
Celestial Computing with MATLAB

page 1

Rise and Set of the Sun, Moon and Planets

This document describes a MATLAB script named riseset.m that can be used to determine rise and set

conditions of the Sun, Moon and planets. This software uses a combination of one-dimensional

minimization and root-finding to predict visibility. The source ephemeris for this routine is a JPL binary

ephemeris file. This application uses several functions ported to MATLAB from the Fortran version of

the NOVAS (Naval Observatory Vector Astrometry Subroutines) source code developed at the United

States Naval Observatory (www.usno.navy.mil/USNO/astronomical-applications/software-

products/novas). JPL binary ephemeris files for Windows compatible computers can be downloaded at

www.cdeagle.com.

The basic procedure for predicting rise and set of a celestial body involves the following computational

steps and MATLAB functions:

(1) locate an extrema using the functions oevent1 and minima

(2) bracket a “forward” and “backward” root using the function broot

(3) find each root using the function brent

(4) calculate the event circumstances using the function events1

(5) display the event circumstances using the function rsfunc

The main MATLAB function that solves this problem has the following syntax and arguments:

function oevent1 (objfunc, prtfunc, ti, tf, dt, dtsml)

% predict minimization/root-finding orbital events

% time argument in days

% input

% objfunc = objective function

% prtfunc = display results function

% ti = initial simulation time

% tf = final simulation time

% dt = step size used for bounding minima

% dtsml = small step size used to determine whether

% the function is increasing or decreasing

The name of the user-defined objective function (objfunc) and a function that prints the important

results (prtfunc) is passed to this routine in the argument list.

Choosing the Search Parameters

The proper selection of the search parameters dt and dtsml for this algorithm depends on the type of

celestial event you are trying to predict. For example, the value of dt is used to bound one or more

extremas and depends on how long the event lasts. For shorter events dt should be smaller and for

longer events dt can be larger. Be careful not to make dt too large or the algorithm may “step over”

http://www.usno.navy.mil/USNO/astronomical-applications/software-products/novas
http://www.usno.navy.mil/USNO/astronomical-applications/software-products/novas
http://www.cdeagle.com/

Celestial Computing with MATLAB

page 2

one or more solutions. For lunar events dt can be between 0.1 and 0.25 days and for planetary events

dt can be between 0.1 and 0.5 days.

The value of dtsml must be selected such that it produces a “big” enough change in the objective

function to tell the algorithm if it is moving “downhill” or “uphill”. This is similar to choosing the value

of x when numerically estimating the derivative of a function of the form  y f x . For planetary

events a value of dtsml = 0.1 days should be adequate. For lunar events this number should be a

number between 0.01 and 0.05 days. An examination of a plot of the objective function over a period

of time can also provide insight into the proper selection of the dtsml parameter.

During the search process the oevent1 function calls a MATLAB function called minima that calculates

the extremum of a one-dimensional user-defined objective function. The syntax of this optimization

function is as follows:

function [xmin, fmin] = minima (f, a, b, tolm)

% one-dimensional minimization

% Brent's method

% input

% f = objective function coded as y = f(x)

% a = initial x search value

% b = final x search value

% tolm = convergence criterion

% output

% xmin = minimum x value

% fmin = minimum function value

This function in turn requires an objective function coded as fx = objfunc(x) where objfunc is the

name of the user-defined objective function, x is the current function argument and fx is the objective

function evaluated at x. For this script the objective function is equal to the topocentric elevation angle

of the body. A numerical value of 1e-4 for the convergence criterion should be adequate for most user-

defined objective functions.

The source code of the objective function for this example is as follows:

function fx = rsfunc(x)

% topocentric elevation angle

% objective function

% input

% x = elapsed simulation time (days)

% output

% fx = objective function at x

Celestial Computing with MATLAB

page 3

% Celestial Computing with MATLAB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global tai_utc jdatei itarg icent rootflg

global obslat glon glat ht stlocl

global aunit elevation azimuth

rtd = 180 / pi;

dtr = pi / 180;

jdutc = jdatei + x;

% compute tdt julian date

jdtdt = utc2tdt(jdutc, tai_utc);

[ra, dec, dis] = applan1(jdtdt, jdutc, itarg, icent, 1, glon, glat, ht);

% apparent hour angle

hangle = stlocl - (2 * pi * ra / 24);

% topocentric elevation (degrees)

elevation = rtd * asin(sin(obslat) * sin(dtr * dec) ...

 + cos(obslat) * cos(dtr * dec) * cos(hangle));

% topocentric azimuth (degrees)

tmp1 = sin(hangle);

tmp2 = cos(hangle) * sin(obslat) - tan(dtr * dec) * cos(obslat);

azimuth = mod(180 + rtd * atan3(tmp1, tmp2), 360);

if (rootflg == 1)

 % correct for horizontal refraction

 dref = (34 / 60);

 if (itarg == 11)

 % correct for semidiameter of the moon

 tsdia = rtd * asin((1738 / aunit) / dis);

 elseif (itarg == 10)

 % correct for semidiameter of the sun

 tsdia = rtd * asin((0.5 * 696000 / aunit) / dis);

 else

 % no semidiameter correction for planets

 tsdia = 0;

Celestial Computing with MATLAB

page 4

 end

else

 dref = 0;

 tsdia = 0;

end

% evaluate objective function

fx = -(elevation + tsdia + dref);

Notice the use of a root flag rootflg to “toggle” the function when finding a minimum (rootflg =

0) or a root (rootflg = 1) of the objective function.

This function calculates the topocentric elevation angle of the celestial object for any input argument x.

For this script the input argument is the elapsed time in days since the simulation began. Notice the

corrections for the semidiameter of the Moon and the horizontal refraction during the root-finding

calculations.

The syntax of the MATLAB function that calculates and displays the actual roots of the user-defined

objective function is as follows:

function events1 (objfunc, prtfunc, ti, tf, topt)

% compute and display minimization/root-finding orbital events

% input

% objfunc = objective function

% prtfunc = display results function

% ti = initial simulation time

% tf = final simulation time

% topt = extrema time

This function is a “driver” routine that uses the time of the extrema topt to first bracket the backward

and forward roots and then actually find the value of each root. After each root is calculated this routine

then calls a MATLAB function called rsfunc that actually displays the event conditions.

The following is a brief description of the function that brackets each root.

function broot

This MATLAB function is used to bracket a single root of a single nonlinear equation of the form

 y f x It uses a combination of geometric acceleration and time rectification to bracket single roots.

The basic idea is to find the endpoints of a time interval 1x and 2x such that    1 2 0f x f x  .

This condition guarantees that there is at least one root in the interval because the objective function

changes sign.

Celestial Computing with MATLAB

page 5

The user must supply this function with an initial guess for
1x and

2x . Typically
1x is the time of an

objective function minimum or maximum and
2x is a time 0.05 days after (forward root) or 0.05 days

before (backward root) the value of
1x . The sign of this delta tells the algorithm in which direction to

move.

The name of the user-defined objective function f is passed to this routine in the argument list. For the

riseset script the user-defined (and coded) objective function is called rsfunc.

The syntax of this MATLAB function is as follows:

function [x1out, x2out] = broot (f, x1in, x2in, factor, dxmax)

% bracket a single root of a nonlinear equation

% input

% f = objective function coded as y = f(x)

% x1in = initial guess for first bracketing x value

% x2in = initial guess for second bracketing x value

% factor = acceleration factor (non-dimensional)

% dxmax = rectification interval

% output

% x1out = final value for first bracketing x value

% x2out = final value for second bracketing x value

The acceleration factor used in this script is 0.25 and the rectification interval is 0.1 days. The

acceleration factor increases the size of each step geometrically and the rectification interval monitors

the length of the current bracketing interval. When necessary the rectification logic reinitializes the

search and prevents the interval from becoming too large and skipping one or both ends of the

bracketing interval completely. The size of each step increases geometrically until the length of the

current step reaches the value of the rectification interval. At that point the step size is reset and the

process begins again. Eventually, the process will bracket the root and the function will return the

endpoints of this bracketing interval.

The following is a brief description of the MATLAB function that solves for each root.

function brent

This function uses Brent’s method to find a single root of a single nonlinear equation of the form

 y f x . Derivatives are not required for this algorithm. However, the user should ensure that a root

is bracketed,    1 2 0f x f x  , before calling this routine. Additional information about this numerical

method can be found in Algorithms for Minimization Without Derivatives, R. P. Brent, Prentice-Hall,

1972. As the title of this book indicates, this algorithm does not require derivatives of the objective

function. This feature is important because the analytic first derivative of many objective functions is

difficult to derive and code.

Celestial Computing with MATLAB

page 6

The syntax of this MATLAB function is as follows:

function [xroot, froot] = brent (f, x1, x2, rtol)

% solve for a single real root of a nonlinear equation

% Brent's method

% input

% f = objective function coded as y = f(x)

% x1 = lower bound of search interval

% x2 = upper bound of search interval

% rtol = algorithm convergence criterion

% output

% xroot = real root of f(x) = 0

% froot = function value at f(x) = 0

The root-finding performance of this algorithm is determined by rtol. A value of 1.0e-8 should be

adequate for most problems. Smaller values will predict roots more accurately at the expense of longer

program execution times.

The riseset MATLAB script will prompt you for an initial calendar date, on the UTC time scale, and

the search interval in days. It will also ask you for the geographic coordinates of the observer. Please

note that north latitudes are positive and south latitudes are negative. Also note that east longitudes are

positive and west longitudes are negative. Furthermore, observer sites above sea level have positive

altitudes and sites below sea level are negative.

The following is a typical user interaction with this script. The screen output created by the script

illustrates two rise, maximum elevation and set events of the Moon. The initial calendar date was

December 2, 2012, and the observer was located at the Chamberlin Observatory in Denver, Colorado.

The calendar date and time displayed is on the UTC time scale.

The riseset MATLAB script will also display the calendar date, time and topocentric conditions at

maximum elevation along with the total duration of the rise-set event.

rise and set of the sun, moon and planets

===

please input an initial UTC calendar date

please input the calendar date

(1 <= month <= 12, 1 <= day <= 31, year = all digits!)

? 12,2,2012

please input the search duration (days)

? 2

 target body menu

 <1> Mercury

 <2> Venus

 <3> Earth

 <4> Mars

Celestial Computing with MATLAB

page 7

 <5> Jupiter

 <6> Saturn

 <7> Uranus

 <8> Neptune

 <9> Pluto

 <10> Sun

 <11> Moon

please select the target body

? 11

please input the geographic latitude of the observer

(-90 <= degrees <= +90, 0 <= minutes <= 60, 0 <= seconds <= 60)

(north latitude is positive, south latitude is negative)

? 39,40,36

please input the geographic longitude of the observer

(0 <= degrees <= 360, 0 <= minutes <= 60, 0 <= seconds <= 60)

(east longitude is positive, west longitude is negative)

? -104,57,12

please input the altitude of the observer (meters)

(positive above sea level, negative below sea level)

? 1644

rise and set of the sun, moon and planets

===

 'Moon'

observer latitude +39d 40m 36.00s

observer east longitude -104d 57m 12.00s

observer altitude 1644.0000 meters

rise conditions

calendar date 02-Dec-2012

universal time 02:28:34

UTC Julian date 2456263.6032

topocentric azimuth angle +66d 19m 01.73s

topocentric elevation angle +00d -48m 49.99s

maximum elevation conditions

calendar date 02-Dec-2012

universal time 09:43:46

UTC Julian date 2456263.9054

topocentric azimuth angle +179d 28m 15.17s

topocentric elevation angle +67d 19m 52.94s

Celestial Computing with MATLAB

page 8

set conditions

calendar date 02-Dec-2012

universal time 16:54:51

UTC Julian date 2456264.2048

topocentric azimuth angle +291d 40m 49.45s

topocentric elevation angle +00d -48m 53.37s

celestial event duration +14h 26m 16.5501s

rise conditions

calendar date 03-Dec-2012

universal time 03:25:53

UTC Julian date 2456264.6430

topocentric azimuth angle +70d 00m 02.24s

topocentric elevation angle +00d -48m 56.25s

maximum elevation conditions

calendar date 03-Dec-2012

universal time 10:29:52

UTC Julian date 2456264.9374

topocentric azimuth angle +179d 18m 39.69s

topocentric elevation angle +64d 19m 55.50s

set conditions

calendar date 03-Dec-2012

universal time 17:29:13

UTC Julian date 2456265.2286

topocentric azimuth angle +287d 29m 17.32s

topocentric elevation angle +00d -49m 00.71s

celestial event duration +14h 03m 20.0267s

Celestial Computing with MATLAB

page 9

Leap seconds calculation

The difference between International Atomic Time (TAI) and Universal Coordinated Time (UTC) is the

number of current leap seconds. International Atomic Time (TAI, Temps Atomique International) is a

physical time scale with the unit of the SI (System International) second and derived from a statistical

timescale based on a large number of atomic clocks. Coordinated Universal Time (UTC) is the time

scale available from broadcast time signals. It is a compromise between the highly stable atomic time

and the irregular earth rotation. UTC is the international basis of civil and scientific time.

The calculation of leap seconds in this MATLAB script is performed by a function that reads a simple

ASCII data file and evaluates the current value of leap seconds. The leap second function must be

initialized by including the following statements in the main script.

% read leap seconds data file

readleap;

The readleap MATLAB function reads the contents of the following simple comma-separated-

variable (csv) two column data file. The name of this file is tai-utc.dat.

 2441317.5, 10.0

 2441499.5, 11.0

 2441683.5, 12.0

 2442048.5, 13.0

 2442413.5, 14.0

 2442778.5, 15.0

 2443144.5, 16.0

 2443509.5, 17.0

 2443874.5, 18.0

 2444239.5, 19.0

 2444786.5, 20.0

 2445151.5, 21.0

 2445516.5, 22.0

 2446247.5, 23.0

 2447161.5, 24.0

 2447892.5, 25.0

 2448257.5, 26.0

 2448804.5, 27.0

 2449169.5, 28.0

 2449534.5, 29.0

 2450083.5, 30.0

 2450630.5, 31.0

 2451179.5, 32.0

 2453736.5, 33.0

 2454832.5, 34.0

The first column of this data file is the Julian date, on the UTC time scale, at which the leap second

became valid. The second column is the leap second value, in seconds.

Note that this data is passed between the leap second MATLAB functions by way of a global statement.

global jdateleap leapsec

Celestial Computing with MATLAB

page 10

The MATLAB function that actually reads and evaluates the current value of leap seconds has the

following syntax and single argument.

function leapsecond = findleap(jdate)

% find number of leap seconds for utc julian date

% input

% jdate = utc julian date

% input via global

% jdateleap = array of utc julian dates
% leapsec = array of leap seconds

% output

% leapsecond = number of leap seconds

The leap seconds data file should be updated whenever the International Earth Rotation and Reference

Systems Service (IERS) announces a new leap second.

