LOUT
Numeric Fields

The following specia characters may be used to format the numeric field:

#

A pound sign is used to represent each digit position. Digit positions are always
filled. If the number to be printed has fewer digits than positions specified, the
number is right-justified (preceded by spaces) in the field.

A decimal point may be inserted at any position in the field. If the format string
specifies that adigit is to precede the decimal point, the digit alwaysis printed (as O if
necessary). Numbers are rounded as necessary. For example:

PRI NT USI NG " ##. ##", .78
0.78

PRI NT USI NG " ###. ##"; 987. 654
987. 65

PRI NT USI NG "##. ##" ;10.2,5. 3, 66. 789, . 234
10.20 5.30 66.79 0.23

In the last example, three spaces were inserted at the end of the format string to
separate the printed values on the line.

A plus sign at the beginning or end of the format string causes the sign of the number
(plus or minus) to be printed before or after the number.

A minus sign at the end of the format field causes negative numbers to be printed
with atrailing minus sign. For example:

PRI NT USI NG' +##. ##"; -68. 95, 2. 4,55.6, -9
-68.95 +2.40 +55.60 -0.90

PRI NT USI NG'##. ##-", - 68. 95, 22. 449, -7. 01
68. 95 22.45 7.01-

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/PRINTUSING.html (2 of 4)28/03/2004 21.29.32

GW-BASIC User's Guide

* *

$$

**$

NNNN

A double asterisk at the beginning of the format string causes leading spacesin the
numeric field to be filled with asterisks. The * * also specifies two more digit

positions. For example:

PRI NT USI NG "**#. #";12.39,-0.9, 765. 1
12.4 -09765.1

A double dollar sign at the beginning of the format string causes a dollar sign to be
printed to the immediate |eft of the formatted number. The $$ specifies two more

digit positions, one of which isthe dollar sign. The exponential format cannot be used
with $$. Negative numbers cannot be used unless the minus sign trails to the right.

For example:

PRI NT USI NG " $$###. ##" ;, 456. 78
$456. 78

The**$ at the beginning of aformat string combines the effects of the above two
symbols. Leading spaces are filled with asterisks, and adollar sign is printed before
the number. * * $ specifies three more digit positions, one of which isthe dollar sign.
For example:

PRI NT USI NG " ** $##. ##", 2. 34
***$2. 34

A commacto the left of the decimal point in the format string causes a commato be
printed to the left of every third digit to the left of the decimal point. A comma at the
end of the format string is printed as part of the string.

PRI NT USI NG " ####. ##";, 1234. 5
1234. 50

Four carets may be placed after the digit position characters to specify exponential
format. The four carets allow space for E+xx to be printed. Any decimal point
position may be specified. The significant digits are left-justified, and the exponent is
adjusted. Unlessaleading + or trailing + or - is specified, one digit position is used
to the left of the decimal point to print a space or aminus sign. For example:

PRI NT USI NG " ##. ##""AA" 234, 56

2. 35E+02

PRI NT USI NG " . ####/ """ n-", 888888
K

PRI NT USI NG " +. ##/ AN 123

+. 12E+03

Note that in the above examples the comma s not used as a delimiter with the
exponential format.

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/PRINTUSING.html (3 of 4)28/03/2004 21.29.32

GW-BASIC User's Guide

%

An underscore in the format string causes the next character to be output as a literal
character. For example:

PRI NT USI NG " _##. ## 1", 12. 34
1'12. 34!

The literal character itself may be an underscore by placing " " in the format string.

A percent signisprinted in front of the number if the number to be printed is larger
than the specified numeric field. If rounding causes the number to exceed thefield, a
percent sign is printed in front of the rounded number. For example:

PRI NT USI NG "##. ##"; 111. 22

%d11. 22

PRI NT USI NG ". ##"';.999

%. 00
If the number of digits specified exceeds 24, an "1 | | egal function call" error
results.

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/PRINTUSING.html (4 of 4)28/03/2004 21.29.32

GW-BASIC User's Guide

WIDTH Statement

Purpose:

To set the printed line width in number of characters for the screen and line printer.

Syntax:

W DTH si ze
WDTH fil e nunber, size
W DTH "dev", size

Comments:
si ze, aninteger within the range of 0 to 255, is the new width.

file nunmber isthe number of thefilethat is open.

dev isavalid string expression identifying the device. Valid devicesare SCRN: , LPT1: , LPT2:,
LPT3:, COML: , and COVR: .

Changing Screen Width

The following statements are used to set the screen width. Only a40- or 80-column width is
allowed.

W DTH si ze
W DTH "SCRN: ", size

See the SCREEN statement for more information.

Changing SCREEN mode affects screen width only when moving between SCREEN 2 and
SCREEN 1 or SCREEN 0.

Note

Changing the screen width clears the screen and sets the border screen color to black.

Changing Line printer Width

The following W DTH statement is used as a deferred width assignment for the line printer. This
statement stores the new width value without actually changing the current width setting:

W DTH "LPT1:", size

file:///C|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/WIDTH.html (1 of 2)28/03/2004 21.29.32

GW-BASIC User's Guide

A statement of the following form recognizes this stored width value:
OPEN "LPT1:" FOR QUTPUT AS nunber

and uses it whilethefile is open:
WDTH fil e nunber, size

If the fileisopen to Iptl:, line printer width isimmediately changed to the new size specified.
This allows the width to be changed at will while the fileis open. Thisform of W DTH has

meaning only for Iptl:. After outputting the indicated number of characters from the open file,
GW-BASIC inserts a carriage return at the end of the line and wraps the output, if the width is
less than the length of the record.

Valid widths for the line printer are 1 through 255.

Specifying W DTH 255 for the line printer (Ipt1:) enables line wrapping. This has the effect of
infinite width.

Any value entered outside of these rangesresultsinan "l | | egal function cal |l " error. The
previous value is retained.

Using the W DTH statement on a communications file causes a carriage return to be sent after the

number of characters specified by the size attribute. It does not alter either the receive or transmit
buffer.

Examples:

10 WDTH "LPT1:", 75
20 OPEN "LPT1:" FOR OQUTPUT AS #1

6020 W DTH #1, 40

Line 10 stores aline printer width of 75 characters per line.

Line 20 opensfile #1 to the line printer and sets the width to 75 for subsequent PRI NT #1,
statements.

Line 6020 changes the current line printer width to 40 characters per line.

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basic/WIDTH.html (2 of 2)28/03/2004 21.29.32

GW-BASIC User's Guide

INPUT# Statement

Purpose:

To read data items from a sequential file and assign them to program variables.

Syntax:
| NPUT# file nunber, variable |i st

Comments:
file nunber isthe number used when the file was opened for input.
vari abl e |i st containsthe variable namesto be assigned to the itemsin thefile.

The dataitemsin the file appear just as they would if datawere being typed on the keyboard in
response to an | NPUT statement.

The variable type must match the type specified by the variable name.
With | NPUT#, no question mark is printed, asit iswith | NPUT.

Numeric Values

For numeric values, leading spaces and line feeds are ignored. The first character encountered
(not a space or line feed) is assumed to be the start of a number. The number terminates on a
Space, carriage return, line feed, or comma.

Strings

If GW-BASIC is scanning the sequential data file for a string, leading spaces and line feeds are
ignored.

If the first character is a double quotation mark ("), the string will consist of all characters read

between the first double quotation mark and the second. A quoted string may not contain a
double quotation mark as a character. The second double quotation mark always terminates the
string.

If the first character of the string is not a double quotation mark, the string terminates on a
comma, carriage return, line feed, or after 255 characters have been read.

If end of thefileis reached when a numeric or string item isbeing | NPUT, the item is terminated.

| NPUT# can aso be used with random files.

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ NPUTF.html 28/03/2004 21.29.32

GW-BASIC User's Guide

INPUT$ Function

Purpose:

To return astring of x characters read from the keyboard, or from file number.

Syntax:
| NPUTS(X[, [#]file nunber)]

Comments:

If the keyboard is used for input, no characters will appear on the screen. All control characters
(except CTRL-BREAK) are passed through. cTRL-BREAK interrupts the execution of the | NPUT$

function.

The | NPUT$ function is preferred over | NPUT and LI NE | NPUT statements for reading

communications files, because all ASCII characters may be significant in communications.
| NPUT isthe least desirable because input stops when acomma or carriage return is seen. LI NE

| NPUT terminates when a carriage return is seen.

| NPUT$ allows all characters read to be assigned to a string. | NPUT$ will return x characters
from the file number or keyboard.

For more information about communications, refer to Appendix F in the GW-BASIC User's
Guide.

Example 1:

The following example lists the contents of a sequential file in hexadecimal.

10 OPEN'I", 1, "DATA"

20 | F EOF(1) THEN 50

30 PRI NT HEX$(ASC(| NPUT$(1, #1))):
40 GOTO 20

50 PRI NT

60 END

Example 2:

In the following program, the program pauses, awaiting a keyboard entry of either Por S. Line
130 continues to loop back to line 100 if the input is other than P or S.

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/INPUTS.html (1 of 2)28/03/2004 21.29.32

GW-BASIC User's Guide

100 PRINT "TYPE P TO PROCEED OR S TO STOP"
110 X$=I NPUT$(1)

120 | F X$="P" THEN 500

130 | F X$="S" THEN 700 ELSE 100

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/INPUTS.html (2 of 2)28/03/2004 21.29.32

GW-BASIC User's Guide

INSTR Function

Purpose:

To search for the first occurrence of string y$ in x$, and return the position at which the string is
found.

Syntax:
| NSTR([n,] x$, y9$)

Comments:

Optional offset n sets the position for starting the search. The default value for n is 1. If n equals
zero, theerror message "l | | egal argunent in |ine number"isreturned. n must be within

therange of 1to 255. If nisout of thisrange, an"I | | egal Function Cal | " error isreturned.

| NSTRreturns O if:

« n>LEN(x$)
« X$isnull

. y$ cannot be found

If y$isnull, | NSTRreturnsn.

x$ and y$ may be string variables, string expressions, or string literals.

Examples:
10 X$=" ABCDEBXYZ"
20 Y$="B"
30 PRINT INSTR(X$, Y$); INSTR(4, X$, Y9$)
RUN
2 6

The interpreter searches the string "ABCDFBXY Z" and finds the first occurrence of the character
B at position 2 in the string. It then starts another search at position 4 (D) and finds the second
match at position 6 (B). The last three characters are ignored, since all conditions set out in line
30 were satisfied.

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ NSTR.html 28/03/2004 21.29.33

GW-BASIC User's Guide

|OCTL Statement

Purpose:

To alow GW-BASIC to send a"control data" string to a character device driver anytime after the
driver has been opened.

Syntax:
| OCTL[#]fil e nunber, string

Comments:
file nunber isthefile number open to the device driver.
st ri ng isavalid string expression containing characters that control the device.

| OCTL commands are generally 2 to 3 characters followed by an optional al phanumeric
argument. An | OCTL string may be up to 255 bytes long, with commands within the string
separated by semicolons.

Examples:

If auser had installed a driver to replace Iptl, and that driver was able to set page length (the
number of linesto print on a page before issuing aform feed), then the following lines would
open the new Iptl driver and set the page length to 66 lines:

OPEN "LPT1:" FOR QUTPUT AS #1
| OCTL #1, "PL66"
The following statements open Ipt1 with an initial page length of 56 lines:

OPEN "\ DEWV\ LPT1" FOR OUTPUT AS #1
| OCTL #1, "PL56"

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/l OCTL .html28/03/2004 21.29.33

GW-BASIC User's Guide

|OCTL$ Function

Purpose:
To alow GW-BASIC to read a"control data' string from an open character device driver.

Syntax:
| OCTL$([#] fil e nunber)

Comments:
file nunber isthefile number open to the device.

The | OCTL$ function is generally used to get acknowledgement that an | OCTL statement
succeeded or failed. It is also used to get device information, such as device width after an | OCTL
statement requests it.

Examples:

10 'GWis a possible command
20 'for get device width

30 OPEN "\ DEW\ MYLPT" AS#1
40 | OCTYL#1, "GW

50 'Save it in WD

60 W D=VAL(| OCTL$(#1))

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ OCTL S.html 28/03/2004 21.29.33

GW-BASIC User's Guide

KILL Command

Purpose:
To delete afile from adisk.

Syntax:

KILL fil enane

Comments:
fi | enanme can be aprogram file, sequential file, or random-access datafile.

KI LL isused for al types of disk files, including program, random data, and sequential datafiles.

Note

Y ou must specify the filename's extension when using the KI LL command. Remember that files
saved in GW-BASIC are given the default extension .BAS.

If aKl LL command is given for afilethat iscurrently open, a"Fi | e al ready open" error
occurs.

Examples:

The following command deletes the GW-BASIC file DATAL, and makes the space available for
reallocation to another file:

200 KILL " DATAl. BAS'

The following command deletes the GW-BASIC file RAINING from the subdirectory dogs:
KI LL " CATS\ DOGS\ RAI NI NG. BAS"

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/K | L L .html 28/03/2004 21.29.33

GW-BASIC User's Guide

LEFTS$ Function

Purpose:

To return astring that comprises the left-most n characters of x$.

Syntax:
LEFT$(x$, n)

Comments:

n must be within the range of 0 to 255. If n isgreater than LEN(x$) , the entire string (x$) will be
returned. If n equals zero, the null string (Ilength zero) isreturned (see the MID$ and RIGHTS$
substring functions).

Example:

10 A$="BASI C'

20 B$=LEFT$(A%, 3)
30 PRI NT B$

RUN

BAS

The left-most three letters of the string "BASIC" are printed on the screen.

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/L EFT S.html28/03/2004 21.29.34

GW-BASIC User's Guide

MID$ Function

Purpose:

To return astring of mcharacters from x$ beginning with the nt h character.

Syntax:
M D$(x$, n[, m)

Comments:
n must be within the range of 1 to 255.
mmust be within the range of 0 to 255.

If misomitted, or if there are fewer than mcharacters to the right of n, all rightmost characters
beginning with n are returned.

If n > LEN(x$), M D$ function returns a null string.
If mequals 0, the M D$ function returns a null string.
If either n or misout of range, an"1 | | egal function call error"isreturned.

For more information and examples, see the LEFTS$ and RIGHT$ functions.

Examples:

10 A$=" GOOD"
20 B$="MORNI NG EVENI NG AFTERNOON'
30 PRINT A$; M D$(B$, 8, 8)
RUN
GOOD EVENI NG

Line 30 concatenates (joins) the A$ string to another string with a length of eight characters,
beginning at position 8 within the BS string.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/M | DSF.html28/03/2004 21.29.34

GW-BASIC User's Guide

RIGHTS$ Function

Purpose:

To return the rightmost n characters of string x$.

Syntax:
Rl GHT$(x$, n)

Comments:

If nisequal to or greater than LEN(x$) , Rl GHT$ returns x$. If n equals zero, the null string
(Iength zero) is returned (see the MID$ and LEFT$ functions).

Examples:

10 A$="DI SK BASI C'

20 PRI NT RI GHT$(A$, 5)
RUN

BASI C

Prints the rightmost five charactersin the A$ string.

file://IC|/Documents%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/RIGHT S.html28/03/2004 21.29.34

GW-BASIC User's Guide

LEN FUNCTION

Purpose:

To return the number of charactersin x$.

Syntax:
LEN(x$)

Comments:

Nonprinting characters and blanks are counted.

Example:
x$ isany string expression.

10 X$="PORTLAND, OREGON'
20 PRI NT LEN(X$)

RUN

16

Note that the comma and space are included in the character count of 16.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/L EN.html| 28/03/2004 21.29.34

GW-BASIC User's Guide

LINE INPUT Statement

Purpose:
To input an entire line (up to 255 characters) from the keyboard into a string variable, ignoring
delimiters.
Syntax:
LINE INPUT [;][pronpt string;]string variable

Comments:

pronpt stringisastring literal, displayed on the screen, that allows user input during
program execution.

A question mark is not printed unlessit is part of pr onpt st ri ng.

string vari abl e acceptsall input from the end of the prompt to the carriage return. Trailing
blanks are ignored.

LI NE | NPUT isamost the same asthe | NPUT statement, except that it accepts special characters
(such as commas) in operator input during program execution.

If aline-feed/carriage return sequence (this order only) is encountered, both characters are input
and echoed. Data input continues.

If LI NE | NPUT isimmediately followed by a semicolon, pressing the RETURN key will not move
the cursor to the next line.

A LI NE | NPUT may be escaped by typing cTRL-BREAK. GW-BASIC returns to command level
and displays k.

Typing CONT resumes execution at the LI NE | NPUT line.
Example:
100 LI NE | NPUT A$

Program execution pauses at line 100, and all keyboard characters typed thereafter are input to
string A$ until RETURN, CTRL-M, CTRL-C, OF CTRL-BREAK iS entered.

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basi¢/L INEINPUT.html 28/03/2004 21.29.35

GW-BASIC User's Guide

LINE INPUT# Statement

Purpose:

To read an entire line (up to 255 characters), without delimiters, from a sequential disk fileto a
string variable.

Syntax:
LI NE | NPUT# file nunber, string variable

Comments:
file nunber isthe number under which the file was opened.
string variable is the variable name to which the line will be assigned.

LI NE | NPUT# reads all charactersin the sequential file up to a carriage return. If aline feed/
carriage return sequence (this order only) is encountered, it isinput.

LI NE | NPUT# is especially useful if each line of a datafile has been broken into fields, or if a
BASIC program saved in ASCII mode is being read as data by another program.

Examples:

10 OPEN "O', 1, "INFO

20 LI NE I NPUT " CUSTOVER | NFORNMATI ON?"; C$
30 PRI NT#1, C$

40 CLCSE 1

50 OPEN "1", 1, "INFO

60 LI NE | NPUT#1, C$

70 PRINT C$

80 CLCSE 1

RUN

CUSTOVER | NFORVATI ON?

If the operator enters
LI NDA JONES 234, 4 MEMPHI S

then the program continues with the following:
LI NDA JONES 234, 4 MEMPHI S

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basic/L INEINPUTF.html 28/03/2004 21.29.35

GW-BASIC User's Guide

LIST Command

Purpose:

Tolist al or part of aprogram to the screen, line printer, or file.

Syntax:

LIST [line nunber][-line nunber][,fil enane]

LI ST [Iine nunber-][,fil enane]
Comments:
| i nenunber isavalid line number within the range of 0 to 65529.
If fil enanme isomitted, the specified lines are listed to the screen.

Use the hyphen to specify aline range. If the line range is omitted, the entire program is listed.
| i nenunber - liststhat line and all higher numbered lines. - | i nenunber listslinesfrom the
beginning of the program through the specified line.

The period (.) canreplace either | i nenunber to indicate the current line.
Any listing may be interrupted by pressing ctrl-break.
Examples:

LI ST

Listsal linesin the program.
LI ST -20

Lists lines 1 through 20.
LI ST 10-20

Listslines 10 through 20.
LI ST 20-

Lists lines 20 through the end of the program.

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/L | ST.html 28/03/2004 21.29.35

GW-BASIC User's Guide

LLIST Command

Purpose:

Tolist al or part of the program currently in memory to the line printer.

Syntax:

LLI ST [line nunber][-1ine nunber]
LLI ST [Iine nunber-]

Comments:

GW-BASIC aways returns to command level after aLLl ST is executed. The line range options
for LLI ST arethe sameasfor LI ST.

Examples:
See the examplesin the LIST statement.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/L L1 ST.html| 28/03/2004 21.29.35

GW-BASIC User's Guide

LOAD Command

Purpose:

To load afile from diskette into memory.

Syntax:
LOAD fil enane[, r]

Comments:

fi |l enane isthe filename used when the file was saved. If the extension was omitted, .BAS will
be used.

LOAD closes all open files and deletes all variables and program lines currently residing in
memory before it loads the designated program.

If ther option isused with LOAD, the program runs after it is loaded, and all open datafiles are
kept open.

LOAD with ther option lets you chain several programs (or segments of the same program).
Information can be passed between the programs using the disk datafiles.

Examples:
LOAD " STRTRK", R

Loads the file strtrk.bas and runsit, retaining all open files and variables from a previous
program intact.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/L OA D .html 28/03/2004 21.29.36

GW-BASIC User's Guide

L OC Function

Purpose:

To return the current position in thefile.

Syntax:
LOC(fil e nunber)

Comments:
file nunber isthefile number used when the file was opened.

When transmitting or receiving afile through a communication port, LOC returns the number of

charactersin the input buffer waiting to be read. The default size for the input buffer is 256
characters, but can be changed with the/ c: option on the GW-BASIC command line. If there are

more than 255 charactersin the buffer, LOC returns 255. Since a string is limited to 255

characters, this practical limit alleviates the need to test for string size before reading datainto it.
If fewer than 255 characters remain in the buffer, then LOC returns the actual count.

With random disk files, LOC returns the record number just read from, or written to, with a GET or
PUT statement.

With sequential files, LOC returns the number of 128-byte blocks read from, or written to, the file

since it was opened. When the sequential file is opened for input, GW-BASIC initially reads the
first sector of thefile. In this case, the LOC function returns the character 1 before any input is

allowed.
If the file was opened but no disk input/output was performed, L OC returns a zero.

Examples:
200 I F LOC(1)>50 THEN STOP

The program stops after 51 records are read or written.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/L OC.html 28/03/2004 21.29.36

GW-BASIC User's Guide

LOCATE Statement

Purpose:

To move the cursor to the specified position on the active screen. Optional parameters cause the
cursor to blink on and off, and define the start and stop raster lines for the cursor. A raster lineis
the vertical or horizontal distance between two adjacent, addressabl e points on your screen.
Syntax:

LOCATE [row[,[col][,[cursor][,[start] [,stop]]]]

Comments:
r owisthe screen line number, a numeric expression within the range of 1 to 25.

col isthe screen column number, a numeric expression within the range of 1 to 40, or 1 to 80,
depending upon screen width.

cur sor isaBoolean value indicating whether the cursor isvisible; zero is off, nonzeroison.
st art isthe cursor start scan line, anumeric expression within the range of 0 to 31.
st op isthe cursor stop scan line, a numeric expression within the range of 0 to 31.

When the cursor is moved to the specified position, subsequent PRI NT statements begin placing
characters at this location. Optionally, the LOCATE statement may be used to start the cursor
blinking on or off, or change the size of the blinking cursor.

Any values entered outside of theserangesresultsin”l | | egal function cal | " errors.
Previous values are retained.

Asyou set up the parameters for the LOCATE statement, you may find that you do not wish to
change one or more of the existing specifications. To omit a parameter from this LOCATE

statement, insert acomma for the parameter that is being skipped. If the omitted parameter(s)
occurs at the end of the statement, you do not have to type the comma.

If the start scan line parameter is given and the stop scan line parameter is omitted, stop assumes
the start value.

Examples:
10 LOCATE 1,1

Moves cursor to the home position in the upper-left corner.
20 LOCATE ,,1

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/L OCATE.html (1 of 2)28/03/2004 21.29.36

GW-BASIC User's Guide

Makes the cursor visible. Its position remains unchanged. Notice that the first two parameters are
not used. A comma has been inserted for each omitted parameter.

30 LOCATE ,,,7
Cursor position and visibility remain unchanged. Sets the cursor to appear at the bottom of the
character starting and ending on scan line 7.

40 LOCATE 5,1,1,0,7

Moves the cursor to line 5, column 1, and turns the cursor on. The cursor covers an entire
character cell, starting at scan line 0 and ending on scan line 7.

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/L OCATE.html (2 of 2)28/03/2004 21.29.36

GW-BASIC User's Guide

LOCK Statement

Purpose:
To restrict the access to all or part of afile that has been opened by another process. Thisis used
in a multi-device environment, often referred to as a network or network environment.
Syntax:
LOCK [#]n [,[record nunber] [TO record nunber]]

Comments:
n isthe number that was assigned to the file as it was originally numbered in the program.

record nunber isthe number of theindividual record that is to be locked. Or, if arange of
records areto be locked, r ecor d nunber designates the beginning and ending record of the
specified range.

The range of legal record numbersis 1to 232 -1. The limit on record size is 32767 bytes.
The record range specified must be from lower to (the same or) higher record numbers.
If astarting record number is not specified, the record number 1 is assumed.

If an ending record number is not specified, then only the specified record is locked.

The following are examples of legal LOCK statements:

LOCK #n locks the entire filen

LOCK #n, X locks record X only

LOCK #n TO Y locksrecords 1 through Y

LOCK #n, X TO Ylocks records X through Y

With a random-access file, the entire opened file, or arange of records within an opened file, may
be locked, thus denying access to those records to any other process which has also opened the
file.

With a sequential access file that has been opened for input or output, the entire file is locked,
regardless of any record range specified. Thisis not considered an error. The specification of a
range in the LOCK statement regarding the sequential file will smply be disregarded.

The LOCK statement should be executed on afile or record range within afile before attempting
to read or write to that file.

The locked file or record range should be unlocked before the file is closed. Failure to execute the
UNL OCK statement can jeopardize future access to that file in a network environment.

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/L OCK .html (1 of 2)28/03/2004 21.29.37

GW-BASIC User's Guide

It is expected that the time in which files or regions within files are locked will be short, and thus
the suggested usage of the L OCK statement is within short-term paired L OCK/UNLOCK statements.

Examples:
The following sequence demonstrates how the L OCK/UNL OCK statements should be used:

LOCK #1, 1 TO 4
LOCK #1, 5 TO 8
UNLOCK #1, 1 TO 4
UNLOCK #1, 5 TO 8

The following exampleisillegal:

LOCK #1, 1 TO 4
LOCK #1, 5 TO 8
UNLOCK #1, 1 TO 8

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/L OCK .html (2 of 2)28/03/2004 21.29.37

GW-BASIC User's Guide

L OF Function

Purpose:
To return the length (number of bytes) allocated to the file.

Syntax:
LOF(file nunber)

Comments:

file nunmber isthe number of thefile that the file was opened under.

With communications files, LOF returns the amount of free space in the input buffers.

Examples:

The following sequence gets the last record of the random-access file file.big, and assumes that
the file was created with a default record length of 128 bytes:

10 OPEN "R', 1, "FI LE. BI G'
20 GET #1, LOF(1)/128

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/L OF .html 28/03/2004 21.29.37

GW-BASIC User's Guide

L OG Function

Purpose:

To return the natural logarithm of x.

Syntax:
LOE x)

Comments:
X must be a number greater than zero.

LOG(x) iscalculated in single precision, unlessthe/ d switch is used when GW-BASIC is
executed.

Examples:

PRI NT LOX 2)
. 6931471

PRI NT LOG(1)
0

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/L OG.html| 28/03/2004 21.29.37

GW-BASIC User's Guide

L POS Function

Purpose:
To return the current position of the line printer print head within the line printer buffer.

Syntax:
LPOS(x)

Comments:

LPOS does not necessarily give the physical position of the print head.

x isadummy argument.

If the printer has less than the 132 characters-per-line capability, it may issue internal line feeds
and not inform the computer internal line printer buffer. If this has happened, the value returned
by LPOS(x) may beincorrect. LPOS(x) simply counts the number of printable characters since

the last line feed was issued.

Examples:

The following line causes a carriage return after the 60th character is printed on aline:
100 | F LPOS(X)>60 THEN LPRI NT CHR$(13)

file:///C|/Documents%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/L POS.html28/03/2004 21.29.37

GW-BASIC User's Guide

MID$ Statement

Purpose:

To replace a portion of one string with another string.

Syntax:
M D$(stringexpl,n[,n])=stringexp2

Comments:
Both n and mare integer expressions.
stringexpl andstringexp2 are string expressions.

The charactersin st ri ngexpl, beginning at position n, are replaced by the charactersin
stringexp2.

The optional mrefers to the number of charactersfrom st ri ngexp2 that are used in the
replacement. If misomitted, all of st ri ngexp2 is used.

Whether mis omitted or included, the replacement of characters never goes beyond the original
length of st ri ngexpl.

Examples:

10 A$="KANSAS CI TY, MO
20 M D$(AS$, 14)="KS"
30 PRI NT A$

RUN

KANSAS CI TY, KS

Line 20 overwrites "M Q" in the A$ string with "KS".

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/M | DSS.html 28/03/2004 21.29.38

GW-BASIC User's Guide

MKDIR Command

Purpose:

To create a subdirectory.

Syntax:
MKDI R pat hnane

Comments:

pathname is a string expression, not exceeding 63 characters, identifying the subdirectory to be
created.

Examples:
WMKDI R " C: SALES\ JOHN"

Creates the subdirectory JOHN within the directory of SALES.

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/M K DI R.html 28/03/2004 21.29.38

GW-BASIC User's Guide

NAME Command

Purpose:

To change the name of adisk file.

Syntax:
NAME old fil enane AS new fil enane

Comments:

ol d fil ename must exist and new fi | enanme must not exist; otherwise, an error results.
After a NAVE command, the file exists on the same diskette, in the same disk location, with the
new name.

Examples:

NAME " ACCTS" AS " LEDGER"

Thefile formerly named ACCTSwill now be named LEDGER. The file content and physical
location on the diskette is unchanged.

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/NAM E.html28/03/2004 21.29.38

GW-BASIC User's Guide

NEW Command

Purpose:

To delete the program currently in memory and clear all variables.

Syntax:
NEW

Comments:

NEWis entered at command level to clear memory before entering a new program. GW-BASIC
aways returns to command level after a NEWis executed.

Examples:
NEW

or

980 PRINT "Do You Wsh To Quit (Y/'N)
990 ANS$=I NKEYS$: |F ANS$=""THEN 990
1000 | F ANS$="Y" THEN NEW

1010 I F ANS$="N' THEN 980

1020 GOTO 990

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/NEW.html 28/03/2004 21.29.38

GW-BASIC User's Guide

ON ERROR GOTO Statement

Purpose:

To enable error trapping and specify the first line of the error-handling subroutine.

Syntax:
ON ERROR GOTO | i ne nunber

Comments:

Once error trapping has been enabled, all errors detected by GW-BASIC, including direct mode
errors, (for example, syntax errors) cause GW-BASIC to branch to the line in the program which
begins the specified error-handling subroutine.

GW-BASIC branches to the line specified by the ON ERROR statement until a RESUVE statement
is found.

If | i ne nunber doesnot exist, an"Undef i ned | i ne" error results.
To disable error trapping, execute the following statement:

ON ERROR GOTO 0O
Subsequent errors print an error message and halt execution.

An ON ERROR GOTO 0 statement in an error-trapping subroutine causes GW-BASIC to stop and

print the error message for the error that caused the trap. It is recommended that all error-trapping
subroutines execute an ON ERRCR GOTO 0 if an error is encountered for which thereis no

recovery action.

If an error occurs during execution of an error-handling subroutine, the GW-BASIC error
message is printed and execution terminated. Error trapping does not occur within the error-
handling subroutine.

Examples:
10 ON ERROR GOTO 1000

1000 A=ERR B=ERL
1010 PRINT A, B
1020 RESUVE NEXT

Line 1010 prints the type and location of the error on the screen (see the ERR and ERL variables).

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basic/ ONERROR.html (1 of 2)28/03/2004 21.29.39

file:///C|/Documents%20and%20Settings/Lorenzo/Desktop/GW%20Basic/ERR.html
file:///C|/Documents%20and%20Settings/Lorenzo/Desktop/GW%20Basic/ERL.html

GW-BASIC User's Guide

Line 1020 causes program execution to continue with the line following the error.

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basic/ ONERROR.html (2 of 2)28/03/2004 21.29.39

GW-BASIC User's Guide

ON ... GOSUB and ON ... GOTO Statements

Purpose:

To branch to one of severa specified line numbers, depending on the value returned when an
expression is evaluated.

Syntax:

ON expression GOTO |i ne nunbers
ON expression GOSUB |ine nunbers

Comments:

IntheON ... GOTOstatement, the value of expr essi on determines which line number in the

list will be used for branching. For example, if the value is 3, the third line number in the list will
be destination of the branch. If the value is a non-integer, the fractional portion is rounded.

IntheON ... GOSUB statement, each line number in the list must be the first line number of a
subroutine.

If the value of expr essi on iszero or greater than the number of itemsin the list (but less than
or equal to 255), GW-BASIC continues with the next executabl e statement.

If the value of expr essi on isnegative, or greater than 255, an"l | | egal function call"
€er'ror OCCurs.
Examples:

100 IF R<1 or R>4 then print "ERROR': END

If theinteger value of R islessthan 1, or greater than 4, program execution ends.
200 ON R GOTO 150, 300, 320, 390

If R=1, the program goesto line 150.

If R=2, the program branches to line 300 and continues from there. If R=3, the branch will beto
line 320, and so on.

file:///C|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/ ONGOSUB.html 28/03/2004 21.29.39

GW-BASIC User's Guide

OPEN Statement

Purpose:

To establish input/output (1/0) to afile or device.

Syntax:
OPEN node, [#]fil e nunber, fil enane[, recl en]
OPEN fil enane [FOR node] [ACCESS access][lock] AS [#]file nunber
[LEN=r ecl en]

Comments:

fi | enane isthe name of thefile.

mode (first syntax) is a string expression with one of the following characters:

Expression Specifies

O Sequential output mode

| Sequential input mode

R Random input/output mode
A Position to end of file

mode (second syntax) determines the initial positioning within the file, and the action to be taken
if the file does not exist. If the FOR mode clause is omitted, theinitial position is at the beginning
of thefile. If thefileis not found, oneis created. Thisisthe random I/O mode. That is, records
may be read or written at any position within the file. The valid modes and actions taken are as
follows:

| NPUT Position to the beginning of thefile. A "Fi | e not found" error isgiven if the
file does not exist.

QUTPUT Position to the beginning of thefile. If the file does not exist, oneis created.

APPEND Position to the end of thefile. If the file does not exist, oneis created.

RANDOM Specifies random input or output mode.

mode must be a string constant. Do not enclose node in double quotation marks. access can be
one of the following:

READ
VRI TE
READ WRI TE

file nunber isanumber between 1 and the maximum number of files allowed. The number
associates an 1/0 buffer with adisk file or device. This association exists until a CLOSE or CLOSE

file number statement is executed.

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ OPEN.html (1 of 5)28/03/2004 21.29.39

GW-BASIC User's Guide

recl en isaninteger expression within the range of 1-32767 that sets the record length to be used
for random files. If omitted, the record length defaults to 128-byte records.

Whenr ecl en isused for sequential files, the default is 128 bytes, and r ecl en cannot exceed
the value specified by the/ s switch.

A disk file must be opened before any disk 1/O operation can be performed on that file. OPEN
allocates abuffer for 1/0O to the file and determines the mode of access that is used with the buffer.

More than one file can be opened for input or random access at one time with different file
numbers. For example, the following statements are allowed:

OPEN "B: TEMP" FOR | NPUT AS #1
OPEN "B: TEMP" FOR | NPUT AS #2

However, afile may be opened only once for output or appending. For example, the following
statements areillegal:

OPEN "TEMP" FOR QUTPUT AS #1
OPEN "TEMP" FOR OQUTPUT AS #2

Note

Be sure to close al files before removing diskettes from the disk drives (see CLOSE and
RESET).

A device may be one of the following:

A, B, C... Disk Drive

KYBD: Keyboard (input only)

SCRN: Screen (output only)

LPT1: Line Printer 1

LPT2: Line Printer 2

LPT3: Line Printer 3

COML: RS-232 Communications 1
COVE: RS-232 Communications 2

For each device, the following OPEN modes are allowed:
KYBD: Input Only

SCRN: Output Only

LPT1: Output Only

LPT2: Output Only

LPT3: Output Only

COML: Input, Output, or Random Only

file:///C)/Documents¥%20and%20Setti ngs/L orenzo/Desktop/ GW%20Basi ¢/ OPEN.html (2 of 5)28/03/2004 21.29.39

GW-BASIC User's Guide

cove: Input, Output, or Random Only
Disk files allow all modes.

When adisk file is opened for APPEND, the position isinitially at the end of the file, and the
record number is set to the last record of the file (LOF(x) / 128). PRI NT, WRI TE, or PUT then
extends the file. The program may position elsewhere in the file with a GET statement. If thisis
done, the mode is changed to random and the position moves to the record indicated.

Once the position is moved from the end of the file, additional records may be appended to the
file by executing aGET #x, LOF(x)/ r ecl en statement. This positions the file pointer at the end

of thefilein preparation for appending.

Any values entered outside of therangesgivenresultin”l | | egal function cal | " errors.
Thefiles are not opened.

If the fileisopened as | NPUT, attempts to writeto thefileresultin"Bad fil e node" errors.
If the file is opened as OQUTPUT, attemptsto read thefileresultin"Bad fil e node" errors,
Opening afile for OUTPUT or APPEND fails, if thefile is aready open in any mode.

Sinceit is possible to reference the same file in a subdirectory via different paths, it is nearly
impossible for GW-BASIC to know that it is the same file ssimply by looking at the path. For this
reason, GW-BASIC does not let you open the file for OUTPUT or APPEND if it is on the same
disk, even if the path is different. For example if mary is your working directory, the following
statements all refer to the samefile:

OPEN " REPORT"

OPEN "\ SALES\ MARY\ REPCRT"
OPEN ". .\ MARY\ REPORT"
OPEN ". .\ ..\ MARY\ REPORT"

At any onetime, it is possible to have a particular diskette filename open under more than one
file number. Each file number has a different buffer, so several records from the same file may be
kept in memory for quick access. This allows different modes to be used for different purposes;
or, for program clarity, different file numbers to be used for different modes of access.

If the LEN=r ecl en optionisused, r ecl en may not exceed the value set by the/ s: recl en
switch option in the command line.

In anetwork environment, the use of the OPEN statement is based upon two different sets of
circumstances:

. Devices may be shared on a network for specific purposes only, so that OPEN statements

may be restricted to specific modes among those which might be requested, such as:
| NPUT, OUTPUT, APPEND, and default (random).

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ OPEN.html (3 of 5)28/03/2004 21.29.39

GW-BASIC User's Guide

. Filesmay be restricted by the implementation of an OPEN statement which allows a
process to specify an access to the successfully opened file. The access determines a
guaranteed exclusivity range on that file by the process while the OPEN statement isin
effect.

| ock can be one of the following:

SHARED "deny none" mode. No restrictions are placed on the read/write accessibility
of the the file to another process, except that the default mode is not allowed
by any of the modes including SHARED.

LOCK READ "deny read" mode. Once afileis opened with the LOCK READ access, no

other processis granted read-access to that file. An attempt to open afile
with this access will be unsuccesstul, if the fileis currently open in default
mode or with aread access.

LOCK WRI TE "deny write" mode. A file successfully opened with LOCK W\RI TE access
may not be opened for awrite access by another process. An attempt to open
afile with this access will be unsuccessful if the file has been opened in
default mode, or with awrite access by another process.

LOCK READ VRl TE"deny all" or "exclusive" mode. If afileis successfully opened with this
access, the process has exclusive access to thefile. A file that is currently
open in this mode cannot be opened again in any mode by any process.

default "compatibility" mode, in which the compatibility with other BASICsis
understood. No access is specified. The file may be opened any number of
times by a process, provided that the file is not currently opened by another
process. Other processes are denied access to the file while it is open under
default access. Therefore, it isfunctionally exclusive.

When an attempt is made to open afile that has been previously accessed by another process, the

error "Per mi ssi on Deni ed" will result. An example of a situation generating this error iswhen

a process attemptsto OPEN SHARED on afile that isalready OPEN LOCK READ V\RI TE by

another process.

If an OPEN statement fails because the mode is incompatible with network-installed sharing
access to adevice, the error generated is"Pat h/ Fi | e Access Error." Anexample of thisis
when a process is attempting to OPEN afile for output on a directory that has been shared for read
only.

For more information about using files in a networking environment, see the LOCK and
UNLOCK statements.

Examples:

file:///C)/Documents¥%20and%20Setti ngs/L orenzo/Desktop/ GW%20Basi ¢/ OPEN.html (4 of 5)28/03/2004 21.29.39

GW-BASIC User's Guide

10 OPEN "1", 2, "1 NVEN"

Opensfile 2, inven, for sequential input.

file:///C)/Documents¥%20and%20Setti ngs/L orenzo/Desktop/ GW%20Basi ¢/ OPEN.html (5 of 5)28/03/2004 21.29.39

GW-BASIC User's Guide

RESET Command

Purpose:

To close all disk files and write the directory information to a diskette before it is removed from a
disk drive.

Syntax:
RESET

Comments:

Always execute a RESET command before removing a diskette from a disk drive. Otherwise,
when the diskette is used again, it will not have the current directory information written on the
directory track.

RESET closes all open fileson al drives and writes the directory track to every diskette with open
files.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20B asi ¢/RESET .html 28/03/2004 21.29.40

GW-BASIC User's Guide

UNLOCK Statement

Purpose:
To release locks that have been applied to an opened file. Thisis used in amulti-device
environment, often referred to as a network or network environment.
Syntax:
UNLOCK [#]n [,[record nunmber] [TO record nunber]]

Comments:
n isthe number that was assigned the file as it was originally numbered in the program.

record nunber isthe number of theindividual record that is to be unlocked. Or, if arange of
records are to be unlocked, record number designates the beginning and ending record of the
specified range.

The range of legal record numbersis 1 to 232-1. The limit on record size is 32767 bytes.
The record range specified must be from lower to (the same or) higher record numbers.
If astarting record number is not specified, the record number 1 is assumed.

If an ending record number is not specified, then only the specified record is unlocked.

The following are legal UNLOCK statements:

UNLOCK #n unlocksthe entirefilen

UNLOCK #n, X unlocks record X only

UNLOCK #n, TOY unlocks records 1 through Y

UNLOCK #n, X TO Y unlocksrecords X through Y

The locked file or record range should be unlocked before the file is closed.

Failure to execute the UNLOCK statement can jeopardize future access to that file in a network
environment.

In the case of files opened in random mode, if arange of record numbersis specified, thisrange
must match exactly the record number range given in the LOCK statement.

The"Per m ssi on deni ed" message will appear if asyntactically correct UNLOCK request
cannot be granted. The UNLOCK statement must match exactly the paired LOCK statement.

It is expected that the time in which files or regions within files are locked will be short, and thus
the suggested usage of the LOCK statement is within shortterm paired L OCK/UNLOCK statements.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basic/lUNL OCK .html (1 of 2)28/03/2004 21.29.40

GW-BASIC User's Guide
Examples:

The following demonstrates how the L OCK/UNL OCK statements should be used:

LOCK #1, 1 TO 4
LOCK #1, 5 TO 8
UNLOCK #1, 1 TO 4
UNLOCK #1, 5 TO 8

The following exampleisillegal:

LOCK #1, 1 TO 4
LOCK #1, 5 TO 8
UNLOCK #1, 1 TO 8

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basic/lUNL OCK .html (2 of 2)28/03/2004 21.29.40

GW-BASIC User's Guide

OPEN " COM (n) Statement

Purpose:

To alocate a buffer to support RS-232 asynchronous communications with other computers and
periphera devicesin the same manner as OPEN for disk files.

Syntax:
OPEN "COM n] : [speed] [, parity][,data] [,stop][,RS][,CS[n]][,DS[n]][,CD
[n]][,LF] [,PE]" AS [#]fil enum [LEN=nunber]

Comments:

COV n] isavalid communications device: coml: or com2..

speed isalitera integer specifying the transmit/receive baud rate. Valid speeds are as follows:
75, 110, 150, 300, 600, 1200, 1800, 2400, 4300, and 9600. The default is 300 bps.

par ity isaone-character literal specifying the parity for transmitting and receiving. Valid
characters specifying parity are as follows:

S SPACE Parity bit always transmitted and received as space (O bit).

M MARK Parity bit always transmitted and received as mark (1 bit).

O ODD Odd transmit parity; odd receive parity checking. Default is even.
E EVEN Even transmit parity; even receive parity checking. Even is default.
N

NONE No transmit parity. No receive parity checking.
dat a isaliteral integer indicating number of transmit/receive data bits. Valid values for the
number of databitsare 4, 5, 6, 7, or 8, the default is 7 bits.

Note
Four data bits with no parity isillegal; eight data bits with any parity isillegal.

st op isalitera integer expression returning avalid file number. Valid values for number of stop
bitsare 1 and 2. If omitted, 75 and 110 bps transmit two stop bits. All others transmit one stop bit.

fi | enumisanumber between 1 and the maximum number of files allowed. A communications
device may be opened to only one file number at atime. Thef i | enumis associated with thefile
for aslong asthefileis open, and is used to refer other COM 1/0O statementsto the file. Any
coding errors within the filename string result in"Bad fi |l e nane" errors. Anindication asto

which parameters are in error is not given.

nunmber isthe maximum number of bytes which can be read from the communications buffer

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basic/ OPENCOMN.html (1 of 2)28/03/2004 21.29.40

GW-BASIC User's Guide
when using GET or PUT default of 128 bytes.
A "Devi ce tineout" error occursif "data set ready” (DSR) is not detected.
TheRS, CS, DS, DC, LF, and PE options affect the line signals as follows:

Option Function

RS suppresses RTS (request to send)
CS[n] controls CTS (clear to send)

DS n] controls DSR (data set ready)
CD[n] controls CD (carrier detect)

LF sends aline feed at each return
PE enables parity checking

n isthe number of milliseconds to wait (0-65535) for that signal before a device timeout error
occurs. Defaults are: CS1000, DS1000, and CDO. If RS was specified then CS0 is the default. If n
Is omitted, then timeout is set to O.

See Appendix F in the GW-BASIC User's Guide for more information about communications.

Examples:

In the following, File 1 is opened for communications with all defaults: speed at 300 bps, even
parity, seven data bits, and one stop bit.

10 OPEN "COML: " AS 1
In the following, File 2 is opened for communications at 2400 bps. Parity and number of data bits
are defaulted.

20 OPEN " COML: 2400" AS #2
In the following, File 1 is opened for asynchronous I/O at 1200 bits/second. No parity isto be
produced or checked.

10 OPEN " COML: 1200, N, 8" AS #1

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basic/ OPENCOMN.html (2 of 2)28/03/2004 21.29.40

GW-BASIC User's Guide

OUT Statement

Purpose:

To send abyte to a machine output port.

Syntax:
QUT h,j

Comments:

hand| areinteger expressions. h may be within the range of 0 to 65535.] may be within the
range of O to 255. h isamachine port number, and | isthe datato be transmitted.

QOUT is the complementary statement to the | NP function.

Examples:
100 QUT 12345, 225

Outputs the decimal value 225 to port number 12345. In assembly language, thisis equivalent to
the following:

MOV DX, 12345
MOV AL, 255
QUT DX, AL

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/OUT.html 28/03/2004 21.29.41

GW-BASIC User's Guide

PCOPY Command

Purpose:

To copy one screen page to another in all screen modes.

Syntax:

PCOPY sour cepage, destinationpage

Comments:

The sour cepage isan integer expression in the range 0 to n, where n is determined by the
current video-memory size and the size per page for the current screen mode.

Thedest i nat i onpage hasthe same requirements asthe sour cepage.
For more information, see CLEAR and SCREEN.

Examples:

This copies the contents of page 1 to page 2:
PCOPY 1, 2

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20B asi c/PCOPY .html 28/03/2004 21.29.41

GW-BASIC User's Guide

PEN Statement and Function

Purpose:
To read the light pen.

Syntax:

AsS a statement:

PEN ON
PEN OFF
PEN STOP

As afunction:
X = PEN(n)

Comments:

PEN ON enables the PEN read function.
PEN OFF disablesthe PEN read function.

PEN STOP disables trapping. It remembers the event so immediate trapping occurs when PEN ON
IS executed.

The PEN function isinitially off. A PEN ON statement must be executed before any PEN read
function calls can be made, or a PEN read function call resultsinan"l | | egal functi on
cal | " error.

x = PEN(n) readsthe light pen coordinates.
x i1sthe numeric variable receiving the PEN value.

n isan integer within the range of 0 to 9.
Light pen coordinates:

n=20 If PEN was down since last poll, returns -1, if not, returns 0.
n=1 Returns the x-pixel coordinate when PEN was last activated. The range iswithin O to

319 for medium resolution; 0 to 639, for high resolution.
n=2 Returns the y-pixel coordinate when PEN was last activated. The rangeiswithin O to

1909.
n =3 Returns the current PEN switch value. Returns -1 if down; O if up.

n =4 Returns the last known valid x-pixel coordinate. The range iswithin 0 to 319 for
medium resolution; or 0 to 639 for high resolution.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/PEN.html (1 of 2)28/03/2004 21.29.41

GW-BASIC User's Guide

n=>5 Returns the last known valid y-pixel coordinate. The range is within 0 to 199.

n==~ Returns the character row position when PEN was last activated. The rangeiswithin 1
to 24.

n==1% Returns the character column position when PEN was last activated. Therangeis
within 1 to 40, or 1 to 80, depending on the screen width.

n =28 Returns the last known valid character row. The rangeiswithin 1 to 24.

n=29 Returns the last known valid character column position. The range iswithin 1 to 40,
or 1 to 80, depending on the screen width.

For execution speed improvements, turn the pen off with a PEN OFF statement for those

programs not using the light pen.

When the pen isin the border area of the screen, the values returned will be inaccurate.

Examples:

50 PEN ON
60 FOR I =1 to 500

70 X=PEN(0): X1=PEN(3)
80 PRINT X, X1

90 NEXT

100 PEN OFF

This example prints the pen value since the last poll and the current value.

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/PEN.html (2 of 2)28/03/2004 21.29.41

GW-BASIC User's Guide

PLAY Statement

Purpose:

To play music by embedding a music macro language into the string data type.

Syntax:

PLAY string expression

Comments:

The single-character commandsin PLAY are asfollows:

A-G [#, +, -]

L(n)

N(n)

Qa(n)

P(n)
T(n)

A- Gare notes. # or + following a note produces a sharp; - produces aflat.
Any note followed by #, +, or - must refer to ablack key on a piano.

Sets the length of each note. L4 is aquarter note, L1 isawhole note, and so on. n
may be from 1 to 64.

Length may also follow the note to change the length for that note only. A16is
equivalent to L16A.

Music foreground. PLAY and SOUND statements are to run in foreground. That is,
each subsequent note or sound is not started until the previous note or sound is
finished. Thisisthe initial default.

Music background. PLAY and SOUND statements are to run in background. That
I, each note or sound is placed in a buffer allowing the BASIC program to
continue execution while music plays in the background. As many as 32 notes
(or rests) can be played in background at one time.

Music normal. Each note plays seven-eighths of the time determined by L
(length).

Music legato. Each note plays the full period set by L.

Music staccato. Each note plays three-quarters of the time determined by L.
Play note n. n may range from 0 to 84. In the 7 possible octaves, there are 84
notes. n set to O indicates arest.

Octave O sets the current octave. There are 7 octaves (0 through 6). Default is 4.
Middle C is at the beginning of octave 3.

Pause. P may range from 1-64.

Tempo. T sets the number of L4sin aminute. n may range from 32-255. Default
is 120.

file:///CJ/Documents%20and¥s20Settings/L orenzo/Desktop/GW2620Basic/PLAY .html (1 of 2)28/03/2004 21.29.41

GW-BASIC User's Guide

. (period)

Xstring;

>N

<n

A period after a note increases the playing time of the note by 3/2 timesthe
period determined by L (length of note) times T (tempo). Multiple periods can
appear after anote, and the playing timeis scaled accordingly. For example, A.
will cause the note A to play one and half times the playing time determined by
L (Ilength of the note) times T (the tempo); two periods placed after A (A..) will
cause the note to be played at 9/4 times its ascribed value; an A with three
periods (A...) at 27/8, etc.

Periods may also appear after a P (pause), and increase the pause length as
described above.

Executes a substring, where string is a variable assigned to a string of PLAY
commands.

Because of the slow clock interrupt rate, some notes do not play at higher
tempos; for example, 1.64 at T255. These note/tempo combinations must be
determined through experimentation.

A greater-than symbol preceding the note n plays the note in the next higher
octave.
A less-than symbol preceding the note n plays the note in the next lower octave.

Note

Numeric arguments follow the same syntax described under the DRAW statement.

n as an argument can be a constant, or it can be avariablewith = infront of it (= vari abl e). A
semicolon isrequired after the variable and also after the variable in Xst r i ng.

file:///CJ/Documents%20and¥s20Settings/L orenzo/Desktop/GW2620Basic/PLAY .html (2 of 2)28/03/2004 21.29.41

GW-BASIC User's Guide

PLAY (n) Function

Purpose:

To return the number of notes currently in the background music queue.

Syntax:
PLAY(n)

Comments:
n isadummy argument, and may be any value.

PLAY(n) returns O when in music foreground mode.

The maximum returned value of x 1s 32.

Examples:

10 ' when 4 notes are left in
20 ' queue play another tune
30 PLAY " MBABCDABCDABCD"

40 | F PLAY (0) =4 then 200

200 PLAY " MBCDEFCDEF"

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basic/PLAY N.html 28/03/2004 21.29.42

GW-BASIC User's Guide

PM AP Function (Graphics)

Purpose:

To map expressionsto logical or physical coordinates.

Syntax:
Xx=PMAP (exp, function)

Comments:

This function isvalid for graphics modes only.

x isthe physical coordinate of the point that is to be mapped.
exp isanumeric variable or expression.

Function Maps

0 logical expressionsto physical x
1 logical expressionsto physica y
2 physical expressionsto logical x
3 physical expressionsto logica y

PMVAP is used with W NDOWand VI EWto translate coordinates.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/PM A P.html| 28/03/2004 21.29.42

GW-BASIC User's Guide

POINT Function

Purpose:
To read the color or attribute value of a pixel from the screen.

Syntax:
PO NT(x,Yy)
PO NT(function)
Comments:
In the first syntax, x and y are coordinates of the point to be examined.
If the point given isout of range, the value -1 is returned.
See the COLOR and PALETTE statements for valid color and attribute values.

PO NT with one argument allows you to retrieve the current graphics coordinates.
PO NT(functi on) returnsthe value of the current x or y graphics coordinates as follows:

Function Returns

0 the current physical x coordinate.

1 the current physical y coordinate.

2 the current logical x coordinate if W NDOWis active; otherwise, it returns the current
physical x coordinate asin 0 above.

3 the current logical y coordinate if W NDOWis active; otherwise, it returns the current

physical y coordinate asin 1 above.

Example 1:

10 SCREEN 1
20 FOR C=0 TO 3

30 PSET (10, 10),C

40 1 F PO NT(10, 10)<>C THEN PRI NT "BROKEN BASI C="
50 NEXT C

Example 2:

The following inverts the current state of a point:

10 SCREEN 2
20 | F PO NT(l, 1)<>0 THEN PRESET(I, 1) ELSE PSET(I, 1)

Example 3:

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/GW%20Basi c/POINT.html (1 of 2)28/03/2004 21.29.42

GW-BASIC User's Guide

The following is another way to invert a point:
20 PSET (I, 1), 1-PONT(I, 1)

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/POINT.html (2 of 2)28/03/2004 21.29.42

GW-BASIC User's Guide

PRINT#and PRINT# USING Statements

Purpose:

To write datato a sequential disk file.

Syntax:
PRI NT#fil e nunber, [USI NGstring expressions;]list of expressions

Comments:
file nunber isthe number used when the file was opened for outpui.

string expressions consstsof the formatting characters described in the PRI NT US| NG
statement.

| i st of expressions congstsof the numeric and/or string expressions to be written to the
file.

Double quotation marks are used as delimiters for numeric and/or string expressions. The first
double quotation mark opens the line for input; the second double quotation mark closesit.

If numeric or string expressions are to be printed as they are input, they must be surrounded by
double quotation marks. If the double quotation marks are omitted, the value assigned to the
numeric or string expression is printed. If no value has been assigned, O is assumed. The double
guotation marks do not appear on the screen. For example:

10 PRI NT#1, A
0

10 A=26
20 PRI NT#1, A
26

10 A=26
20 PRI NT#1, "A"
A

If double quotation marks are required within a string, use CHR$(34) (the ASCII character for
double quotation marks). For example:
100 PRI NT#1,"He said,"Hello", | think"
He said, O, | think

because the machine assigns the value O the variable "Hello."
100 PRI NT#1, "He said, "CHR$(34) "Hello,"CHRS(34) " | think."

He said, "Hello," | think

file:///CJ/Documents%20and¥s20Settings/L orenzo/Desktop/ GW%620Basi c/PRINTF.html (1 of 2)28/03/2004 21.29.42

GW-BASIC User's Guide

If the strings contain commas, semicolons, or significant leading blanks, surround them with
double quotation marks. The following example will input "CAMERA" to A$, and
"AUTOMATIC 93604-1" to B$:

10 A$="CAMERA, AUTOVATI C': B$="93604-1"
20 PRI NT#1, A$; B$
30 I NPUT#1, A$, B$

To separate these strings properly, write successive double quotation marks using CHR$(34). For
example:
40 PRI NT#1, CHR$(34); A$; CHR$(34); CHR$(34): B$; CHRS(34) "CAMERA,
AUTOVATI C'" 93604- 1"

The PRI NT# statement may also be used with the USI NG option to control the format of the disk
file. For example:

PRI NT#1, USI NG' $$###. ##."; J; K L

PRI NT# does not compress data on the diskette. An image of the data is written to the diskette,

just asit would be displayed on the terminal screen with a PRI NT statement. For this reason, be

sure to delimit the data on the diskette so that it isinput correctly from the diskette.

Inlist of expressions, numeric expressions must be delimited by semicolons. For example:
PRINT#1, A, B, C X Y, Z

If commas are used as delimiters, the extra blanks inserted between print fields will also be
written to the diskette. Commas have no effect, however, if used with the exponential format.

String expressions must be separated by semicolonsin thelist. To format the string expressions
correctly on the diskette, use explicit delimitersin| i st of expressi ons. For example, the
following:

10 A$="CAMERA"': B$="93604-1"
20 PRI NT#1, A%, B$

gives a diskette image of:
CAMERA93604- 1

Because there are no delimiters, this would not be input as two separate strings. To correct the
problem, insert explicit delimitersinto the PRI NT# statement as follows:

30 PRINT#1, A$;, ","; B$

This gives the following diskette image, which can be read back into two string variables:
CAMERA, 93604-1

file:///CJ/Documents%20and¥620Settings/L orenzo/Desktop/GW%620Basi c/PRINTF.html (2 of 2)28/03/2004 21.29.42

GW-BASIC User's Guide

PUT Statement (Files)

Purpose:

To write arecord from arandom buffer to arandom disk file.

Syntax:
PUT[#] fil e nunber[,record nunber]

Comments:
file nunber isthe number under which the file was opened.

record nunber isthe number of the record. If it is omitted, the record has the next available
record number (after the last PUT).

The largest possible record number is 232 -1. Thiswill alow you to have large files with short
record lengths. The smallest possible record number is 1.

The PRI NT#, PRI NT# USI NG, LSET, RSET, or \RI TE# statements may be used to put characters
in the random file buffer before a PUT statement.

In the case of \RI TE#, GW-BASIC pads the buffer with spaces up to an enter.
Any attempt to read or write past the end of the buffer causesa"Fi el d overfl ow" error.

PUT can be used for communications files. Here record number is the number of bytes written to
the file. Record number must be less than or equal to the length of the buffer set in the OPEN
"COM n) statement.

file:///C|/Documents%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/PUTF.html28/03/2004 21.29.43

GW-BASIC User's Guide

PUT Statement (Graphics)

Purpose:

To transfer graphics images to the screen.

Syntax:
PUT(x,y),array,[,action verb]

Comments:

action verb may be PSET, PRESET, AND, OR, XOR.
The(x, y) arethe coordinates of the top-left corner of the image to be transferred.

The PUT and CGET statements transfer graphics images to and from the screen. PUT and GET make
possible animation and high-speed object motion in either graphics mode.

The PUT statement transfers the image stored in the array onto the screen. The specified point is
the coordinate of the upper-left corner of theimage. An"111egal function call" error
resultsif theimage to be transferred is too large to fit onto the screen.

The action verb is used to interact the transferred image with the image already on the screen.
PSET transfers the data onto the screen verbatim.

PRESET isthe same as PSET except that an inverse image (black on white) is produced.
AND transfers the image only if an image already exists under the transferred image.
OR superimposes the image onto the existing image.

XOR is a special mode often used for animation. XOR causes the points on the screen to be

inverted where a point exists in the array image. This behavior is exactly like the cursor on the
screen. XOR is especially useful for animation. When an image is put against a complex

background twice, the background is restored unchanged. An object can be moved around the
screen without obliterating the background. The default action mode is XOR.

For more information about effects within the different modes, see the COLOR, PALETTE, and
SCREEN statements.

Animation of an object is usually performed as follows:

1. Put the object(s) on the screen.

2. Recalculate the new position of the object(s).

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/PUTG.html (1 of 2)28/03/2004 21.29.43

GW-BASIC User's Guide

3. Put the object(s) on the screen a second time at the old location(s) to remove the old image
(s).
4. Return to Step 1, this time putting the object(s) at the new location.

Movement done this way |leaves the background unchanged. Flicker can be cut down by
minimizing the time between Steps 4 and 1, and by making sure that there is enough time delay
between Steps 1 and 3. If more than one object is being animated, process every object at once,
one step at atime.

If it is not important to preserve the background, animation can be performed using the PSET
action verb.

Leave a border around the image (when it isfirst gotten) as large or larger than the maximum
distance the object will move. Thus, when an object is moved, this border effectively erases any
points. This method may be somewhat faster than the method using XOR described above since

only one PUT is required to move an object. However, the image to be PUT must be larger than
the existing image.

Examples:

10 CLS: SCREEN 1

20 PSET (130, 120)

30 DRAW "U25; E7; R20; D32; L6; U1l2; L14"
40 DRAW "D12; L6": PSET(137, 102)

50 DRAW " W4; E4; R8; D8; L12"

60 PSET (137, 88)

70 DRAW "E4; R20; D32; (A": PAINT (131,119)
80 DIM A (500)

90 CGET (125, 130)-(170, 80), A

100 FOR I = 1 TO 1000: NEXT |

110 PUT (20, 20), A, PSET

120 FOR I = 1 TO 1000: NEXT i

130 GET (125, 130)-(170, 80), A

140 FOR I = 1 TO 1000: NEXT |

150 PUT (220, 130), A, PRESET

file:///C)/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/PUTG.html (2 of 2)28/03/2004 21.29.43

GW-BASIC User's Guide

RANDOMIZE Statement

Purpose:

To reseed the random number generator.

Syntax:

RANDOM ZE [expr essi on]
RANDOM ZE TI MER

Comments:
If expression is omitted, GW-BASIC suspends program execution and asks for a value by
displaying the following line:

Random nunber seed (-32768 to 32767)7?

If the random number generator is not reseeded, the RND function returns the same sequence of
random numbers each time the program is run.

To change the sequence of random numbers every time the program is run, place a RANDOM ZE
statement at the beginning of the program, and change the argument with each run (see RND
function).

RANDOM ZE with no arguments will prompt you for a new seed. RANDOM ZE [expr essi on]
will not force floating-point values to integer. expr essi on may be any numeric formula.

To get a new random seed without prompting, use the new numeric Tl MER function as follows:
RANDOM ZE Tl MER

Example 1:

Theinterna clock can be set at intervals.

10 RANDOM ZE TI MER
20 FOR I =1 to 5
30 PRI NT RND;
40 NEXT |
RUN
. 88598 . 484668 .586328 .119426 . 709225
RUN
. 803506 .162462 .929364 .292443 .322921

Example 2:

Theinterna clock can be used for random number seed.

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basic/RANDOMIZE.html (1 of 2)28/03/2004 21.29.43

GW-BASIC User's Guide

5 N=VAL(M D$(TI MES, 7, 2)) 'get seconds for seed
10 RANDOM ZE N "“install nunber
20 PRINT N "print seconds
30 PRI NT RND "print random nunber generated
RUN
36
. 2466638
RUN
37
. 6530511
RUN
38
5.943847E+02
RUN
40
. 8722131

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/RANDOMI ZE.html (2 of 2)28/03/2004 21.29.43

GW-BASIC User's Guide

RND Function

Purpose:

To return arandom number between 0 and 1.

Syntax:
RND{ (x)]

Comments:

The same sequence of random numbers is generated each time the program is run unless the
random number generator is reseeded (see RANDOMIZE statement). If x is equal to zero, then

the last number is repeated.
If x isgreater than O, or if x isomitted, the next random number in the sequence is generated.

To get arandom number within the range of zero through n, use the following formula:
| NT(RND* (n+1))

The random number generator may be seeded by using a negative value for x.

Examples:

10 FOR =1 TO 5

20 PRI NT | NT(RND*101) ;
30 NEXT

RUN

53 30 31 51 5

Generates five pseudo-random numbers within the range of 0-100.

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/RND.html 28/03/2004 21.29.44

GW-BASIC User's Guide

REM Statement

Purpose:

To alow explanatory remarks to be inserted in a program.

Syntax:

REM comment |
"[comment]

Comments:

REMstatements are not executed, but are output exactly as entered when the program is listed.

Once a REMor its abbreviation, an apostrophe ('), is encountered, the program ignores everything
else until the next line number or program end is encountered.

REMstatements may be branched into from a GOTO or GOSUB statement, and execution continues
with the first executable statement after the REM statement. However, the program runs faster if
the branch is made to the first statement.

Remarks may be added to the end of aline by preceding the remark with an apostrophe (')
instead of REM

Note
Do not use REMin a DATA statement because it will be considered to be legal data.

Examples:

120 REM CALCULATE AVERAGE VELOCI TY
130 FOR 1 =1 TO 20

440 SUMESUMHV(1)

450 NEXT |

or

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/REM.html (1 of 2)28/03/2004 21.29.44

GW-BASIC User's Guide

129 FOR | =1 TO 20 ' CALCULATED AVERAGE VELOCI TY
130 SUMESUMFV(1)
140 NEXT |

file:///IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/REM.html (2 of 2)28/03/2004 21.29.44

GW-BASIC User's Guide

RENUM Command

Purpose:

To renumber program lines.

Syntax:
RENUM new nunber],[old nunber][,increnentR]]

Comments:
new nunber isthefirst line number to be used in the new sequence. The default is 10.

ol d nunmber isthelinein the current program where renumbering is to begin. The default is the
first line of the program.

I ncr ement istheincrement to be used in the new sequence. The default is 10.

RENUMalso changes all line number references following ELSE, GOTO, GOSUB, THEN, ON. . .
GOTO, ON. . . GOSUB, RESTORE, RESUME, and ERL statements to reflect the new line numbers. If a
nonexistent line number appears after one of these statements, the error message, "Undef i ned
line x in y" appears. Theincorrect line number reference x is not changed by RENUM but
line number y may be changed.

RENUM cannot be used to change the order of program lines (for example, RENUM 15, 30 when

the program has three lines numbered 10, 20 and 30) or to create line numbers greater than
65529. An"l | | egal function call" error results.

Examples:
RENUM

Renumbers the entire program. The first new line number will be 10. Linesincrement by 10.
RENUM 300, , 50

Renumbers the entire program. The first new line number will be 300. Lines increment by 50.
RENUM 1000, 900, 20

Renumbers the lines from 900 up so they start with line number 1000 and are incremented by 20.

file://IC|/Documents%20and%20Settings/L orenzo/ Desktop/ GW%20Basic/RENUM .html28/03/2004 21.29.44

GW-BASIC User's Guide

RESUME Statement

Purpose:

To continue program execution after an error-recovery procedure has been performed.

Syntax:

RESUME
RESUME O
RESUME NEXT

RESUME | i ne nunber

Comments:

Any one of the four formats shown above may be used, depending upon where execution isto
resume;

Syntax Result

RESUVME or RESUME 0 Execution resumes at the statement that caused an error.

RESUME NEXT Execution resumes at the statement immediately following the one
that caused an error.

RESUME | i ne nunber Execution resumes at the specified line number.

A RESUME statement that is not in an error trapping routine causes a"RESUVE wi t hout
error" message to be printed.

Examples:
10 ON ERROR GOTO 900

900 I F (ERR=230) AND (ERL=90) THEN PRI NT "TRY AGAI N': RESUME 80

If an error occurs after line 10 is executed, the action indicated in line 900 is taken and the
program continues at line 80.

file:///IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20B asi c/RESUM E.html 28/03/2004 21.29.44

GW-BASIC User's Guide

RETURN Statement

Purpose:

To return from a subroutine.

Syntax:
RETURN [| ine nunber]

Comments:

The RETURN statement causes GW-BASIC to branch back to the statement following the most
recent GOSUB statement. A subroutine may contain more than one RETURN statement to return
from different points in the subroutine. Subroutines may appear anywhere in the program.

RETURN | i ne nunber isprimarily intended for use with event trapping. It sends the event-
trapping routine back into the GW-BASIC program at a fixed line number while still eliminating
the GOSUB entry that the trap created.

When atrap is made for a particular event, the trap automatically causes a STOP on that event so
that recursive traps can never take place. The RETURN from the trap routine automatically does an
ON unless an explicit OFF has been performed inside the trap routine.

The non-local RETURN must be used with care. Any GOSUB, WHI LE, or FOR statement active at
the time of the trap remains active.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/RETURN.html| 28/03/2004 21.29.45

GW-BASIC User's Guide

RMDIR Command

Purpose:

To delete a subdirectory.

Syntax:
RVDI R pat hnane

Comments:

pat hnane isastring expression, not exceeding 63 characters, identifying the subdirectory to be
removed from its parent.

The subdirectory to be deleted must be empty of all filesexcept™. "and”. . " ora"Path fil e/
access error"isgiven.

Examples:

Referring to the sample directory structure illustrated in CHDI R, the following command deletes
the subdirectory report:

RVDI R " SALES\ JOHN\ REPORT"

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/RMDIR.html 28/03/2004 21.29.45

GW-BASIC User's Guide

RUN Command

Purpose:
To execute the program currently in memory, or to load afile from the diskette into memory and
run it.
Syntax:
RUN [Iine nunber][,r]

RUN fil enane[, r]

Comments:

RUNor RUN | i ne nunber runsthe program currently in memory.

If I i ne nunber is specified, execution begins on that line. Otherwise, execution begins at the
lower line number.

If there is no program in memory when RUN is executed, GW-BASIC returns to command level.

RUN fi | enane closesall open files and deletes the current memory contents before loading the
specified file from disk into memory and executing it.

Ther option keeps all datafiles open.

If you are using the speaker on the computer, please note that executing the RUN command will
turn off any sound that is currently running and will reset to Music Foreground. Also, the PEN
and STRI G Statements are reset to OFF.

Examples:
RUN "NEWFI L", R

Runs NEWFIL.BAS without closing data files.

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi c/RUN.html 28/03/2004 21.29.45

GW-BASIC User's Guide

SAVE Command

Purpose:

To save aprogram file on diskette.

Syntax:

SAVE fil enane, [, a]
SAVE fil enane, [, p]

Comments:

fi | enanme isaquoted string that follows the normal MS-DOS naming conventions. If
fil enane aready exists, the file will be written over. If the extension is omitted, .bas will be
used.

The a option saves the filein ASCII format. Otherwise, GW-BASIC savesthefilein a
compressed binary format. ASCII format takes more space on the diskette, but some diskette
access commands (for example, the VMERGE command and some MS-DOS commands, such as

TYPE) may require an ASCII format file.

The p option protects the file by saving it in an encoded binary format. When a protected file is
later run or loaded, any attempt to list or edit it fails. When the p option is used, make an
additional copy under another name or diskette to facilitate future program maintenance.

Examples:

The following command saves the file com2.bas in the ASCII format:
SAVE "Ccowe", A

The following command saves the file prog.bas in binary format, and protects access:
SAVE " PROG', P

file:///IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/SAV E.html 28/03/2004 21.29.46

GW-BASIC User's Guide

SCREEN Function

Purpose:
To return the ASCII code (0-255) for the character at the specified row (line) and column on the
screen.
Syntax:
Xx=SCREEN(r ow, col [, z])

Comments:
x iIsanumeric variable receiving the ASCII code returned.
r owisavalid numeric expression within the range 1 to 25.

col isavalid numeric expression 1 to 40, or 1 to 80, depending upon screen width setting. See
the WIDTH statement.

z isavalid numeric expression with atrue or false value. It may be used only in alpha mode.

The ordinal of the character at the specified coordinates is stored in the numeric variable. In alpha
mode, if the optional parameter z is given and is true (nonzero), the color attribute for the
character isreturned instead of the ASCII code for the character (see the COLOR statement).

Any values entered outside of therangeindicated resultinan "l | | egal function call"
error. Row 25 may be referenced only if the function key is off.

Examples:
100 X=SCREEN (10, 10)

If the character at 10,10is A, then X is65.
110 X=SCREEN (1, 1, 1)

Returns the color attribute of the character in the upper-left corner of the screen.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20B asi ¢/ SCREENF.html 28/03/2004 21.29.46

GW-BASIC User's Guide

SGN Function

Purpose:

To return the sign of x.

Syntax:
SGN\(x)
Comments:
X 1S any numeric expression.
If x ispositive, SG\(x) returns 1.
If x 1O, SG\(x) returnsO.
If X isnegative, SG\(x) returns-1.

This statement is similar to, but not the same as SI N(x) , which returns a trigonometric function
in radians, rather than in ones and zeros.

Examples:

10 I NPUT "Enter val ue", x
20 ON SG\(X)+2 GOTO 100, 200, 300

GW-BASIC branchesto 100 if X is negative, 200 if X is0, and 300 if X is positive.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ SGN.html 28/03/2004 21.29.46

GW-BASIC User's Guide

SIN Function

Purpose:

To calculate the trigonometric sine of x, in radians.

Syntax:
SIN(x)

Comments:

SI N(x) iscaculated in single-precision unlessthe/ d switch is used when GW-BASIC is
executed.

To obtain SI N(x) when x isin degrees, use SI N(x* 10 180) .

Examples:

PRI NT SI N(1.5)
. 9974951

Thesineof 1.5 radiansis .9974951 (single-precision).

file:///C|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/SIN.html 28/03/2004 21.29.46

GW-BASIC User's Guide

SOUND Statement

Purpose:

To generate sound through the speaker.

Syntax:
SOUND freq, duration

Comments:

f r eq isthe desired frequency in Hertz (cycles per second). f r eq isanumeric expression within
the range of 37 to 32767.

dur at i on isthe desired duration in clock ticks. Clock ticks occur 18.2 times per second.
dur at i on must be a numeric expression within the range of 0 to 65535.

Values below .022 produce an infinite sound until the next SOUND or PLAY statement is executed.

If dur at i on iszero, any active SOUND statement is turned off. If no SOUND statement is running,
aduration of zero has no effect.

The sound is executed in foreground or background depending on the PLAY statement.

Examples:

The following example creates random sounds of short duration:

2500 SOUND RND*1000+37, 2
2600 GOTO 2500

The following table shows the relationship of notes and their frequencies in the two octaves
adjacent to middle C.

Table5
Relationships of Notes and Frequencies
Note Frequency Note Frequency

C 130.810 C* 523.250
D 146.830 D 587.330
E 164.810 E 659.260
F 174.610 F 698.460
G 196.000 G 783.990
A 220.000 A 880.000
B 246.940 B 987.770

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basic/SOUND.html (1 of 2)28/03/2004 21.29.47

GW-BASIC User's Guide

C 261.630 C 1046.500
D 293.660 D 1174.700
E 329.630 E 1318.500
F 349.230 F 1396.900
G 392.000 G 1568.000
A 440.000 A 1760.000
B 493.880 B 1975.500
*MiddleC.

By doubling or halving the frequency, the coinciding note values can be estimated for the
preceding and following octaves.

To produce periods of silence, use the following statement:
SOUND 32767, duration

To calculate the duration of one beat, divide beats per minute into the number of clock ticksin a
minute (1092).

The following table illustrates tempos requested by clock ticks:

Table6
Tempos Requested by Clock Ticks
Beats/

Tempo Notation Minute Ticks/Beat

Larghissimo

Largo 40-66 27.3-18.2

Larghetto 60-66 18.2-16.55
very slow Grave

Lento

Adagio 66-76 16.55-14.37
Jow Adagietto

Andante 76-108 14.37-10.11
medium Andantino

Moderato 108-120 10.11-9.1

Allegretto

Allegro 120-168 9.1-6.5
fast Vivace

Veloce

Presto 168-208 6.5-5.25
very fast Prestissmo

file:///C)/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ SOUND.html (2 of 2)28/03/2004 21.29.47

GW-BASIC User's Guide

SPACE$ Function

Purpose:

To return astring of x spaces.

Syntax:
SPACES$(x)

Comments:
x isrounded to an integer and must be within the range of 0 to 255 (see SPC function).

Examples:

10 FOR N=1 TO 5
20 X$=SPACE$(N)
30 PRINT X$; N
40 NEXT N

RUN

Line 20 adds one space for each loop execution.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20B asi ¢/ SPA CES.html 28/03/2004 21.29.47

GW-BASIC User's Guide

SPC Function

Purpose:

To skip a specified number of spacesin a PRI NT or an LPRI NT statement.

Syntax:
SPC(n)

Comments:
n must be within the range of 0 to 255.

If n is greater than the defined width of the printer or the screen, the value used will be n MOD
width.

A semicolon is assumed to follow the SPC(n) command.

SPC may only be used with PRI NT, LPRI NT and PRI NT# statements (see the SPACES$ function).

Examples:
PRI NT "OVER' SPC(15) " THERE"
OVER THERE

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ SPC.html 28/03/2004 21.29.47

GW-BASIC User's Guide

SOQR Function

Purpose:

Returns the square root of x.

Syntax:
SQR(x)

Comments:
x must be greater than or equal to 0.

SQR(x) iscomputed in single-precision unlessthe/ d switch is used when GW-BASIC is
executed.

Examples:

10 FOR X=10 TO 25 STEP 5
20 PRINT X; SQR(X)
30 NEXT
RUN
10 3.162278
15 3.872984
20 4.472136
25 5

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ SQR.html| 28/03/2004 21.29.47

GW-BASIC User's Guide

STICK Function

P

ur pose:

To return the x and y coordinates of two joysticks.

Syntax:

x=STI CK(n)

Comments:

X

n

isanumeric variable for storing the result.

isavalid numeric expression within the range of 0 to 3.

Valueof n Coordinate Returned

0

1
2
3

x coordinate of joystick A. Stores the x and y values for both joysticks for the
following three function calls.

y coordinate of joystick A.

x coordinate of joystick B.

y coordinate of joystick B.

file:///IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/ST1CK .html 28/03/2004 21.29.48

GW-BASIC User's Guide

STOP Statement

Purpose:

To terminate program execution and return to command level.

Syntax:
STOP

Comments:

STOP statements may be used anywhere in a program to terminate execution. When aSTOP is
encountered, the following message is printed:

Break in |ine nnnnn
Unlike the END statement, the STOP statement does not close files.

GW-BASIC always returns to command level after a STOP is executed. Execution is resumed by
issuing a CONT command.

Examples:

10 INPUT A, B, C
20 K=A"2*5.3: L=B"3/.26
30 STOP
40 MEC*K+100: PRI NT M
RUN

?1, 2, 3

BREAK | N 30

PRI NT L

30. 76923
CONT

115. 9

file:///C|/Documents%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ STOP.html28/03/2004 21.29.48

GW-BASIC User's Guide

STR$ Function

Purpose:

To return a string representation of the value of x.

Syntax:
STR$(x)

Comments:

STR$(x) isthe complementary functionto VAL(x$) (seethe VAL function).

Examples:

5 REM ARl THVETI C FOR Kl DS
10 I NPUT "TYPE A NUMBER': N
20 ON LEN(STR$(N)) GOSUB 30, 40, 50

This program branches to various subroutines, depending on the number of characters typed
before the RETURN key is pressed.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ STRS.html 28/03/2004 21.29.48

GW-BASIC User's Guide

VAL Function

Purpose:

Returns the numerical value of string x$.

Syntax:
VAL(x9$)

Comments:
The VAL function also strips leading blanks, tabs, and line feeds from the argument string. For
example, the following line returns -3:

VAL(" -3")

The STR$ function (for numeric to string conversion) is the complement to the VAL (x$) function.

If the first character of x$ is not numeric, the VAL(x$) will return zero.

Examples:

10 READ NAME$, CITY$, STATES$, ZIP$

20 | F VAL(ZI P$)<90000 OR VAL(ZI P$)>96699 THEN PRI NT NAVE$ TAB(25)
"OUT OF STATE"

30 | F VAL(ZI P$)>=90801 AND VAL(ZI P$) <=90815 THEN PRI NT NAMVE$ TAB(25)
"LONG BEACH"

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi¢/V AL .html 28/03/2004 21.29.48

GW-BASIC User's Guide

STRIG Statement and Function

Purpose:

To return the status of the joystick triggers.

Syntax:

AsS a statement:
STRI G ON
STRI G OFF

As afunction:
x=STRI G(n)

Comments:

STRI G ON must be executed before any STRI G(n) function calls may be made. Once STRI G
ON is executed, GW-BASIC will check to seeif abutton has been pressed before every statement
isexecuted. STRI G OFF disables the checking.

x iIsanumeric variable for storing the result.
n isanumeric expression within the range of 0 to 7 that returns the following values:

Valueof n Returns
-1if trigger Al was pressed sincethelast STRI G(0) statement; returns O, if not.

-1if trigger Al iscurrently pressed; returns O, if not.
-1if trigger B1 was pressed since thelast STRI G(2) statement; returns O, if not.

-1if trigger Bl is currently pressed; returns 0, if not.
-1if trigger A2 was pressed since the last STRI G(4) statement; returns O if not.

-1if trigger A2 iscurrently pressed; returns O, if not.

a b wWwNEFEO

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ STRI G.html 28/03/2004 21.29.49

GW-BASIC User's Guide

STRIG(n) Statement

Purpose:

To allow the use of ajoystick by enabling or disabling the trapping of its buttons.

Syntax:
STRIG(n) ON
STRI G(n) OFF
STRIG(n) STOP
Comments:
nisQ, 2, 4, or 6, corresponding to the buttons on the joystick, where:
Oisbutton A1
2 isbutton B1
4 is button A2
6 is button B2

Examples:
STRIG n) ON

Enables trapping of the joystick buttons. After this statement is executed, GW-BASIC checks to
see if this button has been pressed before executing following statements.

STRI G(n) OFF

Disables GW-BASIC from checking the state of the button.
STRI G(n) STOP

Disables trapping of a given button through the ON STRI G(n) statement. But, any pressings are
remembered so that trapping may take place once it is reenabled.

file://IC|/Documents%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ STRIGN.html28/03/2004 21.29.49

GW-BASIC User's Guide

SWAP Statement

Purpose:

To exchange the values of two variables.

Syntax:
SWAP vari abl el, vari abl e2

Comments:

Any type variable may be swapped (integer, single-precision, double-precision, string), but the
two variables must be of the sametypeor a“"Type ni smat ch" error results.

Examples:

LI ST

10 A$="ONE ": B$="ALL ": C$="FOR "
20 PRINT A$ C$ B$

30 SWAP A3, B$

40 PRI NT A$ C$ B$

RUN

ONE FOR ALL

ALL FOR ONE

Line 30 swaps the valuesin the A$ and B$ strings.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20B asi ¢/ SWA P.html 28/03/2004 21.29.49

GW-BASIC User's Guide

SYSTEM Command

Purpose:
Toreturnto MS-DOS.

Syntax:
SYSTEM

Comments:
Save your program before pressing return, or the program will be lost.

The SYSTEMcommand closes all the files before it returnsto MS-DOS. If you entered GW-
BASIC through a batch file from MS-DOS, the SYSTEMcommand returns you to the batch file,
which continues executing at the point it left off.

Examples:

SYSTEM
A>

file:///IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/SY STEM .html 28/03/2004 21.29.49

GW-BASIC User's Guide

TAB Function

Purpose:

Spaces to position n on the screen.

Syntax:
TAB(n)

Comments:

If the current print position is already beyond space n, TAB goes to that position on the next line.
Space 1 isthe leftmost position. The rightmost position is the screen width.

n must be within the range of 1 to 255.

If the TAB function is at the end of alist of dataitems, GW-BASIC will not return the cursor to
the next line. It is as though the TAB function has an implied semicolon after it.

TAB may be used only in PRI NT, LPRI NT, or PRI NT# statements (see the SPC function).

Examples:

10 PRINT "NAMVE' TAB(25) "AMOUNT": PRI NT
20 READ AS$, B$

30 PRINT A$ TAB(25) B$

40 DATA "G T. JONES',"$25. 00"

RUN

NANE ANMOUNT

G T. JONES $25.00

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ TAB.html 28/03/2004 21.29.50

GW-BASIC User's Guide

TAN Function

Purpose:

To calculate the trigonometric tangent of x, in radians.

Syntax:
TAN(x)

Comments:

TAN(x) iscaculated in single-precision unlessthe / d switch is used when GW-BASIC is
executed.

If TAN overflows, the"Over f | ow" error message is displayed; machine infinity with the
appropriate sign is supplied as the result, and execution continues.

To obtain TAN(x) when xisin degrees, use TAN(x* pi / 180) .

Examples:
10 Y = TAN(X)

When executed, Y will contain the value of the tangent of X radians,

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ TAN.html| 28/03/2004 21.29.50

GW-BASIC User's Guide

TIMES$ Statement and Variable

Purpose:

To set or retrieve the current time.

Syntax:
As a statement:

TIMES = string exp
Asavariable:

string exp=TI VE$

Comments:

string expisavalidstring literal or variable that lets you set hours (hh), hours and minutes
(hh: m), or hours, minutes, and seconds (hh: mm ss).

hh sets the hour (0-23). Minutes and seconds default to 00.
hh: nmsets the hour and minutes (0-59). Seconds default to 00.
hh: nm ss sets the hour, minutes, and seconds (0-59).

If string expisnotavalidstring, a"Type m snat ch™ error results.

Asyou enter any of the above values, you may omit the leading zero, if any. Y ou must, however,
enter at least one digit. If you wanted to set the time as a half hour after midnight, you could enter
TI ME$S= "0: 30", but not TI ME$= ": 30".

If any of the valuesare out of range, an"I | | egal function cal | " errorisissued. The
previoustime is retained.

The current time is stored if TI MES$ is the target of a string assignment.

The current time is fetched and assigned to the string variable if TI VES isthe expressioninalLET
or PRI NT statement.

If string exp = TI MES, TI ME$ returns an 8-character string in the form hh: nm ss.

Examples:

The following example setsthetime at 8:00 A.M.:

TIME$ = "08: 00"
PRI NT TI MVE$

file:///IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/ TIMES.html (1 of 2)28/03/2004 21.29.50

GW-BASIC User's Guide

08: 00: 05

The following program displays the current date and time on the 25th line of the screen and will
sound on the minute and half minute.

10 KEY OFF: SCREEN 0: WDTH 80: CLS
20 LOCATE 25, 5

30 PRI NT DATE$, TI MES;

40 SEC=VAL(M D$(TIMES, 7, 2))

50 | F SEC=SSEC THEN 20 ELSE SSEC=SEC
60 | F SEC=0 THEN 1010

70 | F SEC=30 THEN 1020

80 | F SEC<57 THEN 20

1000 SOUND 1000, 2: GOTO 20

1010 SOUND 2000, 8: GOTO 20

1020 SOUND 400, 4: GOTO 20

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/ TIMES.html (2 of 2)28/03/2004 21.29.50

GW-BASIC User's Guide

TIMER Function

Purpose:

To return single-precision floating-point numbers representing the elapsed number of seconds
since midnight or system reset.

Syntax:
v=Tl MER

Comments:

Fractions of seconds are calculated to the nearest degree possible. Timer is read-only.

file:///C|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ TIM ER.html 28/03/2004 21.29.51

GW-BASIC User's Guide

TRON/TROFF Commands

Purpose:

To trace the execution of program statements.

Syntax:

TRON
TROFF

Comments:

Asan aid in debugging, the TRON (trace on) command enables a trace flag that prints each line
number of the program as it is executed. The numbers appear enclosed in square brackets.

TRON may be executed in either the direct or indirect mode.

The trace flag is disabled with the TROFF (trace off) command, or when a NEWcommand is
executed.

Examples:

TRON

10 K=10

20 FOR J=1 TO 2

30 L=K + 10

40 PRINT J: K L

50 K=K+10

60 NEXT

70 END

RUN
[10][20][30][40] 1 10 20
[50] [60][30][40] 2 20 30
[50] [60] [70]

TROFF

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/ TRON.html| 28/03/2004 21.29.51

GW-BASIC User's Guide

VARPTR Function

Purpose:

To return the address in memory of the variable or file control block (FCB).

Syntax:

VARPTR(vari abl e nane)
VARPTR(#fi |l e nunber)

Comments:

VARPTR is usually used to obtain the address of a variable or array so it can be passed to an
assembly language subroutine. A function call of the following form:

VARPTR(A(0))

isusually specified when passing an array, so that the lowest-addressed element of the array is
returned.

All simple variables should be assigned before calling VARPTR for an array, because the
addresses of the arrays change whenever anew simple variable is assigned.

VARPTR (#fil e nunber) returnsthe starting address of the GW-BASIC File Control Block
assignedtofil e nunber.

VARPTR (vari abl e nane) returnsthe address of the first byte of dataidentified with the
variable name.

A value must be assigned to variable name prior to execution of VARPTR, otherwise, an
“I'l egal function call" error results.

Any type variable name may be used (numeric, string, or array), and the address returned will be
an integer within the range of 32767 to -32768. If a negative addressis returned, it is added to
65536 to obtain the actual address.

Offsetsto information in the FCB from the address returned by VARPTR are shown in the
following table:

Table7
Offsetsto FCB Information
Offset Length Name Description

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basic/VARPTR.html (1 of 3)28/03/2004 21.29.51

GW-BASIC User's Guide

0

39

41
42

46

47
48
49
50
51

179

181
183
185
186

1

e

el

128

N

NEFEDNDN

Mode

FCB
CURLOC

ORNOFS
NMLOFS

k

DEVICE

WIDTH
POS

FLAGS

OUTPOS
BUFFER

VRECL

PHYREC
LOGREC

k

OUTPOS

The mode in which the file was opened:

1 Input only

2 Output only

4 Random 1/O

16 Append only

32 Internal use

64 Future use

128 Internal use

Diskette file control block.

Number of sectors read or written for sequential access. The last
record number +1 read or written for random files.
Number of bytesin sector when read or written.
Number of bytesleft in | NPUT buffer.

Reserved for future expansion.

Device Number:

0-9 Disks A: through J.

255 KYBD:

254 SCRN:

253 LPT1:

252 CAS1:

251 COML:

250 COwe:

249 LPT2:

248 LPT3:

Device width.

Position in buffer for PRI NT.

Internal use during BLOAD/BSAVE. Not used for data files.
Output position used during tab expansion.

Physical data buffer. Used to transfer data between DOS and
BASIC. Use this offset to examine data in sequential |/O mode.
Variable length record size. Default is 128. Set by length option
in OPEN statement.

Current physical record number.

Current logical record number.

Future use.

Disk files only. Output position for PRI NT, | NPUT, and V\RI TE.

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basic/VARPTR.html (2 of 3)28/03/2004 21.29.51

GW-BASIC User's Guide

188 n FIELD Actua FIELD data buffer. Sizeis determined by S:switch.
VRECL bytes are transferred between BUFFER and FIELD on I/
O operations. Use this offset to examine file datain random 1/0O
mode.

Example 1:
100 X=VARPTR(Y)

When executed, the variable X will contain an address that points to the storage space assigned to
thevariable Y.

Example 2:

10 OPEN "DATA. FIL" AS #1
20 FCBADR = VARPTR(#1)
30 DATADR = FCBADR+188
40 A$ = PEEK(DATADR)

In line 20, FCBADR contains the start of FCB.
Inline 30, DATADR contains the address of the data buffer.
In line 40, A$ contains the first byte in the data buffer.

file://IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/V ARPTR.html (3 of 3)28/03/2004 21.29.51

GW-BASIC User's Guide

VARPTR$ Function

Purpose:

To return a character form of the offset of avariable in memory.

Syntax:
VARPTR$(vari abl e)

Comments:

vari abl e isthe name of avariable that existsin the program.

Note

Assign all simple variables before calling VARPTRS for an array element, because the array
addresses change when anew simple variable is assigned.

VARPTRS returns athree-byte string of the following form:

| Byte O | Byte 1 | Byte 2 |

Byte 0 contains one of the following variable types:

2 integer

3 string

4 single-precision

8 double precision

Byte 1 contains the 8086 address format, and is the least significant byte.
Byte 2 contains the 8086 address format, and is the most significant byte.

Examples:
100 X = USR(VARPTR$(Y))

file://IC|/Documents%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/V ARPTRS.html28/03/2004 21.29.51

GW-BASIC User's Guide

VIEW Statement

Purpose:
To define aphysical viewport limit from x1, y1 (upper-left x,y coordinates) to x2, y2 (lower-
right x,y coordinates).
Syntax:
VIEW[[SCREEN| [(x1,y1l)-(x2,y2) [,[fill][,[border]]]]

Comments:

RUN or VI EWwith no arguments define the entire screen as the viewport.
(x1,y1l) arethe upper-left coordinates.
(x2,y2) arethelower-right coordinates.

Thefil | attributeletsyou fill the view areawith color.

Thebor der attribute lets you draw aline surrounding the viewport if space for aborder is
available. If bor der isomitted, no border is drawn.

The x and y coordinates must be within the physical bounds of the screen and define the
rectangle within the screen that graphics map into. The x and y coordinate pairs will be sorted,
with the smallest values placed first.

Points are plotted relative to the viewpoint if the screen argument is omitted; that is, x1 and y 1
are added to the x and y coordinates before the point is plotted.

It is possible to have a varied number of pairs of x and y. The only restriction isthat x1 cannot
equal x2, and y1 cannot equal y 2.

Points are plotted absolutely if the SCREEN argument is present. Only points within the current
viewpoint will be plotted.

When using VI EW the CLS statement clears only the current viewport. To clear the entire screen,
you must use VI EWto disable the viewports. Then use CLS to clear the screen. CLS does not
move the cursor to home. Press cTRL-HOME to send the cursor home, and clear the screen.

Examples:

The following defines a viewport such that the statement PSET(0, 0) , 3 would set down a point
at the physical screen location 10,10.

VI EW (10, 10)- (200, 100)

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basic¢/VIEW.html (1 of 2)28/03/2004 21.29.52

GW-BASIC User's Guide

The following defines a viewport such that the point designated by the statement PSET(0, 0) , 3
would not appear because 0,0 is outside of the viewport. PSET(10, 10) , 3 would be within the
viewport.

VI EW SCREEN (10, 10)-(200, 100)

file:///C|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basic/VIEW.html (2 of 2)28/03/2004 21.29.52

GW-BASIC User's Guide

VIEW PRINT Statement

Purpose:

To set the boundaries of the screen text window.

Syntax:
VIEW PRI NT [topline TO bottom i ne]

Comments:

VI EW PRI NT without t opl i ne and bot t ond i ne parameters initializes the whole screen area as
the text window. The whole screen area consists of lines 1 to 24; by default, line 25 is not used.

Statements and functions that operate within the defined text window include CLS, LOCATE,
PRI NT, and SCREEN.

The screen editor will limit functions such as scroll and cursor movement to the text window.
For more information, see VIEW.

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW9%20Basic/V I EWPRINT.html 28/03/2004 21.29.52

GW-BASIC User's Guide

WAIT Statement

Purpose:

To suspend program execution while monitoring the status of a machine input port.

Syntax:
VWAI T port nunber, n[,j]

Comments:
port nunber representsavalid machine port number within the range of 0 to 65535.
n andj areinteger expressionsin the range of 0 to 255.

The WAI T statement causes execution to be suspended until a specified machine input port
develops a specified bit pattern.

The dataread at the port is XORed with the integer expression j , and then ANDed with n.
If the result is zero, GW-BASIC loops back and reads the data at the port again.
If the result is nonzero, execution continues with the next statement.

When executed, the WAI T statement tests the byte n for set bits. If any of the bitsis set, then the
program continues with the next statement in the program. WAI T does not wait for an entire
pattern of bits to appear, but only for one of them to occur.

It is possible to enter an infinite loop with the WAI T statement. Y ou can exit the loop by pressing
CTRL-BREAK, Or by resetting the system.

If j isomitted, zero is assumed.

Examples:
100 WAI'T 32,2

Suspends machine operation until port 32 receives 2 asinput.

file:///IC|/Documents¥%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/WAI T.html 28/03/2004 21.29.52

GW-BASIC User's Guide

WHILE ... WEND Statement

Purpose:

To execute a series of statementsin aloop aslong as agiven condition is true.

Syntax:
VWHI LE expression

[l oop statenents]

END

Comments:

If expr essi on isnonzero (true), | oop st at enent s are executed until the WEND statement is
encountered. GW-BASIC then returns to the WHI LE statement and checks expression. If it isstill
true, the process is repeated.

If it is not true, execution resumes with the statement following the VVEND statement.
V\HI LE and V.END loops may be nested to any level. Each V\END matches the most recent V\HI LE.

An unmatched VWHI LE statement causesa"VWH LE wi t hout VEND" error. An unmatched WEND
statement causesa"V\END wi t hout \V\HI LE" error.

Examples:

90 ' BUBBLE SORT ARRAY A$

100 FLI PS=1

110 WH LE FLIPS

115 FLI PS=0

120 FOR N=1 TO J-1

130 | F A$(N) >A$(N+1) THEN SWAP A$(N), A$(N+1): FLIPS=1
140 NEXT N

150 W\END

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basi c/WHIL EWEND .html| 28/03/2004 21.29.52

GW-BASIC User's Guide

WINDOW Statement

Purpose:

To draw lines, graphics, and objects in space not bounded by the physical limits of the screen.

Syntax:
W NDOW [SCREEN] (x1, y1)-(x2,y2)]

Comments:

(x1,y1),(x2,y2) arethe coordinates defined by the user. These coordinates, called the world
coordinates, may be any single-precision, floating-point number. They define the world
coordinate space that graphics statements map into the physical coordinate space, as defined by
the VI EWstatement.

W NDOWis the rectangular region in the world coordinate space. It allows zoom and pan. It allows

the user to draw lines, graphics, and objects in space not bounded by the physical limits of the
screen. To do this the user specifies the world coordinate pairs (x1, y1) and (x2, y2.) GW-

BASIC then converts the world coordinate pairs into the appropriate physical coordinate pairs for
subsequent display within screen space.

Window inverts, with the screen attribute omitted, the y coordinate on subsequent graphics
statements. This placesthe (x1, y1) coordinate in the lower-left and the (x2, y2) coordinatein

the upper-right of the screen. This allows the screen to be viewed in true Cartesian coordinates.

The coordinates are not inverted when the SCREEN attribute isincluded. This placesthe (x1, y1)
coordinate in the upper-left and the (x2, y2) coordinate in the lower-right corner of the screen.

The W NDOWstatement sorts the x and y argument pairs into ascending order. For example:
W NDOW (50, 50)- (10, 10)

becomes
W NDOW (10, 10)- (50, 50)

Or
W NDOW (-2, 2)-(2, -2)

becomes
W NDOW (-2, -2)-(2, 2)

All coordinate pairsof x and y are valid, except that x1 cannot equal x2 and y 1 cannot equal y2.

W NDOWwith no arguments disables previous window statements.

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basic/WINDOW.html (1 of 2)28/03/2004 21.29.53

GW-BASIC User's Guide

Example 1:

If you type:
NEW SCREEN 2

the screen uses the standard coordinate attributes:

(0, 0) (320, 0) (639, 0)
l y increases
(320, 100)
(0, 199) (320, 199) (639, 199)
Example 2:
If you type:

WNDOW (-1, -1)-(1, 1)

the screen uses the Cartesian coordinates:
(- l’ l) (O, 1) (11 1)
1y increases

(0, 0)
| y decreases
(-1, -1 (0, -1) (1, -1)
Example 3:
If you type:

W NDOW SCREEN (-1, -1)-(1, 1)

the screen uses the non-inverted coordinate:
(-1, -1) (0, -1) (1, -1)

1y decreases
(0, 0)

L y increases
(-1, 1) (0, 1) (1, 1)

RUN, SCREEN, and W NDOMwith no attributes disable any W NDOWdefinitions and return the
screen to its normal physical coordinates.

file://IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/GW%20Basi c/WINDOW.html (2 of 2)28/03/2004 21.29.53

GW-BASIC User's Guide

WRITE Statement

Purpose:

To output data to the screen.

Syntax:
VWRI TE[| i st of expressions]

Comments:

IfI'i st of expressions isomitted, ablank lineis output. If list of expressionsisincluded,
the values of the expressions are output at the terminal. The expressionsin the list may be
numeric and/or string expressions, and must be separated by commas or semicolons.

When printed items are output, each item will be separated from the last by a comma. Printed
strings are delimited by double quotation marks. After the last item in the list is printed, GW-
BASIC inserts a carriage return/line feed.

The difference between \RI TE and PRI NT isthat V\RI TE inserts commas between displayed

items and delimits strings with double quotation marks. Positive numbers are not preceded by
blank spaces.

V\RI TE outputs numeric values using the same format as the PRI NT statement.

Examples:

10 A=80: B=90: C$="THAT' S ALL"
20 WRITE A, B, C$

RUN

80, 90, "THAT' S ALL"

file:///IC|/Documents¥%20and%20Settings/L orenzo/ Desktop/ GW%20Basi ¢/WRI TE.html 28/03/2004 21.29.53

GW-BASIC User's Guide

WRITE# Statement

Purpose:

To write datato a sequential file.

Syntax:
WRI TE #filenum |ist of expressions

Comments:
fi | enumisthe number under which the file was opened for output.

| i st of expressionsisalistof string and/or numeric expressions separated by commas or
semicolons.

The WRI TE# and PRI NT# statements differ in that WRI TE# inserts commas between the items as

they are written and delimits strings with quotation marks, making explicit delimitersin the list
unnecessary. Another differenceisthat WRI TE# does not put ablank in front of a positive

number. After the last item in the list is written, a carriage return/line feed sequence isinserted.

Examples:
Let A$="CAMERA" and B$ = "93604-1". The following statement:
VWRI TE#1, A$, B$

writes the following image to disk:
"CAVERA", "93604- 1"

A subsequent | NPUT$ statement, such as the following, would input "CAMERA" to A$ and
"93604-1" to B$:

| NPUT#1, A$, B$

file:///C|/Documents%20and%20Settings/L orenzo/Desktop/ GW%20Basi ¢/WRI TEF.htm|28/03/2004 21.29.53

	Local Disk
	GWBASIC User's Manual
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide
	GW-BASIC User's Guide

