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The Hohmann Orbit Transfer 
 

The coplanar circular orbit-to-circular orbit transfer was discovered by the German engineer Walter 

Hohmann in 1925 and described in his classic report, The Attainability of Celestial Bodies.  The transfer 

consists of a velocity impulse on an initial circular orbit, in the direction of motion and collinear with the 

velocity vector, which propels the space vehicle into an elliptical transfer orbit.  At a transfer angle of 

180 degrees from the first impulse, a second velocity impulse or V , also collinear and in the direction 

of motion, places the vehicle into a final circular orbit at the desired final altitude.  The impulsive V  

assumption means that the velocity, but not the position, of the vehicle is changed instantaneously.  This 

is equivalent to a rocket engine with infinite thrust magnitude.  The Hohmann formulation is the ideal 

and minimum energy solution to this type of time-free orbit transfer problem. 

 

Coplanar Equations 

 

For the coplanar Hohmann transfer both velocity impulses are confined to the orbital planes of the initial 

and final orbits.  For a Hohmann transfer from a lower altitude orbit to a higher altitude circular orbit, 

the first impulse creates an elliptical transfer orbit with a perigee altitude equal to the altitude of the 

initial circular orbit and an apogee altitude equal to the altitude of the final orbit.  The second impulse 

circularizes the transfer orbit at apogee.  Both impulses are posigrade which means that they are in the 

direction of orbital motion. 

 

We begin by defining three normalized radii as follows: 
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where ri  is the geocentric radius of the initial circular park orbit and rf  is the radius of the final circular 

mission orbit.  The relationship between radius and initial orbit altitude hi  and the final orbit altitude h f  

is as follows: 
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where re  is the radius of the Earth. 

 

The magnitude of the first impulse is 
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and is simply the difference between the speed on the initial orbit and the perigee speed of the transfer 

orbit.  The scalar magnitude of the second impulse is 
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which is the difference between the speed on the final orbit and the apogee speed of the transfer ellipse. 
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In each of these V  equations Vlc  is called the local circular velocity.  It can be determined from 
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and represents the scalar speed in the initial orbit.  In these equations   is the gravitational constant of 

the central body.  The transfer time from the first impulse to the second is equal to one half the orbital 

period of the transfer ellipse 

 

 
3a

 


  

 

where a is the semimajor axis of the transfer orbit and is equal to   / 2i fr r .  The orbital eccentricity of 

the transfer ellipse is 
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The following diagram illustrates the geometry of the coplanar Hohmann transfer. 
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Non-coplanar Equations 

 

The non-coplanar Hohmann transfer involves orbital transfer between two circular orbits which have 

different orbital inclinations.  For this problem the propulsive energy is minimized if we optimally 

partition the total orbital inclination change between the first and second impulses. 
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The scalar magnitude of the first impulse is 
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where 1 is the plane change associated with the first impulse.  The magnitude of the second impulse is 
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where  2  is the plane change associated with the second impulse.  These two equations are different 

forms of the law of cosines. 

 

The total V  required for the maneuver is the sum of the two impulses as follows 
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The relationship between the plane change angles is 

 

 1 2t     

 

where  t  is the total plane change angle between the initial and final orbits. 

 

Optimizing the non-coplanar Hohmann transfer involves allocating the total plane change angle between 

the two maneuvers such that the total V  required for the mission is minimized.  We can determine this 

answer by solving for the root of a derivative. 

 

The partial derivative of the total V  with respect to the first plane change angle is given by: 
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If we determine the value of 1 which makes this derivative zero, we have found the optimum plane 

change required at the first impulse.  Once 1 is calculated we can determine  2  from the total plane 

change angle relationship and the velocity impulses from the previous equations. 

 

Numerical Solution 

 

This numerical algorithm has been implemented in an interactive MATLAB script called hohmann.m.  

This script prompts the user for the initial and final altitudes in kilometers and the initial and final orbital 

inclinations in degrees.  The software then calls the Brent root-finding algorithm to solve the partial 

derivative equation described above. 

 

The call to the Brent root-finding algorithm is as follows: 

 
[xroot, froot] = brent('hohmfunc', 0, dinc, rtol); 
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where hohmfunc is the objective function for this problem.  Since we know that the optimum first plane 

change angle is somewhere between 0 and the total plane change angle dinc, we pass these as the 

bounds of the root.  In the parameter list rtol is the user-defined root-finding convergence tolerance. 

 

The following is a typical orbit transfer from a low altitude Earth orbit (LEO) at an altitude of 185.2 

kilometers and an orbital inclination of 28.5 degrees to a geosynchronous Earth orbit (GSO) at an 

altitude of 35786.36 kilometers and 0 degrees inclination. 

 

The following is a V  diagram for the first maneuver of this orbit transfer example.  In this view we are 

looking along the line of nodes which is the mutual intersection of the park and transfer orbit planes with 

the equatorial plane. 
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In this diagram Vi  is the speed on the initial park orbit, Vp  is the perigee speed of the elliptic transfer 

orbit, and V  is the impulse required for the first maneuver.  The inclinations of the park and transfer 

orbit are also labeled.  From this geometry and the law of cosines, the required V  is given by 
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where i  is the inclination difference or plane change between the park and transfer orbits. 

 

User interaction with the script 
 

The following is a typical user interaction with this MATLAB script.  User inputs are in bold font. 

 
Hohmann Orbit Transfer Analysis 

 

 

please input the initial altitude kilometers 

? 300 

 

please input the final altitude kilometers 

? 35786.2  

 

please input the initial orbital inclination degrees 

(0 <= inclination <= 180) 

? 28.5  

 

please input the final orbital inclination degrees 

(0 <= inclination <= 180) 

? 0 
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The following is the script solution for this example. 
 
Hohmann Orbit Transfer Analysis 

------------------------------- 

 

initial orbit altitude              300.0000 kilometers  

 

initial orbit radius               6678.1363 kilometers  

 

initial orbit inclination            28.5000 degrees  

 

initial orbit velocity             7725.7606 meters/second  

 

 

final orbit altitude              35786.2000 kilometers  

 

final orbit radius                42164.3363 kilometers  

 

final orbit inclination               0.0000 degrees  

 

final orbit velocity               3074.6540 meters/second  

 

 

first inclination change              2.2002 degrees 

 

second inclination change            26.2998 degrees 

 

total inclination change             28.5000 degrees 

 

 

first delta-v                      2449.4551 meters/second  

 

second delta-v                     1781.8532 meters/second  

 

total delta-v                      4231.3083 meters/second  

 

 

transfer orbit semimajor axis     24421.2363 kilometers  

 

transfer orbit eccentricity       0.72654389  

 

transfer orbit inclination           26.2998 degrees  

 

transfer orbit perigee velocity   10151.4962 meters/second  

 

transfer orbit apogee velocity     1607.8298 meters/second  

 

transfer orbit coast time         18990.3276 seconds  

                                    316.5055 minutes  

                                      5.2751 hours 

 

This MATLAB script is valid for Hohmann transfers from a high initial circular orbit to a lower final 

orbit.  It also handles the case of transfer to a mission orbit with higher orbital inclination. 
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The hohmann script will also create a graphics display of the initial, transfer and final orbits.  The 

following is the graphics display for this example.  The initial orbit trace is red, the transfer orbit is blue 

and the final mission orbit is green.  The dimensions are Earth radii (ER) and the plot is labeled with an 

ECI coordinate system where green is the x-axis, red is the y-axis and blue is the z-axis.  The location of 

each impulse is marked with a small blue circle. 

 
The interactive graphic features of MATLAB allow the user to rotate and zoom the display.  These 

capabilities allow the user to interactively find the best viewpoint as well as verify basic three-

dimensional geometry of the orbital transfer. 

 

The hohmann MATLAB script will also create color a Postscript disk file of this graphic image.  This 

image includes a TIFF preview and is created with MATLAB code similar to 

 
print -depsc -tiff -r300 hohmann1.eps 

 

Primer Vector Analysis 
 

This section summarizes the primer vector analysis included with this MATLAB script.  The term 

primer vector was invented by Derek F. Lawden and represents the adjoint vector for velocity.  A 

technical discussion about primer theory can be found in Lawden’s classic text, Optimal Trajectories for 

Space Navigation, Butterworths, London, 1963.  Another excellent resource is “Primer Vector Theory 

and Applications”, Donald J. Jezewski, NASA TR R-454, November 1975, along with “Optimal, Multi-

burn, Space Trajectories”, also by Jezewski. 

 

As shown by Lawden, the following four necessary conditions must be satisfied in order for an 

impulsive orbital transfer to be locally optimal: 

 

(1) the primer vector and its first derivative are everywhere continuous 
 

(2) whenever a velocity impulse occurs, the primer is a unit vector aligned with the impulse and 

has unit magnitude  ˆ ˆ  and 1T  p p u p  
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(3) the magnitude of the primer vector may not exceed unity on a coasting arc  1p p  

 

(4) at all interior impulses (not at the initial or final times) 0p p ; therefore, 0d dt p  at the 

intermediate impulses 

 

Furthermore, the scalar magnitudes of the primer vector derivative at the initial and final impulses 

provide information about how to improve the nominal transfer trajectory by changing the endpoint 

times and/or moving the impulse times.  These four cases for non-zero slopes are summarized as 

follows; 

 

 If 0 0p   and 0fp    perform an initial coast before the first impulse and add a final coast 

after the second impulse 
 

 If 0 0p   and 0fp    perform an initial coast before the first impulse and move the second 

impulse to a later time 
 

 If 0 0p   and 0fp    perform the first impulse at an earlier time and add a final coast after the 

second impulse 
 

 If 0 0p   and 0fp    perform the first impulse at an earlier time and move the second 

impulse to a later time 

 

The primer vector analysis of a two impulse orbital transfer involves the following steps. 

 

First partition the two-body state transition matrix as follows: 

 

   0 0 11 12

0

21 22

0 0

,
rr rv

vr vv

t t

  
        
                
   

r r

r v

v v

r v

 

 

where 
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and so forth. 

 

The value of the primer vector at any time t along a two body trajectory is given by 

 

      11 0 0 12 0 0, ,t t t t t p p p  

 

and the value of the primer vector derivative is 

 

      21 0 0 22 0 0, ,t t t t t p p p  
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which can also be expressed as 
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The primer vector boundary conditions at the initial and final impulses are as follows: 
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These two conditions illustrate that at the locations of velocity impulses, the primer vector is a unit 

vector in the direction of the corresponding impulse. 

 

The value of the primer vector derivative at the initial time is 

 

       1
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provided the 12  sub-matrix is non-singular. 

 

The scalar magnitude of the derivative of the primer vector can be determined from 
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The following two graphic images illustrate the behavior of the magnitudes of the primer vector and its 

derivative for the example given earlier.  The location of each impulse is marked with a small red circle. 

 

 
 



Orbital Mechanics with MATLAB 

page 9 

 

 
 

From the properties of the primer vector and its derivative, we can see that this orbit transfer is optimal. 

 

The hohmann MATLAB script will also create color a Postscript disk file of these graphic images.  This 

image includes a TIFF preview and is created with MATLAB source code similar to 

 
print -depsc -tiff -r300 primer.eps 
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