
______PIC-SERVO SC (v.10)_______________________________
   Servo  Mot ion  Cont rol  I .C.

● Servo controller for D.C. motors (brush or
brushless) with incremental encoder feedback

● Serial interface connects to RS232, RS485 or
RS422 communications ports

● Firmware supports multi-drop RS485 network
for multi-axis systems

● Position control, velocity control, trapezoidal
profiling, plus Step & Direction inputs

● Path control mode supports CNC and other
coordinated motion control applications

● Programmable P.I.D. control filter with
optional current, output, and error limiting

● 32 bit position, velocity, acceleration; 
16 bit P.I.D. gain values

● EEPROM configuration allows automatic start-up in stand-alone Step & Direction mode
● Single chip solution based on the PIC18F2331 series microcontroller

What’s New in the PIC-SERVO SC (v. 10)
The primary difference between PIC-SERVO SC and previous versions of the PIC-SERVO is that the
PIC-SERVO SC incorporates encoder counting within the PIC-SERVO SC chip itself, eliminating the
need for the separate PIC-ENC chip.  While the hardware pin-out is no longer compatible with earlier
versions, most existing software applications will work with the PIC-SERVO SC without modification.
In addition, the PIC-SERVO SC incorporates a host of new features:

● 2.5 MHz quadrature encoder counting rate.
● Position, velocity and acceleration can be modified on-the-fly.
● Smooth deceleration to goal points without any end-of-motion “creep” or jerk.
● Amplifier drive options include PWM & Direction, Antiphase PWM, and 3-Phase

commutation. 3-Phase mode can also be used for driving two independent half-bridges.
● Optional Step & Direction inputs can be driven from stepper-style indexing systems.
● Improved limit switch options.
● Operating parameters may be saved in EEPROM for automatic servo on power-up.

Please see Section 5.7 for information regarding migration from earlier versions of the PIC-SERVO.

●●● CAUTION ●●●
  The PIC-SERVO SC  motion control I.C. is not warranted as a fail-safe device, and it should not be used in
  life support systems or in other devices where its failure or possible erratic operation could cause property 
  damage, bodily injury or loss of life.

JEFFREY KERR, LLC    —     w w w. j rke r r . c om

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

21

22

23

24

26

25

27

28
P

IC
-S

E
R

V
O

 S
C

K
AE

-T0V
10-D

P
 (-S

O
)

MCLR

CUR_SENSE

VOLT_SENSE

ENABLE0

ENABLE1

ENABLE2

ENC_A

ENC_B

ENC_INDEX

ADDR_IN

ADDR_OUT

LIMIT2 / STEP

LIMIT1 / SDIR

PWM0

PWM1

PWM2 / DIR

HALL0

HALL1

HALL2

OSC1

OSC2 GND

 GND

Vcc

Vcc

TX

RX

TX_ENABLE

Figure 1  -  PIC-SERVO SC 
28-pin, 0.3” DIP or SOIC

1



1.0 Overview
The PIC-SERVO SC is a single chip solution for implementing servo control of D.C. motors with
incremental encoder feedback.  The PIC-SERVO SC is a PIC18F2331 microcontroller programmed
with a PID servo control filter, trapezoidal and velocity profiling and a serial command interface.  It
includes integral quadrature encoder counting for interfacing to your motor’s encoder.  Operation of
the PID servo and of the encoder counting is described in Sections 4.2 and 4.3.

Three Output Modes
The PIC-SERVO SC has three different output modes for connecting to common types of motor
amplifier circuits including: PWM and Direction, Antiphase PWM, and 3-Phase PWM output modes.
The 3-Phase output mode works in conjunction with three hall effect sensor inputs and includes
commutation logic (120 degree) for 3-Phase brushless motors.  The 3-Phase output mode can also be
used for driving two independent half-bridges for a conventional brush-type motor.  Output modes
are described in Section 4.5.

Five Operating Modes
This PIC-SERVO SC has 5 different operating modes to cover a wide variety of servo control
applications including: raw PWM output mode, Velocity Profile mode, Trapezoidal Profile mode,
Coordinated Motion Control (CMC) mode, and Step & Direction mode.  These modes are described
in Section 4.4.

Serial Communications Interface
Most applications will use the PIC-SERVO SC’s serial interface to send motion control commands.
The serial interface, compatible with standard UART's, can be connected to an RS232 port (through
the appropriate driver chip), or it also supports connection to a multi-drop RS485 network for
controlling multiple motors over a single RS485 or RS422 port.  The simple binary packet protocol
maximizes the command data rate while ensuring reliable transmission of commands and status data.

With the full-duplex communications architecture, all commands are sent over a dedicated command
line, but multiple PIC-SERVO chips can respond over a separate shared response line.  Unique device
addresses are dynamically assigned, eliminating the need for setting dip-switches.  Serial
communications and address initialization are described in Section 4.1.

EEPROM Parameter Storage
The PIC-SERVO SC also has non-volatile (EEPROM) data storage for retaining servo gains and other
operating parameters.  This enables the chip to be used in a stand-alone mode (no serial interface)
where on power-up, it is ready to accept Step and Direction input signals.  This makes it an ideal
servo controller upgrade for systems designed for stepper motors.  EEPROM parameter storage is
described in Section 4.6.

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 2



2.0 Pin Description and Packaging
The PIC-SERVO SC comes in a 28 pin, 0.3" DIP  or an SOIC package. The device operates from a +5v
supply and is compatible with TTL and CMOS logic.  Please refer to the PIC18F2331 data sheet from
Microchip (www.microchip.com) for complete electrical and physical specifications.

Pin Symbol Description
1 MCLR Reset pin, active low.  Connects directly to Vcc for automatic reset on power-up.  When the

PIC-SERVO SC is operated in stand-alone mode for Step & Direction systems, this pin can
be used to enable/disable the servo system.

2 CUR_SENSE Analog input for current sensing or for use as a general analog input. (0 - +5v).   (See Section
4.7.)

3 VOLT_SENSE Analog input for sensing the motor supply voltage (connected through a voltage divider
resistor network).  It is used to detect undervoltage and overvoltage conditions.  The input
voltage must be in the range of 0.9v to 4.5v for normal operation.  (See Section 4.7)

4 ENABLE1 Active HIGH output for enabling half-bridge #1 when in 3-Phase mode
5 ENC_A Input pin connects to Channel A of your encoder.  (Input has digital noise filter)
6 ENC_B Input pin connects to Channel B of your encoder.  (Input has digital noise filter)
7 Vcc Supply voltage - connect to +5v DC.
8 GND Ground connection.
9 OSC1 Connects directly to a 10 MHz clock source or to one side of a 10 MHz crystal.  An internal

phase-lock loop boosts the actual operating frequency to 40 MHz.  See Microchip
documentation for details of crystal connections.

10 OSC2 Connects to the other side of a 10 MHz crystal.  N.C. if a clock source is used.
11 ENABLE2 Active HIGH output for enabling half-bridge #2 when in 3-Phase mode 
12 TX_ENABLE This output can be connected to the enable pin of an RS485 driver to enable output over a

shared response line.  Not used if a point-to-point serial connection (like RS232) is used.
13 ADDR_OUT Output pin which powers up in the HIGH state, and is lowered when the PIC-SERVO’s

address is programmed.  Normally connected to ADDR_IN of an adjacent controller.  When
in Step & Direction mode, this pin is raised on a servo fault condition and can be used as a
fault detection flag.

14 LIMIT2 / STEP REV limit switch input, except when in Step & Direction mode, it is the Step pulse input.
15 ENC_INDEX Input pin connects to the Index pulse output of your encoder.
16 LIMIT1 / SDIR FWD limit switch input, except when in Step & Direction mode, it is the Direction input. (0 =

FWD, 1 = REV).  
17 TX Serial transmit output.  Connects to the transmit input of an RS485 or an RS232 driver chip.
18 RX Serial receive input.  Connects to the receive output of an RS485 or an RS232 driver chip.
19 GND Ground connection.
20 Vcc Supply voltage - connect to +5v D.C.
21 PWM0 PWM output pin for PWM & Direction and antiphase PWM modes, and also used for driving

half-bridge #0 when in 3-phase mode. 
22 PWM1 PWM output for driving half-bridge #1 when in 3-Phase mode.
23 PWM2 / DIR PWM output for driving half-bridge #2 when in 3-Phase mode.  In PWM & Direction mode, it

is used as the Direction bit (0 = FWD, 1 = REV)
24 ENABLE0 Active HIGH output for enabling the amplifier when in PWM & Direction and  antiphase

PWM modes, and enables half-bridge #0 when in 3-Phase mode
25,26,

27
HALL0, HALL1,
HALL2

Hall effect sensor input pins used for commutation when in 3-Phase mode.  These pins have
internal 20K pull-up resistors.

28 ADDR_IN This pin must be pulled low to enable communications.  Normally tied to the ADDR_OUT
pin of the previous PIC-SERVO on the same RS485 network. This pin has an internal 20K
pull-up resistor.

Ordering Information
Part Number Description
KAE-T0V10-DP PIC-SERVO SC  I.C., version 10, 0.3” wide DIP package
KAE-T0V10-SO PIC-SERVO SC  I.C. , version 10, SOIC package

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 3



3.0  Electrical & Timing Specifications
All timing specifications are based on using a 10 MHz clock source or crystal for the PIC-SERVO SC
(boosted internally to 40 MHz). Although other clock frequencies may be used, we do not
recommend this because there are some subtle internal timing considerations which have not been
tested at other clock frequencies.

The PIC-SERVO SC is a 5v device with CMOS inputs compatible with either CMOS or TTL logic
levels.  The CMOS outputs can drive or sink up to 20 ma each.  Please refer to the PIC18F2331 data
sheet from Microchip (www.microchip.com) for complete electrical specifications.

The following timing rates are of interest:
Servo rate: 1953.125 Hz 

Serial baud rate: 9,600 - 230,400 baud 
                        (faster rates may be possible but are untested)

PWM frequency: 19,531.25 Hz (fixed)
PWM resolution: 10 bit

Encoder counting rate: 2.5 MHz (max.)
Max step pulse rate: 100 KHz (see Section 4.4.6)
Max Command rate: 1000 Hz max. (approx.)

The rate at which commands can be sent to a PIC-SERVO controller is dependent on the number of
bytes in the command and on the number of bytes returned as status data, both of which are variable.
Please see Sections 4.1 and 5.1 for information on calculating communication times for specific
commands

4.0  Theory of Operation
4.1 Communications & Initialization
NMC Communication Protocol
The PIC-SERVO uses the same full-duplex, RS232 or RS485 (4-wire) based NMC (Networked
Modular Control) communication protocol as used by the PIC-STEP and the PIC-I/O controllers.  It is
a strict master/slave protocol, where command packets are sent to a controller module by the host
computer, and a status packet is returned by the module.  The default baud rate is 19,200, but it may
be changed at any time to up to 230,400.  The communication protocol uses 8 data bits, 1 start bit, 1
stop bit and no parity.

Command packets are transmitted by the host over a dedicated command line.  Status packets are
received over a separate status line which is shared by all of the modules on the network.  Because
the host does not have to share the command line, the host communications port can be a standard
RS232 port with a simple RS232 to RS485 (or RS422) signal level converter*.  The slave ports,
however, must be able to disable their transmitters to prevent data collisions over the shared status
line.  Therefore, all NMC compatible controllers provide an TX_ENABLE output used for enabling or
disabling an RS485 transmitter.  Please refer to the sample schematic in Section 7 and to Figure 2
below.

* If only a single PIC-SERVO controller is used, the PIC-SERVO’s communications port can be operated as an RS232
port, with TX and RX connected to an RS232 transceiver rather than to an RS485 transceiver.  In this case, the
TX_ENABLE output is not used and may be left open.

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 4



TX+ / TX-
RX+ / RX-

HOST

Module n

ADDR_INADDR_OUT

Module 2

ADDR_INADDR_OUT

Module 1

ADDR_INADDR_OUT

Figure 2 - Connecting Multiple Controller Modules

The command packets have the following structure:
Header byte (always 0xAA)
Module Address byte (0 - 255)
Command byte 
Additional Data bytes (0 - 15 bytes)
Checksum byte (8-bit sum of the Module Address byte through the last additional data byte)

The Header byte is used to signal the beginning of a command packet.  When waiting for a new
command, each module will ignore any incoming data until it sees a Header byte.

The Module Address byte is the address of the target module.  The address can be an individual
address, or the group address for the module.  (See Group Commands below.)

The Command byte is broken up into an upper nibble (4 bits) and lower nibble (4 bits).  The lower
nibble contains the command value (0 - 15), and the upper nibble contains the number of additional
data bytes required for that command (0 - 15).  It is up to the host to insure that the upper nibble
matches the number of additional data bytes actually sent.

The Additional Data bytes contain the specific data which may be required for a particular command.
Many commands have a “control” or “mode” byte in addition to other parameters required for the
command.  Some commands require no additional data.  It is up to the host to make sure that the
proper number of additional data bytes is sent for a particular command, and that the upper nibble of
the command byte is equal to this number.

Once a module receives a complete packet, and the Address byte matches its address,  it will verify
the checksum and immediately (within 0.51 milliseconds) begin to process the command.  If there is a
checksum error in the command packet or any other sort of communications error (framing, overrun),
the command will not be executed, but a status packet will still be returned.  If there are no errors, the
command will then be executed and a status packet returned.  (Note that motion commands will
initiate the motion and return a status packet immediately without waiting for the motion to finish.)

The status packets have the following structure:
Status byte
Additional Status Data bytes (programmable)
Checksum byte (8-bit sum of all the bytes above) 

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 5



The Status byte contains basic information about the state of the module, including whether or not the
previous command had a checksum error.  The specific bit definitions for the Status byte are in
Section 5.3 below.

The number Additional Status Data bytes is programmable, and may contain information such as
motor position, A/D values, or the module type and version numbers.  Exactly which data is included
in these Additional Status Bytes can be programmed using the Define Status or Read Status
commands.  On power-up or reset, each NMC module defaults to sending only the Status byte and
Checksum byte, with no additional status data.

A command sent to a PIC-SERVO controller is stored in an internal buffer until the end of the current
servo cycle (0.51 millisec. max.), when it is then executed and a status packet is returned.  Therefore
there will be a maximum delay of 0.51 millisec. (0.25 millisec. avg.) between when the last byte of
the command is received and when the first byte of the status packet is sent.  No new command
should be sent until the status packet is returned to prevent overwriting the command data buffer and
to prevent collisions on the status line.  If, however, the host does send any data before a status packet
is received, all slaves on the network will disable any status data transmission in progress and listen
to the new command from the host.  This insures that the host can always command the attention of
all slaves on the network.

The Command Reference Section 5.1 below describes the data contained in the command packets and
status packets.  

Addressing
When multiple modules are connected to the same NMC network, they must be assigned unique
addresses.  This is done through the use of the ADDR_IN and ADDR_OUT signals on each NMC
compatible controller.  The ADDR_OUT signal from one controller is daisy-chained to the ADDR_IN
signal of the adjacent controller on the network.  Customarily, the ADDR_IN pin of the controller
furthest from the host is tied to GND, and the ADDR_OUT signal of the controller closest to the host is
left open.  (See the Figure 2 above).

Unique addresses are assigned using the following procedure:

1. On power-up, all modules assume a default address of 0x00, and each will set its ADDR_OUT
signal HIGH.  Furthermore, a module’s communications will be disabled completely until its
ADDR_IN signal goes LOW.  If the ADDR_OUT and ADDR_IN signals are daisy-chained as
described above, all modules will be disabled except for the module furthest from the host.

2. The host starts by sending a Set Address command to module 0, changing its address to a value of
1.  A side affect of the Set Address command is that the module will lower the its ADDR_OUT
signal.

3. At this point, the next module in line is enabled with an address of 0.  The host then sends a
command to module 0 to change its address to a value of 2.

4. This process is continued until all modules have been assigned unique addresses.

Initialization of the addresses is performed by the host each time the NMC network is powered up or
reset.  The host can also use this mechanism to verify that the proper number of modules are present,
and that their types match those expected for a particular application.

Once addresses are set, all other operations can be executed. 
JEFFREY KERR, LLC    —     w w w. j rke r r . c om 6



Group Commands
Each NMC controller module actually has two addresses: an individual address and a group address.
On power-up or reset, the individual address defaults to 0x00 and the group address defaults to 0xFF.
Both the individual address and the group address are set with the same Set Address Command.
Individual addresses can have any value between 0 and 255, but group addresses are restricted to
values between 128 and 255.

The purpose of the group address it to be able to send a single command (such as Start Motion) to a
several controllers at the same time.  While the individual addresses of all controllers must be unique,
a group of controllers can share a common group address.  When a command packet is sent over the
NMC network to a group address, all modules with a matching group address will execute the
command.  

The issue of which module will send a status packet in response to a group command is resolved with
the distinction between group members and group leaders.  When the group address for a module is
set, the Set Address command will also specify if the module is to be the leader or a member of that
group.  If a module is a member of its group and it receives a group command (i.e., a command sent
to its group address), it will execute the command but not send back a status packet.  If a module is
the leader of its group and it receives group command, it will send back a status packet in addition to
executing the command. (The status packet is just the same as one sent in response to an individually
addressed command.)

For any group of modules sharing the same group address, only one module should be declared the
group leader.

In certain instances (as when changing the Baud rate for all modules on the network), is necessary to
send a command to a group without a group leader.  In this case, no status will be coming back from
any controllers, and the host should wait for at least 0.51 milliseconds before sending another
command to keep from overwriting the previous command.  If you need to change the baud rate, it is
best, when initially setting the addresses, to leave the group address for all modules at 0xFF with no
group leaders.  After changing the baud rate, you can then re-define individual and group addresses as
needed.

Universal Reset Address
For most applications, group commands are not needed and the group address for all modules is left
at 0xFF.  If, however, the modules are split up into several groups with different group addresses,
sending a single Reset command to reset all controllers at once becomes problematic.  To address this
issue, the PIC-SERVO SC will always execute a Hard Reset* command sent to the address 0xFF,
independent of the value of the module’s group address.  Note that when a Reset command is sent, no
status packet will be returned.

Network Initialization
The previous subsections have hinted at various operations required for network initialization.  Here
is a specific list of the actions which should be taken on power-up, or after a network-wide reset :
1. Set the host baud communications port to 19,200 Baud, 1 start bit, 1 stop bit, no parity.
2. Send out a string of 20 null bytes (0x00) to fill up any partially filled command buffers.  Wait for

at least 1 millisecond, and then flush any incoming bytes from the host’s receive buffer.

* There are two versions of the Hard Reset command - a simple Reset and one where data is saved in EEPROM prior to
reset.  The universal reset address of 0xFF only works with a simple Reset command.

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 7



3. Use the Set Address command, as described in Section 5.2, to assign unique individual addresses
to each module.  At this point, set all group addresses to 0xFF, and do not declare any group
leaders.  (If you are not going to change the Baud rate from the default 19,200, you can set both
the individual and group addresses at this time.)

4. Verify that the number of modules found matches the number expected.
5. Different NMC controller modules will have different type numbers and different version

numbers (PIC-SERVO  = type 0). Use the Read Status command to read the type and version
numbers for each module and verify that they match the types and versions expected.

6. Send a Set Baud command to the group address 0xFF to change the baud rate to the desired value.
No status will be returned.  (Only required if using other than 19,200 Baud.)

7. Change the host’s Baud rate to match the rate just specified.
8. Poll each of the individual modules (using a No Op command) to verify that all modules are

operating properly at the new Baud rate.
9. Use the Set Address command to assign any group addresses as needed.

At this point you are ready to send any module specific initialization commands to the individual
modules and begin operation.  Note that at any time, you may use the Set Address command to re-
assign individual or group addresses.

4.2 Incremental Encoder Counting
A typical two-channel incremental or quadrature encoder puts out two 50% duty cycle square waves
either +90 degrees or -90 degrees out of phase, depending on which direction the motor is rotating, as
shown in Figure 3.  Each channel produces one square-wave pulse per encoder line.  Therefore, two
channel encoders have a fundamental resolution of four times the number of lines on the encoder
because each edge of each square wave provides position information.

Forward motion:
A

B

Reverse motion:
A

B

Figure 3 - Encoder Signals

For example, a 500 line encoder will produce 4 signal edges per line (2 on channel A, 2 on channel
B), for a total of 2000 edges per revolution.  The PIC-SERVO SC’s internal circuitry takes care of
decoding the direction information and counting all four edges per encoder line.  The encoder counter
produces a 32 bit position value which is used for the servo control operation.  This position can also
be read as part of the status packet returned with every command.

4.3 PID Servo Control
In general, when in  position or velocity mode, the motor is controlled by a servo loop which once
every servo tick (1953.125 times/sec) looks at the current position of the motor, compares it to where

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 8



the motor should be, and then uses a “control filter” to calculate an output which will cause the
difference in positions, or the “position error” to become smaller.  Two sets of parameters will govern
the motion of the motor: the desired trajectory parameters (goal position, velocity, acceleration)
which are described in Section 4.4, and the control filter parameters discussed here.

The control filter used by the PIC-SERVO is a “proportional-integral-derivative”, or PID filter.  The
output to the motor amplifier is the sum of three components: one proportional to the position error
providing most of the error correction, one proportional the change in the position error which
provides a stabilizing damping effect, and one proportional to the accumulated position error which
helps to cancel out any long-term error, or “steady state” error.

The PID control filter, operating on the command position and the actual position each servo tick,
produces an output calculated as follows:

output = Kp x pos_error  -  Kd x (pos_error - prev_pos_error)  +  Ki x integral_error

The term pos_error is simply the current command position minus the actual position.  The
prev_pos_error is the position error from the previous servo tick.  Kp, Ki and Kd are the 16 bit servo
gains which will be programmed to optimize performance for your particular motor.  

The integral_error is the running sum of pos_error divided by 256.  To keep from growing a
potentially huge integral_error, the running sum is bounded by a 16 bit user specified integration
limit, IL.  (Note that by temporarily setting the integration limit to 0, the user can zero out the
accumulated running sum.)

The actual PWM output value (0-255) and direction bit are given by:

PWM = min[ abs(output/256) + dead_band  , output_limit ] - current_limit_adjustment
DIR = 0 if output>0,     DIR = 1 if output < 0

The parameter dead_band is an 8-bit offset used to compensate for static friction or a dead band
region in the amplifier.

First note that the scaled PWM output is limited by an 8-bit user defined output_limit.  For example,
if you are using a 12v motor powered by 24v, you would want to set the output_limit to 255/2, or 127.
Also note that the final PWM value is reduced by a current_limit_adjustment.  This value is
explained in Section 4.7 below.

The PWM signal is a 19.53 KHz square wave of varying duty cycle with a PWM value of 255
corresponding to 100% and a value of 0 corresponding to 0%.  As explained here, the PWM signal is
derived from an 8-bit value.  The internal calculations, however, actually provide and additional 2 bits
of resolution for a final 10 bit PWM resolution.  

An additional control parameter is the user specified 16 bit position error limit.  If abs(pos_error)
becomes larger than this limit, the position servo will be disabled.  This is useful for disabling the
servo automatically upon a collision or stall condition.  Also, the POS_ERROR bit in the status byte
will be set on a position error condition.  (This condition can also be used for homing the motor by
intentionally running it up against a limit stop.)

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 9



Selection of the optimal PID control parameters can be done analytically, but more typically, they are
chosen through experimentation.  As a first cut, the following procedure may be used:
1. First set the position gain, Kp, and the integral gain, Ki, to 0.  Keep increasing the derivative gain,

Kd, until the motor starts to hum, and then back off a little bit.  The motor shaft should feel more
sluggish as the value for Kd is increased.

2. With Kd set at this maximal value, start increasing Kp and commanding test motions until the
motor starts to overshoot the goal, then back off a little.  Test motions should be small motions
with very large acceleration and velocity.  This will cause the trapezoidal profiling to jump to goal
position in a single tick, giving the true step response of the motor.

3. Depending on the dynamics of your system, the motor may have a steady state error with Kp and
Kd set as above.  If this is the case, first set a value for the integration limit IL of 16000 and then
start increasing the value of Ki until the steady state error is reduced to an acceptable level within
an acceptable time.  Increasing Ki will typically introduce some overshoot in the position. The best
value for Kp will be some compromise between overshoot and settling time.

4.  Finally, reduce the value of IL to the minimum value which will still cancel out any steady state
error.

There is one final servo filter parameter to discuss.  The servo calculations above are executed at a
rate of  1.953 KHz.  For systems with a combination of a large inertia, little inherent damping and
limited encoder resolution, it may be difficult to get sufficient damping at low speeds because the
digitization noise with very large values of Kd will cause the servo to hum or vibrate.  To decrease the
digitization noise, the servo rate divisor (SRD) parameter is used to calculate how many servo cycles
elapse between calculating the pos_error and the prev_pos_error used in the damping term of the
PID filter.  By default, SRD = 1, and prev_pos_error is equal to the pos_error of one cycle earlier.  If,
however, we set SRD = 3, prev_pos_error would equal the pos_error  of three cycles earlier.
Increasing the time difference between these values effectively averages the derivative error term and
reduces the digitization noise.

In summary, we have a total of eight control filter parameters: Position Gain (Kp), Derivative Gain
(Kd), Integral Gain (Ki), Integration Limit (IL), Output Limit (OL), Current Limit (CL), Position Error
Limit (EL) and the Servo Rate Divisor (SRD).  The details of programming these values appear in the
Section 5.2 under the description of the Set Gain command.

4.4 Operating Modes
The PIC-SERVO SC has several layers of control and allows you to operate at any of these layers as
required by your application.  Generally, each layer of control sends commands to layer of control
below it to create the desired motion. 

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 10



Figure 4 - Levels of control within the PIC-SERVO SC

4.4.1 PWM Mode
The lowest layer of control is raw PWM mode, where the user can specify the PWM output signal
sent directly to the amplifier.  When the PIC-SERVO SC normally powers up, it enters PWM mode
with the PWM value set to zero, and the servo and profiling modes are turned off.  PWM mode is
also entered when the position servo is terminated automatically by a loss of power, excess position
error, or turned off by the Stop Motor command.  

During experimentation or startup, it may be useful to send a non-zero output directly to the amplifier
using the Load Trajectory command.  Note that in specifying a PWM value directly, the current
limiting of an external amplifier is still be performed, but the PWM output limit is ignored.

When in PWM mode, even though the position servo is disabled, the current command position is
updated continually to match the actual position of the motor.  Thus, when position mode is entered,
there will be no abrupt jump in the motor’s position.  Also while the position servo is disabled, the
command velocity is continually updated to match the actual velocity of motor.  Thus, when velocity
mode is entered, there will be no discontinuity in the motor’s velocity. 

4.4.2 Position Servo Mode
The next layer of control is the position servo mode where the PID servo calculates PWM values to
actively drive the motor to the current command position.  When the motor is stopped, the current
command position is a constant value.  When a trapezoidal position command terminates, when a
Stop Motor Abrupt command is issued, or a Stop Abrupt condition occurs while homing, all motion
profiling is terminated and the PID control filter servos to the current command position.

The PIC-SERVO SC gives the user direct access to the current command position through the “Stop
Here” variant of the Stop Motor command.  In other words, the user can specify a current command
position and the servo will drive the motor to that position with no motion profiling to smooth the
trajectory of the motion.

JEFFREY KERR, LLC    —     w w w. j rke r r . c om

PWM Generator

Position Servo
(PID Filter)

Velocity Mode

Trapezoidal
Profile Mode

Step & Direction
Mode

Path Control (CMC)
Mode

Load Trajectory Command
(Trap. Mode)

Add Path Point Command

Step & Direction
Signals

Load Trajectory Command
(Vel. Mode)

Load Trajectory Command
(PWM Mode)

Stop Motor Command
(Stop Here Varient)

11



4.4.3 Velocity Mode
Velocity mode allows the user to drive the motor at a constant velocity and also to transition
smoothly from one velocity to another with a specific rate of acceleration.  The velocity mode
operates by incrementing the current command position by some amount every servo cycle (1.953
KHz).  When traveling at a constant velocity, the current command position is simply incremented by
the current velocity value every servo cycle.  The underlying position servo then drives the motor to
this constantly changing current command position.

When the goal velocity value is changed, rather than abruptly jerking to the new velocity, the current
velocity value is incremented (or decremented) by some amount once per servo cycle until the goal
velocity is reached.  The amount incremented (or decremented) is the acceleration value.

The goal velocity and the acceleration value are set using the Load Trajectory command.  Goal
velocities and accelerations can be changed at any time, independent of the current mode of
operation.

4.4.4 Trapezoidal Position  Mode
Trapezoidal position mode allows the user to specify a goal position, a maximum slew velocity, and
an acceleration value.  When the motion starts, the motor will accelerate up to the maximum velocity,
slew at that constant velocity until it nears the goal position, and then decelerated to a stop exactly at
the specified goal  position.  A plot of velocity v. time will produce a trapezoidal shaped profile.  For
very short motions, or if a very low acceleration is specified, the motor may never reach the
maximum velocity before beginning to decelerate, thus producing a triangular shaped profile instead.
The trapezoidal position mode operates by using the velocity mode layer of control beneath it.  When
a motion starts, it simply issues a velocity command to accelerate up to the maximum velocity.  Once
the motion starts, however, it constantly calculates the point at which the motor must begin
decelerating in order to exactly stop at the goal position.  When the motor reaches this point, it sets
the goal velocity to zero and the motor decelerated to a stop.

The trapezoidal position mode is relatively sophisticated in that allows the user to change the goal
position, the maximum velocity or the acceleration at any time.  For instance, if the maximum
velocity is increased while slewing, the motor will speed up to the new velocity, and then begin
decelerating at the proper time to end up stopped at the goal position. 

If the goal position, velocity or acceleration are changed in the middle of a motion, it is possible that
the motor will no longer be able to stop at the goal position in time.  In this case, the motor will
overshoot the goal position, smoothly reverse direction, and then decelerate to the goal position.  The
motion will still adhere to the specified velocity and acceleration limits. 

Trapezoidal position motions are also specified using the Load Trajectory command.  You can issue a
command to enter trapezoidal position mode at any time and while in any other operating mode. 

4.4.5 Path Control Mode
Path control mode, or Coordinated Motion Control (CMC) mode, is a special mode which allows the
host computer to easily coordinate the motion of several PIC-SERVO SC’s.  The fundamental feature
of this mode is a path point buffer which stores a series of closely spaced motor goal points.
Coordination of multiple axes happens as follows:

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 12



1. The host (PC, etc.) calculates a series of closely spaced path points for one or more motors.  The
idea is that each motor will move from one path point position to the next at a fixed time interval.
The multi-axis path is followed as all motors move from one path point to then next with the
exact same timing.

2. The host then downloads the sets path points to the individual PIC-SERVO SC controllers.
3. With a single group command, the host then starts all axes moving at the same time.  Because of

the accurate crystal controlled timing of the PIC-SERVO SC, each motor will move synchronously
from one path point position to the next.

There are several important features to note about the path control mode.  First, the path point buffer
can be continuously reloaded with new points while the motor is moving.  The path point buffer can
hold up to about 4 seconds worth of path data, but if a desired motion is longer than that, new points
can be added to the buffer while moving to create continuous motions of unlimited length.  For some
applications, it is desirable to only keep a small amount of data in the path point buffers at any time to
allow the host to change the path on-the-fly with a minimal delay.

The second important feature is that when the PIC-SERVO SC moves from path point to path point, it
doesn’t simply jerk from one point to the next - it creates a series of intermediate path points so that it
moves to the next path point with a constant velocity.  Path points are calculated  as the positions
where the motor should be at either 30, 60 or 120 Hz intervals.  If, for example, the host created a set
of path points at 60 Hz intervals, the PIC-SERVO SC would calculate intermediate path points at
1953.125 Hz intervals.  The effect of this intermediate smoothing with a multi-axis system is that all
of the axes will move from one path point to the next along a straight-line segment.  This internal
smoothing allows path points calculated by the host to be spaced much more widely apart, and
requires much less data to be sent to the PIC-SERVO SC.

The obvious question in specifying path points at a relatively low frequency is: “how accurately will
the motors be able to follow my ideal path”.  In fact, for typical applications, this error is very small.
For example, let’s say we have an X-Y table with two motors and we wish to move along a circular
path.  If we were to move along a 1.0” diameter circle at a speed of 1.0” per second, and we
approximated the circle by a series of straight line segments spaced at 30 Hz intervals, the maximum
error between the straight lines and a true circle would be 0.00028”.  If we switched to 60 Hz
intervals, the maximum error would drop to 0.000069”.  Slowing down the motion or increasing the
radius of curvature would further increase the accuracy.

Path points are downloaded are downloaded to the PIC-SERVO SC using the Add Path Points
command.  With a single Add Path Points command, up to 7 path points can be downloaded to a
controller.  Once all of the controllers have been loaded with their path point data, the Add Path Point
command, this time with no path point data,  is issued to the entire group of controllers using a group
command.  This causes all controllers to start executing the path at the same time.

While the path is running, it is useful to poll at least one of the controllers and have the number of
points remaining in the path point buffer returned in the status packet.  The host can then add more
path points as needed, and also avoid overflowing the path point buffer, which can hold a maximum
of 128 path points.

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 13



When a path point is downloaded into the path point buffer, the position data also includes a bit
which specifies whether that path point should be reached in 33 milliseconds (30 Hz) or in 16.7
milliseconds (60 Hz).  This allows the host, in the middle of a move, to use more closely spaced when
moving along a tightly radiused curve.  While normally paths are run at 30 or 60 Hz, there is also a
fast path mode bit (which can be set using the I/O Control command) which allows the path to run at
60 or 120 Hz instead.

The number of axes of motion which can be coordinated is limited by the speed of the serial port
connection and by the path point rate.  At a Baud rate of 115,200, it is possible to coordinate the
motions of up to about 16 axes when using a 30 Hz path point rate.  At 60 or 120 Hz, the number of
axes drops to 8 or 4 respectively.

4.4.6 Step and Direction Input Mode
Step and direction input mode allows step pulses and a direction signal from a stepper-style indexing
system to be used to modify the current command position.   The STEP input generates an interrupt in
the PIC-SERVO SC, which then looks at the direction (SDIR) signal and increments (SDIR = 0) or
decrements (SDIR = 1) the step count accordingly.  Every servo cycle, the step count is multiplied by a
step multiplier parameter (specified with the Set Gains command) and then added to the current
command position.  Thus, if no motion profile is being executed, the motor simply tracks the
command position as it is modified by the step and direction inputs.

Step and Direction mode is enabled using the I/O Control command.  Note that because the pins used
for step and direction inputs are also used for limit switch inputs, if you enable Step and Direction
mode, you should not attempt to use any other limit switch functions such as homing or enabling
automatic stopping when a limit switch is hit.

You should note that all other operations of the PIC-SERVO SC, such as polling the controllers for the
current motor position, are still possible while in step and direction mode.  In fact, motion profiles
can be executed while in step and direction mode and the step input adjustments are simply
superimposed upon the profiled motion.  We do not, however, recommend executing motion profiles
in step and direction mode because it will significantly reduce the step rate possible without
encountering servo overrun errors.

To be able to use a servo motor and the PIC-SERVO SC as a replacement for a stepper motor and
driver, it is useful to have the controller power-up in a state ready to receive step and direction signals
without requiring a host to initialize gains and other operating parameters.  Therefore, the PIC-SERVO
SC utilizes its internal EEPROM to hold startup information.  For stand-alone step and direction
operation, the EEPROM should be configured to power-up with the position servo enabled and in
Step and Direction mode.  (See Section 4.6 below.)

Lastly, when operated as a stand-alone step and direction controller, the PIC-SERVO SC needs to be
enabled or disabled by the indexing system, and it also needs to report any servo fault conditions to
the indexing system.  To enable or disable the PIC-SERVO SC, the MCLR pin can be used - pulled low
to disable or set high to enable.  Also when in Step and Direction mode (and only in Step and
Direction mode), the ADDR_OUT pin is raised whenever there is a servo fault condition and the
position servo is disabled.  If the PIC-SERVO SC’s EEPROM is set to power-up in stand-alone mode,
the ADDR_OUT pin will be lowered automatically when it is ready to receive step and direction inputs.

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 14



Step and Direction Signal Timing
The step pulse should be a rising  pulse with a duration of at least 0.2 microsecond.  The direction
signal should be stable for at least 6 microseconds from the rising edge of the step pulse.

STEP

0.2 usec (min)

SDIR

6 usec (min)

Figure 5 - Step and Direction Timing

If you have an indexing system that does not hold the SDIR signal stable for at least 6 microseconds,
you can fix it by running the direction signal into the D input of a D-style flip-flop and clocking the
flip-flop with the rising edge of the step pulse as shown below.

D QDIR_IN

STEP

DIR_OUT

Figure 6 - Cleaning up Messy Direction Signals

4.4.7 Specifying Positions, Velocities and Accelerations
The position, velocity and acceleration are programmed as 32 bit quantities in units of encoder counts
and servo ticks.  For example, a velocity of one revolution per second of a motor with a 500 line
encoder (2000 counts/rev) at a servo tick time of 0.512 msec. would correspond to a velocity of
1.0240 counts/tick.  Velocities and accelerations use the lower 16 bits as a fractional component so
that the actual programmed velocity would be 1.024 x 216 or 67,109.  An acceleration of 4 rev/sec/sec
(which would bring us up to the desired speed in 1/4 sec) would be 0.0021 counts/tick/tick; with the
lower 16 bits the fractional component, this would be programmed as 0.0021 x 216  or 137.  Position
is programmed as a signed 32 bit quantity with no fractional component.

4.5 Output Modes for Driving Amplifiers
The PIC-SERVO SC can be configured to drive several different types of amplifiers.  The I/O Control
command is used to specify which mode is used.  By default, the PIC-SERVO SC powers up or resets
to PWM and Direction mode.  If your amplifier uses something other than the default PWM &
Direction mode, you should make sure to set the output mode before you enable the amplifier.
Otherwise, you may get unexpected motion of your motor.

4.5.1 PWM and Direction Mode (default)
In this default output mode, the PWM0 pin (21) outputs a 19.53 KHz  square wave with a duty cycle
(active High) proportional to the magnitude of the PID filter output.  This PWM signal has 10 bit
resolution, which are the 8 bits calculated in Section 4.3 plus two lower order bits to increase the

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 15



resolution.  The DIR signal on pin 23 tells the amplifier whether the output should be positive (DIR =
0) or negative (DIR = 1).  The ENABLE0 signal (active High) on pin 24 is used to enable or disable the
amplifier.

4.5.2 Antiphase PWM Mode
Antiphase PWM mode also uses the PWM0 pin (21) similar to the PWM and Direction mode above,
except that it instead puts out a 50% duty cycle when no current it driven to the motor.  A 0% duty
cycle corresponds to a full negative output, and a 100% duty cycle produces a full positive output.
The PWM signal has a +/- 10 bit resolution.

Amplifiers using this type of output are less efficient, but they are more linear near zero output levels.
This type of output signal is also easily filtered to produce a +/- 10v drive signal required by many
servo amplifier modules.  (See example in Section 6.2)

Even though the DIR signal (pin 23) may not be needed by the amplifier, it is still set to reflect the
direction of the output (0 = FWD, 1 = REV).

Because the PIC-SERVO SC will power-up using the default PWM output of 0% duty cycle (full
negative output!), you must make sure that the ENABLE0 signal is used to disable your amplifier on
power-up.  This will allow your software to set the Antiphase PWM mode prior to enabling the
amplifier.  (Note that you can use the EEPROM to specify the Antiphase mode be restored
automatically on any type of power-up or reset.)

Once Antiphase PWM mode has been set, a calculated or specified PWM output of 0 will be
translated to a 50% duty cycle output at the pin PWM0.

4.5.3 Three-Phase Output Mode
The 3-Phase output mode is used for the commutation of three-phase brushless motors with hall-
effect (or similar) commutation sensors (120 degree configuration).  Nine pins are used for the 3-
Phase brushless mode: HALL0, HALL1, and HALL2 hall sensor inputs; PWM0, PWM1 and PWM2 output
pins for chopping each of three half-bridge drivers; and ENABLE0, ENABLE1 and ENABLE2 output pins
for enabling or disabling each of the three half-bridge drivers.  The three HALL inputs have internal
20K pull-up resistors, but in practice, additional 4.7K pull-up resistors should be added for noise
immunity if your motor’s hall sensors have open collector outputs.  

The state of the three hall sensor inputs will determine the which of the PWM and ENABLE outputs
are active according to the tables below:
Forward Commutation

Sequence
1 2 3 4 5 6

HALL0  HALL1  HALL2 H  L  L H  H  L L  H  L L  H  H L  L  H H  L  H H  H  H L  L  L
PWM0  PWM1  PWM2 C  L  L L  C  L L  C  L L  L  C L  L  C C  L  L C  L  L C  L  L

EN0   EN1   EN2 H  L  H L  H  H H  H  L H  L  H L  H  H H  H  L H  H  L H  H  L

Reverse Commutation
Sequence

1 2 3 4 5 6

HALL0  HALL1  HALL2 H  L  H L  L  H L  H  H L  H  L H  H  L H  L  L H  H  H L  L  L
PWM0  PWM1  PWM2 L  C  L L  C  L C  L  L C  L  L L  L  C L  L  C L  C  L L  C  L

EN0   EN1   EN2 H  H  L L  H  H H  L  H H  H  L L  H  H H  L  H H  H  L H  H  L

H = High output, L = Low output, C = Chopped output (PWM signal active)

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 16



Note that the last two columns in the table represent invalid hall sensor combinations (for 120 degree
commutation).  The PIC-SERVO SC makes use of these invalid codes to allow brush-commutated
motors to be used with brushless motor drives.  If the PIC-SERVO SC detects that one of the invalid
hall sensor combinations is being used (all High or all Low), it activates only the first two half
bridges and switches them in accordance with driving a brush commutated motor.  In fact, this is the
easiest method for implementing a simple H-Bridge from two independent half-bridge drivers.

The combination of PWM outputs of Chopped or Low is designed to interface directly with common
half-bridge drivers as follows:

1. At any given time, only two half bridges are enabled.
2. The half-bridge attached to the chopped, or active PWM output will alternate between having the

upper transistor turned on (PWM High) and the lower transistor turned on (PWM Low).
3. The other half-bridge will always have the low transistor turned on.

This will result in the windings being actively driven when the PWM signal is High, and it will allow
the winding current to recirculate through the lower transistors when the PWM signal is Low.

4.6 EEPROM and Standalone Operation
The PIC-SERVO SC has an internal EEPROM which can be used to save programmed operating
parameters such as the servo gains and the motion parameters.  The EEPROM can also be configured
to make the PIC-SERVO SC power-up in a stand-alone mode with the servo enabled and ready to
accept step and direction signals.  This is particularly useful when the PIC-SERVO SC is used as a
replacement for a stepper motor driver.  Note the even when the PIC-SERVO SC powers up in stand-
alone mode, it will still respond to commands sent over the serial port.

Users wishing to use the PIC-SERVO SC in standalone mode for use with step and direction inputs can
use the Windows based NMCTEST.EXE utility program to set all of the operating parameters and
then save them in EEPROM.  

In general, we do not recommend using the EEPROM to save operating parameters when there is a
host sending motion commands over the serial port interface+ .  This is because it is very easy to have
the wrong parameters saved without knowing it, especially when one PIC-SERVO SC controller is
replaced with another in the field.  It is much more reliable, from a system engineering point of view,
to have all of the operating parameters stored in the host processor and downloaded each time the
network of PIC-SERVO SC controllers is initialized.

Motion parameters and start-up data are saved in the EEPROM using a version of the Reset
command.  Normally, the Hard Reset command is sent with no additional data bytes, and it simply
resets the controller to its power-up state.  However, if the Hard Reset command is sent with an
additional control byte, the bits of the control byte can be set or cleared to save data and configure the
start-up mode.  See the command reference in Section 5.2 for details on configuring the EEPROM.

Lastly, the EEPROM data is only reloaded into the PIC-SERVO SC’s operating registers if the
controller is reset as a result of a hardware event such as power-up, brown-out, or a reset via the
MCLR pin.  If a reset command is sent by a host through the serial port, the PIC-SERVO SC will
always power-up to its normal default condition and expect to be explicitly initialized by the host

+ The only exception to this is that you may want to have Antiphase or 3-Phase output options stored in EEPROM if
required by your amplifier.  This will ensure that the PIC-SERVO SC starts up with the proper output signals.

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 17



using serial port commands.  This insures that a host processor can always reset the PIC-SERVO SC to
a known state.  For example, even if the PIC-SERVO SC is configured to start up in stand-alone mode
with an unknown pre-programmed address, a host can send a reset command to the universal reset
address of 0xFF and the PIC-SERVO SC will reset itself to a known state.

The exception to not reloading the EEPROM data on a software reset is that options to select either
Antiphase or 3-Phase output modes will always be restored on any kind of reset.  This enables the
controller to remain in the proper output mode, even on a software reset.  These output options can
always be cleared by your software and erased in EEPROM if desired. 

4.7 Protection Features

Homing Control and Limit Switch Inputs
The PIC-SERVO SC has two limit switch inputs which can be used for both homing and for overtravel
protection.  When the limit switch overtravel protection is enabled* using the I/O Control command,
the LIMIT1 pin is used as the forward direction limit switch input, and the LIMIT2 pin is used as the
reverse direction input.  You can choose to either have the motor stop abruptly or have the servo
turned off altogether when a limit switch is hit.  The action of the overtravel protection is summarized
in the following table:

LIMIT1 = 0
LIMIT2 = 0

LIMIT1 = 1
LIMIT2 = 0

LIMIT1 = 0
LIMIT2 = 1

LIMIT1 = 1
LIMIT2 = 1

Position Servo
Enabled

Motion is not
inhibited

Forward motion is
stopped abruptly,
or the servo is
turned off.  Any
motion command
requiring forward
velocity is ignored.

Reverse motion is
stopped abruptly,
or the servo is
turned off.  Any
motion command
requiring a reverse
velocity is ignored.

All motions are
either stopped
abruptly or the
servo is turned off.

Position Servo
Disabled (PWM
Mode)

Any PWM
value may be
set

If PWM value is
positive, the output
will be set to zero.
Commands setting
a positive PWM
value are ignored.

If PWM value is
negative, the
output will be set
to zero.
Commands setting
a negative PWM
value are ignored.

The PWM output
is set to zero.

Limit switch behavior when limit inputs are set to stop abruptly or turn the motor off.

Homing
The PIC-SERVO SC’s homing control function can also use the limit switch inputs to find a home
position for your motor.  Using the Set Homing command, you can “arm” the homing function to
look for any change in the state of LIMIT1, LIMIT2 or the ENC_INDEX pin.  Homing can also be
triggered when ever the POS_ERROR or OVERCURRENT flag is set.  Homing will be triggered when
any one of the homing conditions occurs.  You can also choose to automatically stop smoothly, stop
abruptly, or turn the motor off when one of the homing conditions is triggered.

* Earlier versions of the PIC-SERVO did not have a dedicated overtravel protection function.  Instead the Set Homing
command was used to implement overtravel protection.

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 18



Once one of the selected homing conditions is triggered, the PIC-SERVO SC will take the current
position of the motor and store it in the Home Position register, and the motor will stop if one of the
autostop modes is selected.  The Home Position can be read by the host using the Read Status
command.  The Set Homing function must be re-issued if you wish to re-arm the homing triggers.

The current data stored in the Home Position register can  also used by the Reset Position command.
If the Reset Relative to Home option is selected for the Reset Position command, the home position
will be defined as zero, and all motor positions will be reported or commanded relative to home.
Note that if the Home Position data is subsequently changed, the motor positions will not be affected
unless another Reset command is issued.

Note that the Set Homing command does not initiate any motion of the motor - it simply arms the
homing function to look for the specified homing conditions.  In practice, you should issue the Set
Homing command and then issue a motion command to move the motor towards one of your limit
switches or towards the encoder’s index.

Lastly, the homing function only looks at the motor positions once per servo cycle.  To get the
maximum accuracy in homing, the motor should be moving at less than one encoder count per servo
cycle.  In practice, you may want to execute homing with two separate homing sequences - one fast to
get you within the vicinity of your homing switch, followed by a short, slow move for accuracy.

Overcurrent Protection
The PIC-SERVO SC has a programmable current limit which is used in conjunction with the analog
input CUR_SENSE pin.  The current limit is a value between 0 and 255 set with the Set Gains
command.  If the motor current exceeds the programmed current limit, the calculated output from the
PID filter will be decremented by a value of 2 each servo cycle.  Once the current level drops back
below the limit, the output will be incremented by a value of 2 each servo cycle until it is again equal
to the calculated output.  This non-linear adjustment is designed to work with a linear current sense
signal or with a binary overcurrent warning signal to keep the drive current just below the shutdown
threshold of your amplifier.

Please note that because the output is reduced smoothly over time, the overcurrent protection is not
suitable for actually protecting your amplifier from overcurrent damage resulting from short circuits
or other current spikes.

The OVERCURRENT bit of the status byte is used to alert the host to an overcurrent condition.  This is
a latched bit such that it is set and stays set when an overcurrent condition first occurs.  It must be
cleared by the host using the Clear Bits command.

Motor Power Undervoltage and Overvoltage Protection
Valid motor power voltage can be detected by connecting the motor power supply to the
VOLT_SENSE pin through a voltage divider (see examples in Section 6.0).  If the voltage on this pin is
between 0.9v and  4.5v, the POWER_ON bit of the status byte will be HIGH.

The PIC-SERVO SC automatically monitors the voltage on the VOLT_SENSE pin.  If the voltage is less
than 0.9v, indicating that the motor power supply is off or that the voltage is too low, it will
automatically disable the servo and temporarily lower the ENABLE outputs to the amplifier.  If the
voltage on the VOLT_SENSE pin rises back above 0.9v, the ENABLE pins will be reset to their former

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 19



state, but the host will have to issue a Stop Motor command or a motion command to re-start the
servo.

If the voltage on the VOLT_SENSE pin rises above 4.5v (as can happen when a decelerating motor acts
as a generator), the ENABLE pins will temporarily be lowered until the voltage is back within range.
Note that on overvoltage, the servo is not necessarily disabled, giving the voltage a chance to drop
back down into the allowable range without aborting the motion in progress.  (You should also note
that if multiple motors are connected to the same supply, overvoltage generated by one motor will
affect all other controllers as well!)

The valid VOLT_SENSE input range of 0.9v to 4.5v allows a power supply voltage variation of 5:1
when connected through a simple voltage divider.  However, this range can be increased or decreased
by using a series zener diode and resistor in parallel with either the upper low lower half of the
voltage divider.

Care should be taken so that in the worst case scenario, the VOLT_SENSE pin should not rise above
5.0v.  The input pin does have protection diodes but which can handle only a limited amount of
current.  Therefore the upper resistor of the voltage sensing divider network should be sized to limit
the current to a few milliamps if the sense voltage does exceed 5.0v.

To disable the voltage sensing feature, simply connect the VOLT_SENSE pin to Vcc through a voltage
divider resistor network (eg, two 4.7K resistors in series to GND) so that the pin voltage is 2.5v.

Lastly, the voltage sensing only occurs once per servo cycle (1953 Hz) and therefore cannot be used
to detect fast voltage spikes in your system.  You should provide other forms of protection if this is a
potential problem.

Powerup and Reset Conditions
If the EEPROM is not used to store operating parameters, on power-up or reset, the PIC-SERVO SC is
initialized to the following state:

Motor position is reset to zero
Velocity and acceleration values are set to zero
All gain parameters and limit values are set to zero
The servo rate divisor is set to 1
The step multiplier is set to 1
The PWM value is set to zero
The PID servo filter is disabled
ENABLE outputs are set low
Step and Direction mode is disabled
The amplifer output mode is set for PWM and Direction
The default status data is the status byte only
The individual address is set to 0x00 and the group address to 0xFF (group leader not set)
Communications are disabled pending a low value of ADDR_IN
The baud rate is set to 19.2 KBaud
In the status byte, the move_done and pos_error flags will be set and the overcurrent and

home_in_progress flags will be clear.
In the auxiliary status byte, the pos_wrap, servo_on, accel_done, slew_done and 

servo_overrun flags will be clear.

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 20



The table below describes the actions taken on power-up or reset in different circumstances:

Hardware Reset Software Command to Reset
Parameters saved in
EEPROM

All parameters stored in
EEPROM are restored

PIC-SERVO SC is initialized as described above,
except for that the selected output mode (3-Phase,
Antiphase  or default PWM & DIR) is restored

No parameters saved PIC-SERVO SC is
initialized as described
above

PIC-SERVO SC is initialized as described above

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 21



5.0 Command Specification
Data format
All data is sent as 8-bit data bytes with one start bit and one stop bit.  Multi-byte data (16 bit and 32
bit integers) is always sent with the least significant byte first.  If integer data is signed, a 2’s
compliment format is used for negative numbers.

5.1 Command Summary
Command CMD

Code
#

Data
bytes

Description

Reset Position 0x0 0,  1
or 5

Set or clear 32 bit position counter

Set Address 0x1 2 Sets the individual and group addresses
Define Status 0x2 1 Defines which data should be sent in every status packet
Read Status 0x3 1 Causes particular status data to be returned just once
Load Trajectory 0x4 1-14 Loads motion trajectory parameters for velocity and

trapezoidal profile modes
Start Motion 0x5 0 Executes the previously loaded trajectory
Set Gain 0x6 15 Sets the PID gains and operating limits
Stop Motor 0x7 1 or 5 Stops the motor in one of four modes
I/O Control 0x8 1 Sets various I/O control options
Set Homing 0x9 1 Sets conditions for capturing the home position
Set Baud Rate 0xA 1 Sets the baud rate (group command only)
Clear Bits 0xB 0 Clears any latched status bits
Save as Home 0xC 0 Saves the current position in the home position register
Add Path Points 0xD 0 - 14 Add points to path point buffer for path control mode
NoOp 0xE 0 Simply causes the defined status data to be returned
Hard Reset 0xF 0 or 1 Resets the controller to its power-up state with the option

to save data in EEPROM just prior to reset.

5.2 Command Descriptions
The following pages have descriptions of each of the commands, followed by examples of literal
binary command strings (written in hexadecimal) for the use of each command.  Note that the
command strings all start with the header byte (0xAA) and end with the checksum byte.

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 22



Reset Position CMD Byte  = 0x00  or 0x10  or 0x50
Reset encoder position counter

Number of data bytes: 0, 1 or 5
Data Byte 1  - Control Byte

Bit 0 - Reset relative to the Home Position (use CMD Byte 0x10 if set)
Bit 1 - Set position counter to a specific value (use CMD Byte 0x50 if set)
Bits 2 - 7 - unused, set to 0

Data Bytes 2 - 5 
32 bit position data used for setting position counter
(signed 32 bit integer: -2,147,483,648 to +2,147,483,647)

Description
Reset Position is used to set or clear the value of the PIC-SERVO SC ’s 32 bit position counter.
There are three different version of the command.

Simple Reset - Using a CMD Byte value of 0x00 and no additional data bytes will simply
reset the position counter to a value of zero.  The current command position used by the PID
position servo will also be set to zero to prevent the motor from jumping.

Reset Relative to Home Position - If you use a CMD Byte value of 0x10 and set Bit 0  of the
control byte, the 32 bit position register will be set so that the Home Position (as determined
using the Set Homing command)  is now the zero position and all motor positions will be
commanded or reported relative to the home position.

Set Position to a Specific Value - If  you use a CMD Byte value of 0x50 and set Bit 1 of the
following control byte, you can send 4 additional bytes of data specifying the 32 bit position
value to be loaded into the PIC-SERVO SC ’s position register.

Please note that only one bit (Bit 0 or Bit 1) of the control byte should be set.

Examples
To clear the position of  module address 1 to zero, use the following command string:

0xAA  0x01  0x00  0x01
  header      address       cmd      checksum

To reset the position of module address 1 relative to the current Home Position:
0xAA  0x01  0x10  0x01  0x12
  header      address       cmd        control   checksum

Set the position of module address 1 to a value of 0x015432A2:
0xAA  0x01  0x50  0x02  0xA2  0x32  0x54  0x01  0x7C
  header      address       cmd        control                      position data                              checksum

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 23



Set Address CMD Byte  = 0x21
Set the individual and group address for a module

Number of data bytes: 2
Data Byte 1  - Individual Address (0 - 0xFF)
Data Byte 2  - Group Address (0x80 - 0xFF) 

Description
Set Address is used to set both the individual and group address for a module.  On normal
power-up or reset, all modules have an address of 0x00, but only one module should have its
communications enabled by its ADDR_IN pin.  Sending a set address command to module 0
will set its address and then raise its ADDR_OUT pin, enabling communications for the next
module.  On initialization, each module should be assigned a unique individual address.

Group addresses for modules are restricted to the range 0x80 to 0xFF.  If you wish to specify
that a module  be the group leader for its group address, you should clear Bit 7 of the group
address.  The PIC-SERVO SC will check this bit to see if the module is to be a group leader,
and then internally set Bit 7 again to 1.

Although normally just set once during initialization, individual and group addresses can be
reset to different values at any time.

The Set Address command is common to all NMC compatible controller modules.

Examples
To set the individual address of module 0 to 1, and set the group address to 0x81 (not a group
leader):

0xAA  0x00  0x21  0x01  0x81    0xA3
  header      address       cmd        addr       group addr   checksum

To leave the individual address of module 1 at 1, but set the group address to 0x81 and have it
be the group leader:

0xAA  0x01  0x21  0x01  0x01    0x24
  header      address       cmd        addr       group addr   checksum

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 24



Define Status CMD Byte  = 0x12
Define which status data is returned after each command packet sent

Number of data bytes: 1
Data Byte 1  - Control Byte

Bit 0 - Send position data (4 bytes - signed 32 bit integer)
Bit 1 - Send A/D value of voltage on CUR_SENSE pin (1 byte, 0 - 255)
Bit 2 - Send actual velocity in encoder counts per servo cycle - 

the actual velocity has no integer component
(2 bytes - signed 16 bit integer)

Bit 3 - Send auxiliary status byte (1 byte)
Bit 4 - Send Home Position (4 bytes - signed 32 bit integer)
Bit 5 - Send device type and device version number (2 bytes)

(PIC-SERVO = type 0, PIC-I/O = type 2, PIC-STEP = type 3)
Bit 6 - Send servo position error (2 bytes - signed 16 bit integer)
Bit 7 - Send number of path points left in path point buffer (1 byte)

Description
Define Status defines what status data will be included in the status packet returned after a
command packet is sent.  The specific data selected with the individual bits of the control byte
will be sent in the order listed and will follow the default status byte which is always sent with
each packet.

For efficient communications, you should just select the data which you will always need
access to.  For data that only needs to be read periodically, use the Read Status command
instead.  You can use the Define Status command at any time to change what status data is
returned.

This command is common to all NMC compatible control modules, although the
interpretation of the control byte will be different for each module type.

Example
To have module address 1 send back position data and position error data with each status
packet send the command string:

0xAA  0x01  0x12  0x41  0x54
  header      address       cmd        control   checksum

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 25



Read Status CMD Byte  = 0x13
Read specified status data one time

Number of data bytes: 1
Data Byte 1  - Control Byte

Bit 0 - Send position data (4 bytes - signed 32 bit integer)
Bit 1 - Send A/D value of voltage on CUR_SENSE pin (1 byte, 0 -255)
Bit 2 - Send actual velocity in encoder counts per servo cycle - 

the actual velocity has no integer component
(2 bytes - signed 16 bit integer)

Bit 3 - Send auxiliary status byte (1 byte)
Bit 4 - Send Home Position (4 bytes - signed 32 bit integer)
Bit 5 - Send device type and device version number (2 bytes)

(PIC-SERVO = type 0, PIC-I/O = type 2, PIC-STEP = type 3)
Bit 6 - Send servo position error (2 bytes - signed 16 bit integer)
Bit 7 - Send number of path points left in path point buffer (1 byte)

Description
Read Status is used to read specific status data from the PIC-SERVO SC just one time; that is,
the status packet returned in response to a Read Status command will include the data
specified in the Control Byte, but the status packet returned with any subsequent commands
will be include the status data specified with the most recent Define Status command.  For
example, the Read Status command is useful for retrieving device type and version number
data which only needs to be read once. The specific data selected with the individual bits of
the control byte will be sent in the order listed and will follow the default status byte always
sent with each packet.

This command is common to all NMC compatible control modules, although the
interpretation of the control byte will be different for each module type.

Example
To read from module address 1 the device type and version number just once:

0xAA  0x01  0x13  0x20  0x34
  header      address       cmd        control   checksum

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 26



Load Trajectory CMD Byte  = 0xn4, n = 1 - 14
Send motion trajectory command data for PWM, velocity, and trapezoidal profile modes

Number of data bytes: 1 - 14
Data Byte 1  - Control Byte

Bit 0 - Load position data (add 4 additional data bytes)
Bit 1 - Load velocity data (add 4 additional data bytes)
Bit 2 - Load acceleration data (add 4 additional data bytes)
Bit 3 - Load PWM data (add one data byte)
Bit 4 - Enable PID servo
Bit 5 - Profile mode: 0 = trapezoidal profile, 1 = velocity profile
Bit 6 - Direction / Relative select bit

in velocity mode or PWM mode: 0 = Forward, 1 = Reverse
in trapezoidal profile mode: 0 = absolute position, 1 = relative position

Bit 7 - Start motion now
Data Bytes 2 - 5 

Position data if Bit 0 of the control byte is set 
(signed 32 bit integer:  -2,147,483,648 to +2,147,483,647)

Data Bytes 6 - 9
Velocity data if Bit 1 of the control byte is set 
(positive 32 bit integer: 0 to +83,886,080)

Data Bytes 10 - 13
Acceleration data if Bit 2 of the control byte is set 
(positive 32 bit integer: 0 to +2,147,483,647)

Data Byte 14
PWM data if Bit 3 of the control byte is set 
(positive 8 bit integer: 0 to +255)

Description
The Load Trajectory command is used to send motion trajectory and PWM information.  It is
flexible in that it permits you to only send the data needed for a particular motion.  For
example, suppose you have already loaded acceleration and velocity parameters, and you only
need to send commands with updated position data.  In this case, you would set Bit 0 of the
control byte (along with bits 4-7 as needed), and then only send additional data bytes 2 - 5.  Or
if you only needed to send updated velocity information, you would set Bit 1 of the control
byte and then next 4 bytes sent would be the velocity data (position data bytes would be
eliminated).

You should note, as described in Section 4.4.7, that the lower 16 bits of the velocity and
acceleration parameters represent a fractional component.  Please refer to this Section for
details on how to specify these parameters.

Bits 4, 5 and 6 of the control byte govern the mode of operation.  Bit 4 should be set to enable
the PID servo - this is the normal mode of operation.  If bit 4 is not set, you will default to
PWM mode operation and the PWM value provided will be used.  (If no PWM value is sent,
the current output value will be used.)

(Load Trajectory continued…)

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 27



Bit 5 is used to select trapezoidal profile mode (Bit 5 = 0) or velocity profile mode (Bit 5 = 1).

Velocity, acceleration and PWM parameters should all be positive.  If you need to specify a
reverse velocity or PWM value, you should set Bit 6 of the control byte.

In trapezoidal position mode, however, the position data may be positive or negative, and a
reverse direction bit is not needed.  Therefore, if you select trapezoidal profile mode, Bit 6 is
used to specify if the position data is an absolute position (Bit 6 = 0) or if the position data is
relative to the current command position (Bit 6 = 1).

Lastly, Bit 7 of the control byte is used to specify if you want the command data to take effect
immediately, or if you want to wait for a Start Motion command to be sent.  For individual
axis control, it is usually easiest to set Bit 7 and eliminate the need for a separate Start Motion
command.  

However, if you need to start several controllers moving at exactly the same time, you can
send them individual Load Trajectory commands without Bit 7 set.  This will cause the data to
simply sit in a temporary buffer.  You can then issue a Start Motion command to the group
address containing several controllers, thereby starting all motions at the same time.  

You should note that if Bit 7 is not set, the motion parameters will be ignored until a Start
Motion command is issued.  If you send a new Load Trajectory before sending a Start Motion
command, the temporary buffer will be over-written, erasing your previous command data.

There are three status bits associated with velocity and trapezoidal profiling: MOVE_DONE (in
the status byte), SLEW and ACCEL (in the aux. status byte).  In velocity mode, the
MOVE_DONE bit is set when the goal velocity is reached.  In trapezoidal mode, the
MOVE_DONE bit is set when the servo command position is equal to the final goal position.  In
both modes, the SLEW bit is set whenever the motor is moving at a constant velocity, and the
ACCEL bit is set when accelerating or cleared when deceleration.

(Examples on following page.)

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 28



(Load Trajectory continued…)

Examples
Move module address 1 to an absolute position of -1024 (0xFFFFFC00), velocity of 100,000
(0x186A0), acceleration of 100 (0x64) in trapezoidal profile mode, starting now:

0xAA  0x01  0xD4  0x97  0x00  0xFC  0xFF  0xFF  0xA0  0x86  0x01 0x00  
  header      address       cmd        control                     position data                                              velocity data
0x64  0x00  0x00  0x00  0xF1
                      acceleration data                 checksum

Move module address 1 with a velocity of -100,000 in velocity profile mode starting now
(assume the acceleration parameter has already been loaded):

0xAA  0x01  0x54  0xF2  0xA0  0x86  0x01  0x00  0x6E
  header      address       cmd        control                            velocity data                        checksum

Load velocity (100,000) and acceleration (100) data for subsequent motions, and leave the
PIC-SERVO SC in PWM mode with an PWM value of 0:

0xAA  0x01  0xA4  0x8E  0xA0  0x86  0x01  0x00  0x64  0x00  0x00  0x00  
  header      address       cmd        control                         velocity data                                             acceleration data
0x00  0xBE
 PWM     checksum

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 29



Start Motion CMD Byte  = 0x05
Start the motion specified with the previous Load Trajectory command

Number of data bytes: 0

Description
The Start Motion command is intended to be sent to a group of controllers which have been
preloaded (using Load Trajectory commands) with motion profile data.  When sent to the
group address for these controllers, it will cause all controllers to start their motions
simultaneously.  Note that the data loaded into each controller with the Load Trajectory
command merely sits unused in a buffer until a Start Motion command is received.  If another
Load Trajectory command is received before the Start Motion command, it will overwrite all
of the previous trajectory data.

This command is common to all NMC compatible controllers, although the action taken in
response to this command will be different for each type of controller.

Example
To start the previously loaded motion for module address 1, use the command string:

0xAA  0x01  0x05  0x06
  header      address       cmd      checksum

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 30



Set Gain CMD Byte  = 0xF6
Set PID servo filter operating parameters

Number of data bytes: 15
Data Bytes 1, 2  - Position gain Kp (positive 16 bit integer: 0 - +32,767)
Data Bytes 3, 4  - Derivative gain Kd (positive 16 bit integer: 0 - +32,767)
Data Bytes 5, 6  - Integral gain Ki (positive 16 bit integer: 0 - +32,767)
Data Bytes 7, 8  - Integration limit IL (positive 16 bit integer: 0 - +32,767)
Data Byte 9 - Output limit OL (0 - 255)
Data Byte 10 - Current limit CL (0 - 255)

  odd values: CUR_SENSE proportional to motor current
  even values: CUR_SENSE inversely proportional to motor current

Data Bytes 11,12 - Position error limit EL (positive 16 bit integer: 0 - +32,767)
Data Byte 13 - Servo rate divisor SR (1 - 255)
Data Byte 14 - Amplifier deadband compensation DB (0 - 255)
Data Byte 15 - Step rate multiplier SM (1 - 255)

Description
The Set Gain is used to set most of the non-motion profile related operating parameters of the
PIC-SERVO SC.  The PID gain value, the integration limit, output limit, position error limit,
servo rate divisor and amplifier deadband  are all described in detail in Section 4.3.  The step
rate multiplier is described in Section 4.4.6

The current limit value CL is used to set the allowable current level as described in Section
4.7.  The parameter itself has a different meaning based on whether the value is odd or even
(i.e., bit 0 is set or cleared).  If the CL value used is odd, the PIC-SERVO SC assumes that the
voltage on the CUR_SENSE pin is directly proportional to the current driven through the
amplifier.  (A voltage of 0.0v  at this pin will produce an analog reading of 0 and a voltage of
5.0v will produce an analog reading of 255.)    If the analog reading at the CUR_SENSE pin is
greater than CL, an overcurrent condition will be triggered.

Some amplifiers, however, may produce a voltage signal inversely proportional to the motor
current, or may only have a digital signal which is lowered when some current threshold is
reached. (i.e., the voltage on CUR_SENSE goes down as the current goes up.)  Therefore, the
PIC-SERVO SC will interpret an even values of CL such that if the analog reading at the
CUR_SENSE pin is less than CL, and overcurrent condition will be triggered.

Note that a CL value of 0 (the minimum even value) or a CL value of 255 (the maximum odd
value) will effectively disable the current limiting feature. 

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 31



(Set Gain continued…)

Example
To set the gains of  module address 1 to the following values:

Kp = 100,  Kd = 1000,  Ki = 50,  IL = 200,
OL = 255,  CL = 53 (directly proportional),  EL = 4000
SR = 1,  DB = 0,  SM = 5

use the command string:

0xAA  0x01  0xF6  
  header      address       cmd

 0x64  0x00  0xE8  0x03  0x32  0x00  0xC8 0x00
           Kp                               Kd                            Ki                              IL
0xFF  0x35  0xA0  0x0F
    OL           CL                    EL
0x01  0x00  0x05
    SR            DB           SM
0x29
checksum

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 32



Stop Motor CMD Byte  = 0x17  or 0x57
Stop the motor and enable or disable the amplifier

Number of data bytes: 1 or 5
Data Byte 1  - Control Byte

Bit 0 - Enable amplifier
Bit 1 - Turn motor off
Bit 2 - Stop motor abruptly
Bit 3 - Stop motor smoothly
Bit 4 - Stop at specified position (Stop Here)
Bits 5 - 7 - unused, set to 0

Data Bytes 2 - 5 
Unprofiled command position (signed 32 bit integer)

Description
The Stop Motor command is used to both stop the motor in one of four ways, and also to
control whether the amplifier is enabled or not.   

If Bit 0 of the control byte is set, the amplifier will be enabled if and when the motor supply
voltage is within the proper range.  If in PWM & Direction or Antiphase PWM modes, this
will simply result in raising the ENABLE0 output.  If in 3-Phase commutation mode, this will
enable the commutation logic to raise the proper combination of ENABLE pins.  If Bit 0 is
cleared to 0, all ENABLE pins will be lowered.

If Bit 1 of the control byte is set, the motor will be turned off by disabling the servo and
setting the PWM output to 0.  The amplifier enable bit may be set or cleared with this
stopping mode, depending on the desired amplifier behavior.  This stopping mode will cause
the MOVE_DONE bit of the status byte will be set.

If Bit 2 of the control byte is set, the motor will immediately attempt to servo to its current
position, causing the motor to stop abruptly.  If this mode is selected, the amplifier enable bit
should be set as well. This stopping mode will cause the MOVE_DONE bit of the status byte
will be set.

If Bit 3 is set, the motor will decelerate to a stop smoothly at the current programmed
acceleration value.  If this mode is selected, the amplifier enable bit should be set as well. This
stopping mode will cause the MOVE_DONE bit of the status byte to be cleared while
decelerating and then set again once the motor has stopped.

If Bit 4 of the control byte is set, the motor will be servoed immediately to the position
specified with data bytes 2 - 5, and it will stop abruptly at that position.  There is no profiling
to smooth the motion.  If using this mode, the distance between the specified goal position and
the current motor position should be less than the position error limit specified with the Set
Gain command, otherwise, a position error will be generated.  If this mode is selected, the
amplifier enable bit should also be set. This stopping mode will cause the MOVE_DONE bit of
the status byte to be set.

(Stop Motor continued…)

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 33



If one of the first three stopping modes is selected, you should use a command byte of 0x17
and send only one additional data byte, the control byte.  If the Stop Here mode is selected,
you should use the command byte of 0x57 and send the position data as well.

Lastly, only one of the stopping mode bits 1 - 4 should be selected.  If none of these bit are set,
the amplifier will be enabled or disabled as specified, but no other action will be taken.

Examples
For module address 1, to turn off the motor and disable the amplifier, use the following
command string:

0xAA  0x01  0x17  0x02  0x1A
  header      address       cmd        control   checksum

For module address 1, smoothly decelerate to a stop:
0xAA  0x01  0x17  0x09  0x21 
  header      address       cmd        control   checksum

For module address 1, stop the motor at a position of 100:
0xAA  0x01  0x57  0x11  0x64  0x00  0x00  0x00  0xCD
  header      address       cmd        control                         position data                           checksum

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 34



I/O Control CMD Byte  = 0x18
Set amplifier output mode and other I/O options

Number of data bytes: 1
Data Byte 1  - Control Byte

Bit 0 - Not used (clear to 0 for future compatibility)
Bit 1 - Not used (clear to 0 for future compatibility)
Bit 2 - Enable limit switch protection, turn motor off when limit is hit
Bit 3 - Enable limit switch protection, stop abruptly when limit is hit
Bit 4 - Enable 3-Phase commutation output mode
Bit 5 - Enable Antiphase PWM output mode
Bit 6 - Set fast path option for path control mode
Bit 7 - Enable Step & Direction input mode

Description
CAUTION: Use extreme care in setting the parameters for this command - incorrect
settings could damage your amplifier or the   PIC-SERVO SC   chip.  

I/O control is used to set a number of operating options for the PIC-SERVO SC.  An I/O control
command should be issued prior to enabling the amplifier to make sure that the output options
are set to be compatible with the amplifier type.

Bits 0 and 1 are not used* .  You should clear these bits to a value of 0 for future compatibility.

Bits 2 and 3 are used to enable the limit switch protection described in Section 4.7,
automatically stopping the motor abruptly or turning the motor off when a limit switch is hit.
Only one of these bits should be set.  If Step and Direction mode is enabled, neither of these
bit should be set.

Bit 4 is used to enable 3-Phase commutation mode (Section 4.5.3) and Bit 5 is used to enable
Antiphase PWM mode (4.5.2).  Only one of these bits should be set.  If you want to use PWM
& Direction mode (the default), neither bit should be set.

Bit 6 is used to set the fast path option for path control mode described in Section 4.4.5.

Bit 7 is used to enable the Step & Direction input mode described in Section 4.4.6.  If Step &
Direction mode is selected, Bits 2 and 3 should both be clear.

Note that each time an I/O control command is issued, every one of the mode options will be
enabled or disabled according the corresponding bit of the control byte.

Example
For module address 1, disable the limit switch protection, enable 3-phase commutation, and
enable Step & Direction input mode:

0xAA  0x01  0x18  0x90  0xA9
  header      address       cmd        control    checksum

* Earlier versions of the PIC-SERVO used the I/O control command to optionally define the LIMIT pins as outputs.  This
feature is no longer available in the PIC-SERVO SC, and care should be taken in setting the correct control byte bits for
the each version of the PIC-SERVO.

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 35



Set Homing CMD Byte  = 0x19
Set homing mode parameters for capturing the home position

Number of data bytes: 1
Data Byte 1  - Control Byte

Bit 0 - Capture home position on change of LIMIT1
Bit 1 - Capture home position on change of LIMIT2
Bit 2 - Turn motor off when home position is captured
Bit 3 - Capture home position on change of ENC_INDEX
Bit 4 - Stop motor abruptly when home position is captured
Bit 5 - Stop motor smoothly when home position is captured
Bit 6 - Capture home position when a position error occurs
Bit 7 - Capture home position when current limiting occurs

Description
Set Homing is used for specifying conditions for capturing the home position of a motor, and
also for specifying any desired automatic stopping mode for when the home position is found.

Bits 0, 1, 3, 6 and 7specify the conditions for capturing the home position.  The home position
will be captured when any of the specified conditions occurs.  Bits 0, 1 and 3 specify that the
homing function look for changes in the states of the limit and index input pins from when the
homing command is issued.  It does not matter if the pin voltages start off high or low.

Bits 6 and 7 allow you to also capture home on the occurrence of a position error or on current
limiting.  Note that you should use the Clear Bits command to clear the value of these status
bits before issuing the Set Homing command.

Bits 2, 4 and 5 are used to specify an automatic stopping mode for the motor once the home
position has been captured.  Only one (or none) of these bits should be set.

When the Set Homing command is issued, the HOME_IN_PROG bit of the status byte will be
set.  You should then issue a motion command to move towards one of the triggers used for
homing.  The HOME_IN_PROGR bit will then be cleared when any of the selected homing
conditions occur, and the current motor position is stored in the home position register.  The
home position register can be read using the Read Status command.

Once the homing process is complete, you can re-issue the Set Homing command if desired to
capture a different home position.  Sending a Set Homing command with the control byte
equal to zero will cancel any homing in progress and clear the HOME_IN_PROG bit.

Example
To have module address 1 capture the home position on a change of LIMIT1 or LIMIT2 and then
stop abruptly:

0xAA  0x01  0x19  0x13  0x2D
  header      address       cmd        control    checksum

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 36



Set Baud CMD Byte  = 0x1A
Set the Baud rate for serial communications 

Number of data bytes: 1
Data Byte 1  - Baud rate specifier

127 =   9,600 bits / sec
 64  = 19,200 bits / sec
 21  =  57,600 bits / sec
 10  = 115,200 bits / sec
  5   = 230,400 bits / sec (valid for PIC-SERVO SC only)

Description
The Set Baud command sets the serial communications bit rate.  By default, the PIC-SERVO
SC powers up communicating at 19,200 bits per second.  Using one of the listed Baud rate
specifier values will cause the PIC-SERVO SC will adjust its internal UART parameters to the
proper value.

All NMC controllers connected through the same serial port should have their baud rates
changed simultaneously.  Therefore this command should be issued to a group of all
controllers connected to the serial port using the group address.  Because a status packet
coming back from this command would be at the new baud rate, it is usually easiest to send
this command when no group leader has been declared.  This will give the host time to change
its Baud rate to the new value.

This command and the baud rate specifier values are common to all NMC compatible
controllers.

Example
Change the Baud rate of all controllers with a group address of 0xFF to 115,200 bps:

0xAA  0xFF  0x1A  0x0A  0x23
  header      address       cmd            rate       checksum

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 37



Clear Bits CMD Byte  = 0x0B
Clear the latched status bits

Number of data bytes: 0

Description
The OVERCURRENT and POS_ERROR bits in the status byte and the POS_WRAP and
SERVO_OVERRUN in the auxiliary status byte  are latched flags which remain set until
explicitly cleared with the Clear Bits command.  All of these latched bits are cleared with a
single command.

Example
To clear the latched status bits of  module address 1:

0xAA  0x01  0x0B  0x0C
  header      address       cmd       checksum

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 38



Save As Home CMD Byte  = 0x0C
Load the current motor position into the Home Position register

Number of data bytes: 0

Description
The Save as Home command is used to synchronously save the current positions of a number
of motors.  The Save as Home command issued to a group of controllers will cause them all
store their current positions in their corresponding home position registers.    The home
position registers can then be read individually using a Read Status command for each
controller.  This allows the host to take a snapshot of the configuration of a multi-axis system.

This command is common to all NMC compatible controllers, but the exact data saved will be
different for different types of controllers.

Example
To save the positions of all modules with group address 0x81, use the command string:

0xAA  0x81  0x0C  0x8D
  header      address       cmd       checksum

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 39



Add Path Points CMD Byte  = 0xnD  , n = 0, 2, 4, 6, 8, A, C, D
Add path points to the path point buffer, or start path execution

Number of data bytes: Number of path points added  x 2
Data Byte 1, 2  - 16 bit data for path point 1
Data Byte 3, 4  - 16 bit data for path point 2
Data Byte 5, 6  - 16 bit data for path point 3
Data Byte 7, 8  - 16 bit data for path point 4
Data Byte 9, 10  - 16 bit data for path point 5
Data Byte 11, 12  - 16 bit data for path point 6
Data Byte 13, 14  - 16 bit data for path point 7

Description
The Add Path Points command is used to add points to the path point buffer for path control
mode.  Up to 7 path points can be added with a single command.  The upper nibble of the
CMD Byte, n, should be equal to the number of data bytes sent, which is twice the number of
path points added.  For example, to add 4 path points, you would use a CMD Byte of 0x8D,
followed by 8 bytes of path point data.

Path point data is specified differentially (i.e., you specify the distance between the previous
path point position and the current path point position) using the following format:

30 Hz Path:
P13 P12 P11 P10 P9 P8 P7 P6    P5 P4 P3 P2 P1 P0 F D 
    most significant byte least significant byte

60 Hz Path:
P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0 0 F D 
    most significant byte least significant byte

where P0 - P13  are the 14 bits of differential position data, F is the path frequency bit (0 = 60
Hz, 1 = 30 Hz) and D is the direction bit (0 = forward, 1 = reverse).  Note that for a 60 Hz
path, the position data bits are shifted to the left, and bit 2 is always zero.  As with other all
other types of multi-byte data, the least significant byte is always sent first.

If “fast path” mode has been selected using the I/O Control command, bit F will be set to 0 for
120 Hz or 1 for 60 Hz, and the path point data will have the following format:

60 Hz Path (fast path mode):
P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0 0 F D 
    most significant byte least significant byte

120 Hz Path (fast path mode):
P11 P10 P9 P8 P7 P6 P5P4  P3 P2 P1 P0 0  0  F D 
    most significant byte least significant byte

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 40



(Add Path Points continued…)

This compact format minimizes the amount of data sent.

Starting the Path Motion - Sending an Add Path Points command with no additional data
bytes will cause the path motion to start executing, and the PATH_MODE bit in the aux. status
byte will be set.  Usually you will want to send this command to the entire group of controllers
involved in a multi-axis motion to retain coordination.  As the path motion executes, the old
path points will be removed from the path point buffer.

The number of path points currently residing in the buffer can be read using the Read Status
command.  The buffer on the PIC-SERVO SC* can hold a maximum of 128 path points.  Even
after the path mode motion has started, you can dynamically add additional path points to the
buffers as they empty to create motions of any length.

When the path point buffer runs out, the motor will stop at the last specified path point.  The
Stop Motor command (any mode) can also be used to terminate a path mode motion.  When a
path mode motion is terminated, the PATH_MODE bit in the aux. status byte will be cleared.

The path points added to the path point buffer should be closely spaced and form a smooth
path for the motor to follow.  Note that you can get the exact initial command position of the
motor by reading the motor position and the position error with the same Read Status
command and them adding them together.  You will then specify your path points starting
from there.

Examples
For module address 1 which is currently at position 0, add four path points -100, -201, -303, 
-406 (the differential data for the these path points would be 100, 101, 102, 103 with a
direction bit of 1) at 60 Hz:

0xAA  0x01  0x8D  0x21 0x03  0x29  0x03  0x31  0x03  0x39  0x03  0x4E
  header      address       cmd           path point 1               path point 2              path point 3               path point 4         checksum

To start path motion for group address 0x81:
0xAA  0x81  0x0D  0x8E
  header      address       cmd       checksum

* The PIC-SERVO CMC path point buffer can only hold 96 points.  Therefore, you will want to limit the number of points
you add to 96 if using a mix of PIC-SERVO SC and PIC-SERVO CMC controllers.

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 41



No Op CMD Byte  = 0x0E
No operation - return current status data only

Number of data bytes: 0

Description
The No Op command is used to force the PIC-SERVO SC to send back a current status data
packet without taking any other action.  For example, it is useful for polling the MOVE_DONE
flag in the status byte to determine when a motion has finished.

Example
To have module address 1, send back a status packet, send the command string:

0xAA  0x01  0x0E  0x0F
  header      address       cmd       checksum

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 42



Hard Reset CMD Byte  = 0x0F  or 0x1F
Reset the controller to its power-up state and optionally store configuration data

Number of data bytes: 0, or 1
Data Byte 1  - Control Byte

Bit 0 - Save or erase configuration data in EEPROM (1 = save, 0 = erase)
Bit 1 - Restore individual and group addresses on power-up
Bit 2 - Enable the amplifier on power-up
Bit 3 - Enable the PID servo on power-up
Bit 4 - Enable Step & Direction mode on power-up
Bit 5 - Enable selected limit stop protection on power-up
Bit 6 - Enable 3-Phase commutation on power-up
Bit 7 - Enable Antiphase PWM on power-up

Description
Hard Reset resets the PIC-SERVO SC to its power-up state, but it does not restore any
configuration data stored in EEPROM, except for the Antiphase or 3-Phase options.  Only an
actual power-cycle or reset via the MCLR pin will cause the rest of the EEPROM data to be
restored.  There are two versions of the Hard Reset command:

Simple Reset - If the CMD Byte 0x0F is used and no control byte is sent, a simple reset is
executed where no data is written to or erased from the EEPROM.  Normally, a simple reset is
sent to all controllers on the network via the universal reset address of 0xFF

Configuration Reset - If the CMD Byte 0x1F is used and a control data byte is sent, data will
be written to (Bit 0 = 1) or erased from (Bit 0 = 0) the EEPROM.  If Bit 0 is set, the control
byte itself will be saved in EEPROM, along with the individual and group addresses, the
current velocity and acceleration values, and all of the parameters set with the Set Gain
command.  If Bit 0 of the control byte is cleared, a value of 0 will be stored in the EEPROM
for the control byte, and all other EEPROM data will be erased.  Normally, a configuration
reset will be sent to an individual controller. 

On a hardware reset (power-up or reset via MCLR), the PIC-SERVO SC will read the control
byte and restore the saved data if Bit 0 is set.  It will also look at bits 1 - 7 of the control byte
to see what other operating options should be restored.

Note that if Bit 1 of the control byte is not set, the individual and group addresses will not be
restored, and the address of the module will have to be initialized using the procedure
described in Section 4.1.  (Note: the servo and amplifier will not be enabled until the address
is initialized.)  This is useful for when you want to save operating parameters, but are using
the PIC-SERVO SC with other NMC modules which do not have the EEPROM configuration
feature.  If Bit 1 is set, the addresses will be restored and the ADDR_OUT pin will be lowered
just as if a Set Address command had been issued.

If you set Bit 5 of the control byte, the currently selected option for limit switch protection
will be saved in EEPROM and then restored on power-up.

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 43



(Hard Reset continued…)

Examples
To do a simple reset of all modules, send the command string:

0xAA  0xFF  0x0F  0x0E
  header      address       cmd       checksum

To save operating parameters for module address 1 and have the it power-up ready to receive
Step & Direction signals and in 3-Phase commutation output mode:

0xAA  0x01  0x1F  0x5F  0x7F
  header      address       cmd        control     checksum

To erase the EEPROM configuration data for module address 1:
0xAA  0x01  0x1F  0x00  0x20
  header      address       cmd        control     checksum

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 44



5.3 Status Byte, Auxiliary Status Byte Definitions

Status Byte

Bit Name Definition
 0 MOVE_DONE Clear when in the middle of a trapezoidal profile 

move, or in velocity mode, when accelerating from 
one velocity to the next.  This bit is set otherwise, 
including while the position servo is disabled

 1 CKSUM_ERROR Set if there was a checksum error in the most recently received 
command packet

 2 OVERCURRENT Set if current limiting occurred.  Must be cleared by 
user with Clear Bits command.

 3 POWER_ON Set if motor power is the voltage on the VOLT_SENSE pin is 
between 0.9v and 4.5v.  Clear otherwise.

 4 POS_ERROR Set if the position error exceeds the position error 
limit.  It is also set whenever the position servo is 
disabled.  Must be cleared by user with Clear Bits command.

 5 LIMIT1 Value of limit switch 1 input.
 6 LIMIT2 Value of limit switch 2 input.
 7 HOME_IN_PROG Set while searching for a home position.  Reset to 

zero once the home position has been captured.

Auxiliary Status Byte

Bit Name Definition
 0 INDEX Encoder index input value.
 1 POS_WRAP Set if the 32 bit position counter overflows or underflows.  

Must be cleared with the Clear Bits command
 2 SERVO_ON Set if the position servo is enabled, clear otherwise
 3 ACCEL Set when the motor is accelerating, clear when decelerating.

This bit has no meaning when stopped or at a constant velocity.
 4 SLEW Set when moving at a constant velocity or when stopped.  

Clear when accelerating or decelerating.
 5 SERVO_OVERRUN This bit is set only if the calculations required for one servo

cycle take longer than 0.51 milliseconds.  This can happen if
Step inputs exceed the allowable step input rate.  Cleared with
the Clear Bits command.

6 PATH_MODE This bit is set when a path mode motion is in progress.  It is
cleared when the path point buffer is emptied or if a Stop Motor
command is issued.

7 not used

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 45



5.4 Differences Between  the PIC-SERVO SC (v.10) and Previous Versions

This section describes any software differences between the PIC-SERVO SC commands and command
for earlier versions of the PIC-SERVO.  Please read the Theory of Operation (Section 4) for mode
details on other hardware and behavioral differences.

Most applications written for older versions of the PIC-SERVO will not have problems running with
the PIC-SERVO SC.  Mostly, you need to be careful if your application sets previously unused bits in
various commands’ control bytes.  Before attempting to run your application written for older PIC-
SERVO’s with the PIC-SERVO SC, you should read through this list and correct any potential
problems.  If using our Windows library NMCLIB0x.DLL, we recommend that you recompile your
application using the new library NMCLIB04.DLL, even if there are no obvious conflicts.

Reset Position
Forward compatibility - No issues.  A reset position command for older PIC-SERVO’s will simply
reset the PIC-SERVO SC’s position counter to zero.

Backward compatibility - The optional additional data byte sent to a PIC-SERVO SC will be ignored
by earlier versions.

Set Address
No issues.  This command is identical for all versions.

Define Status and Read Status
Forward compatibility - A control byte sent to earlier PIC-SERVO versions will be properly
interpreted by the PIC-SERVO SC.  However, if software for older controllers sets bits 6 or 7 of the
control byte (these bits were previously ignored), the PIC-SERVO SC will send back additional data
which the software would not be expecting.

Backward compatibility - Bits 6 and 7 of the control byte are not used by earlier versions, and they
will not send back the expected data if these bits are set.

Load Trajectory
Forward compatibility - In earlier versions of the PIC-SERVO , the Direction/Relative bit (bit 6) was
not used when trapezoidal mode was selected.  If older software sets this bit while in trapezoidal
mode, the PIC-SERVO SC will interpret the goal position data as relative rather than absolute.

Backward compatibility - The Relative bit will be ignored by earlier versions of the PIC-SERVO.
Also, the PIC-SERVO SC allows you to modify the goal position, acceleration and velocity in the
middle of a trapezoidal motion.  Software for written for the PIC-SERVO SC which does modify these
parameters on the fly should not be used with earlier versions of the PIC-SERVO.

Start Motion
No issues.  This command is identical for all version.

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 46



Set Gain
Forward compatibility - The Servo Rate Divisor is used differently by the PIC-SERVO SC than in
earlier versions. Please see Section 4.3 for details.  Older Set Gain commands will not set the value
Step Multiplier, and the PIC-SERVO SC will leave it at the default value of 1.

Backward compatibility - Older versions of he PIC-SERVO will ignore the Step Multiplier byte sent
with the new Set Gain command.

Stop Motor
With older versions, the state of the AMP_ENABLE pin was determined solely by the value set with the
Stop Motor command, and therefore, the AMP_ENABLE signal could be used as either an active high
or active low signal.  The PIC-SERVO SC requires that the AMP_ENABLE signal be active high because
it is altered by the overvoltage protection.  

Also, older versions of the PIC-SERVO would set the velocity parameter to zero whenever a Stop
Motor command was executed, requiring the velocity parameter to be reloaded with the Load
Trajectory command.  The PIC-SERVO SC buffers the value of the velocity parameter, eliminating the
need to reload the velocity parameter unless you need to change it.

Lastly, the PIC-SERVO CMC used Bit 5 of the Stop Motor control byte to enable the advanced features
of v.5 (it defaulted to strict compatibility mode).  The PIC-SERVO SC does not have a compatibility
mode, and it ignores Bit 5.

You should examine your code for each of these issues to insure forward or backward compatibility.

I/O Control
Earlier versions of the PIC-SERVO only used the I/O Control command for optionally programming
the LIMIT inputs as output, and most applications did not use this feature at all.  This option, however,
involved the risk of the software inadvertently defining an input as an output, with the potential for
damaging the hardware.  The PIC-SERVO SC, therefore, eliminated this feature.  The PIC-SERVO SC
now uses the I/O Control command to set a variety of other options.  Please see the I/O Control
command description in Section 5.2 to ensure forward or backward compatibility.

Set Homing
No issues.  This command is identical for all version.

Set Baud
Forward compatibility - No issues.  All old Baud rate values will work with the PIC-SERVO SC.

Backward compatibility - The Baud rate of 230,400 is only valid for PIC-SERVO SC controllers.  If
your system uses a mix of controllers, the fastest Baud rate you can use is 115,200.

Clear Bits
No issues.  This command is identical for all version.

Save as Home
No issues.  This command is identical for all version.

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 47



Add Path Points
Forward compatibility - No Issues.

Backward compatibility - The PIC-SERVO SC has a path point buffer which can hold 128 points,
whereas the PIC-SERVO CMC can only hold 96 path points.  If you are using a mix of controllers, you
should limit the number of path points used to 96.

No Op
No issues.  This command is identical for all version.

Hard Reset
Forward compatibility - No issues.

Backward compatibility - No issues, older versions will ignore the optional control byte for the PIC-
SERVO SC if sent.

Status Byte
Older versions of the PIC-SERVO would set the POWER_ON bit if the voltage on the ENC_SEL pin
was above about 2.0v.  The PIC-SERVO SC uses a dedicated VOLT_SENSE pin and POWER_ON bit
will only be set if the  voltage on this pin is between 0.9 and 4.5v.

Older versions of the PIC-SERVO would set the POS_ERROR bit whenever the servo was disabled, but
would not continuously clear this bit while the servo remained disabled.  The PIC-SERVO SC,
however, will continue to set the POS_ERROR bit while the servo is disabled.  You must first enable
the servo and then use the Clear Bits command to clear the POS_ERROR bit.

Auxiliary Status Byte
The ACCEL and SLEW bits have different meanings in the PIC-SERVO SC.  Also the PATH_MODE bit
is only defined for the PIC-SERVO CMC and PIC-SERVO SC.

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 48



6.0 Example Applications
6.1 PIC-SERVO SC With RS232 Communications
The following diagram shows the PIC-SERVO SC configured with RS232 communications and an
integrated amplifier circuit.  The LMD18200 amplifier chip will source up to 3 amps (continuous) for
driving a conventional brush-type DC motor.   The current sense resistor R7 will produce a voltage
signal of approximately 1.0 volts per amp.  You should also note that the BRAKE input of the
LMD18200 requires that amplifier enable signal to be inverted in order to enable the amplifier.

Figure 7 - PIC-SERVO SC controller with RS232 communications

6.2 Converting Antiphase PWM Output to a  +/- 10V Signal
Figure 8 below is an example of how to convert the PIC-SERVO SC’s Antiphase PWM signal to an
analog +/-10v signal commonly used by industrial servo amplifiers.  Note that the LM358 op amp is
used in an inverting configuration so that a 5v input signal (100% duty cycle) will give a -10v output
and 0v input (0% duty cycle) will give a +10v output.  You can effectively invert the sign of the
output by switching the polarity of your motor when you connect it to the servo amplifier.  (If you are
using a brushless motor, it may be easier to swap the Channel A and B encoder signals, as necessary,
to make the position feedback signal match the polarity of the drive system.)

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 49

PIC-SERVO Motor Control Board
Drawin g  Nu mb er

Versio n

1 1

www.j rkerr.com
techsupport@j rkerr.com

J.R. Kerr Prototype Development

Sh eet o f

0007

1

C2
3 3 0 uf, 5 0 v

+1 2  to  +4 8 v d c

CH_ A
CH_ B

LIMIT1

IND EX

LIMIT2

R4

1 0 K
R5
9 1 0  oh m

BO OT1 1

OUT1 2DIR3

BR AKE4

PWM5

V+
6

GN
D

7

SENS8 THERM9 OUT2 1 0

BO OT2 1 1

U4

LMD1 8 2 00

C1
1 .0 u f

C3
0 .0 1 uf

C4
0 .0 1 uf

R7
2 .7 K

PWM
DIR

AMP_ EN

R6

2 .7 K

MOTOR +

MOTOR -

CUR_ SENS
C5
1 0 u f

C6
1 0 u f

C7

1 0 u f

C8

1 0 u f

C1 + 1

C1 - 3

C2 + 4

C2 - 5

R2 O UT 9

R1 O UT 1 2

T2 IN 1 0

T1 IN 1 1

V+2

V-6

R2 IN8

R1 IN1 3

T2 OUT7

T1 OUT1 4

VC
C

16
GN

D
15

U2

MAX2 3 2

VC C

RS2 3 2  RX

RS2 3 2  TX

MCLR1

CU R_ SENS2

VO LT_ SENSE3

AMP_ EN14

ENC _A5

ENC _B6

VC C7

GN D8

OSC 19

OSC 21 0

AMP_ EN21 1

XMT_ EN1 2

AD DR_ OUT1 3

LIMIT2 /STEP1 4 ENC _IN DEX 1 5LIMIT1 /SDIR 1 6TX 1 7RX 1 8GN D 1 9VC C 2 0PWM0 2 1PWM1 2 2PWM2 /DIR 2 3AMP_ EN0 2 4HA LL0 2 5HA LL1 2 6HA LL2 2 7ADDR_ IN 2 8
PIC-SERVO _ SCVC C

VC C

1 0  MH z

VC C1 5 p f

1 5 p f

1 2

7 4 LS1 4



Figure 8 - Converting Antiphase PWM to +/- 10V

6.3 Simplified 3-Phase Motor Driver
Figure 9 below is a simplified 3-Phase driver for small brushless motors.  The L293D is capable of
driving 0.6 amps per output.  The circuit below parallels two of the outputs (1 & 2 and 3 & 4) to
double the drive current to 1.2 amps per phase.  The corresponding inputs are also driven in parallel
from the PIC-SERVO SC’s PWM outputs.  Note that this circuit has no current sensing.  Please see the
L293D data sheet from ST Microelectronics for more details on using the L293.

Note that it is also possible to use this circuit for driving brush-commutated motors.  Simply leave the
hall sensor inputs unconnected and eliminate the second L293D.  You will still want to set the PIC-
SERVO SC for 3-phase output mode to make it put out the proper PWM and ENABLE signals to the
driver chips.

Figure 9 - Simplified 3-Phase driver

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 50

Drawing Number

Version

0 0

www.jrkerr.com
techsupport@jrkerr.com

J.R. Kerr Prototype Dev elopment

Sheet of

MCLR1

CUR_SENS2

VOLT_SENSE3

AMP_EN14

ENC_A5

ENC_B6

VCC7

GND8

OSC19

OSC210

AMP_EN211

XMT_EN12

ADDR_OUT13

LIMIT2/STEP14 ENC_INDEX 15LIMIT1/SDIR 16TX 17RX 18GND 19VCC 20PWM0 21PWM1 22PWM2/DIR 23AMP_EN0 24HALL0 25HALL1 26HALL2 27ADDR_IN 28

PIC-SERVO_SC

3

2
1

8
4

LM358

20K

2.2nf

+12

-12

10K

30K20K

+5

+/-10v output

20K

Drawing Number

Version

0 0

www.jrkerr.com
techsupport@jrkerr.com

J.R. Kerr Prototype Dev elopment

Sheet of

Enable 11

Input 12

Output 13

GND4

GND5

Output 26

Input 27

Vs8 Enable 2 9Input 3 10Output 3 11GND 12GND 13Output 4 14Input 4 15Vcc 16

L293D

MCLR1

CUR_SENS2

VOLT_SENSE3

AMP_EN14

ENC_A5

ENC_B6

VCC7

GND8

OSC19

OSC210

AMP_EN211

XMT_EN12

ADDR_OUT13

LIMIT2/STEP14 ENC_INDEX 15LIMIT1/SDIR 16TX 17RX 18GND 19VCC 20PWM0 21PWM1 22PWM2/DIR 23AMP_EN0 24HALL0 25HALL1 26HALL2 27ADDR_IN 28

PIC-SERVO SC

Enable 11

Input 12

Output 13

GND4

GND5

Output 26

Input 27

Vs8 Enable 2 9Input 3 10Output 3 11GND 12GND 13Output 4 14Input 4 15Vcc 16

L293D

VCC

+7 - +30v

Phase 0 Output

Phase 1 Output

Phase 2 Output

Hall Sensor 0
Hall Sensor 1
Hall Sensor 2

100 uf

10K

1.6K

2.7K

VCC



7.0  Other References
The following Companies' Web sites may provide useful information and data sheets for developing
complete motor control systems using the PIC-SERVO SC:

Microchip www.microchip.com
The PIC-SERVO SC is based on the Microchip PIC8F2331 microcontroller   Please refer to the
Microchip data sheets for this device for complete electrical, timing, dimensional and environmental
specifications.

National Semiconductor www.national.com
Data sheets for  the LMD18200 / LMD18201 PWM amplifiers, featured in the PIC-SERVO
application notes.

Linear Technology Datasheets www.linear.com
Data sheets for the LTC491 RS485 transceiver as well as other interface I.C.'s.

Maxim www.maxim-ic.com
Data sheets for the MAX232 RS232 transceiver as well as other interface I.C.'s.

HdB Electronics www.hdbelectronics.com
Carries the complete line of PIC-SERVO products as well as other electronic components, accessories
and tools.

JEFFREY KERR, LLC  www.jrkerr.com
Application notes, new products, and useful links can be found at this site.  Technical support is
provided via e-mail with contact information on the web page: www.jrkerr.com/contact.html.

JEFFREY KERR, LLC    —     w w w. j rke r r . c om 51


