FROGRAM


```
Cofsright (C) 1982
        bs
    C. David Eagle
All Rights Reserved
```


TAELE OF CONTENTS

Section Fiage
I. INTRODUCTION 2
II. USEF INFUTS AND SELEETTONS 3
ITI. FFOGFAM OUTFUT 5
IU. TECHNTCAL DTSCUSSION 6
v. FROGRAM EXAMFILE 7
UI. FEFEFENCES 8

I. INTRODUCTION

"ROCKETI" is a EASTC combuter frogram which cari be used to determine the flight ferformarice of model rockets. A mathematical Frediction of burrout coriditionsg maximumaltitude arid total flight time cam helf a rocketeer select a model rocket erigirieg choose a safe lanmeh site and imfrove the design of his or her model rockets.

This frocram solves the wroblem of vertical model rocket motion bs using several assumbtiors which allow the eauation of motion to be solved exactls or araluticallu". These assumptions irivolve the boost Fhase of flight where an average thrust arid average model rocket mass are assumed. The atmosfheric densits ard drag coefficierit are also assumed to be constant duririg the entire model rocket flight. Frogram "FOCKETI" also comferisates for "rori-staridard" laurich sites which are rot at sea level and lanimincs on hot or cold dass.

II. USEF INFUTS AND SELECTIONS

Abstract

Froeram "FOCKETI" will Fromft the user for several imfuts recessary for the software to work froferly. This is a descriftion of these rewuests and a discussion of how the user should resforid. Information which fertains to the model rocket engime characteristics is available from marmiacturers' catalogs.

LAUNCH SITE FLTTTUDE (METEFS)?

The user should respond with the altitude of the laurich site relative to sea level. This altitude is infut in meters and is fositive for sites above sea level and meaztive for sites below sea level.

LAUNCH SITE TEMFEFATUFE (DEG F)?

The user should resporid with the temferature at the laurich site in decimal degrees Fanrerineit.

THRUST DUFATION (SECONDS)?

The user should irmut the total thrust duration of the model rocket erigine in seconds.

TOTAL. IMFULSE (NEWTON-.SECONDS)?

The user should respond with the total impulse of the model rocket erigine in the umits of newtom-secorios.

INITIAL MASS (GFAMS)?

The user should infut the lift-off or aross mass of the entire model rocket in Grams.

FFOFELLANT MASS (GRAMS)?

The user should respond with the frofellant mass of the model rocket engirie in grams.

FFONTAL. DIAMETEF (MM)?

The user should infut bhe maximum bods tube diameter of the model rocket im millimeters.

DFAG COEFFICIENT?

The wser should resmorid with the drag coefficient of the comflete model rocket. This mamber is monmoimerisionisl.

After the frogram has rum it will fromft the user for ariother selection. This is a deseriftion of each prombt. The user should resfonci with "1" if he desires the warticular selection or "o" if riot.

ANOTHEF SELECTION ($1=Y E S, 0=N O) ?$
The wser should respond with "0" to exit the frogram.
ANOTHEF LAUNCH SITE ($1=Y E S, 0:=N O) ?$

The user should resporid with "1" to compute the model rocket fight Ferformance at another 1 aumch site.

ANOTHEF ROCKET ENGINE ($1=Y E S, 0=N O) ?$
The user should respond with "I" to compute a model rocket's flight Ferformarice with a different model rocket encine.

DIFFEFENT MASS OF DFAG ($1=Y E S, 0=N O) ?$

The user should resporid with "I" to compute the flight ferformarice of a model rocket with differert mass or drag characteristics.

If arother selection is madeg the frogram will again execute the Frompts recessary for the rew selectior. If the user ariswers "YES" to the Frombt "ANOTHEF SELECTION" but does riot actually make a differerit selectiong the frogram will stof after cseling through all the selection questions.

III. FROGRAM OUTFUT

Frogram "ROCKETI" outwuts the model rocket aatitude ferformance in units of the metric ssstem. The burmout altitude and the maximum altitude are frinted in meters and the burnout velocity is frinted in meters fer second. Coast time and total flight time are frinted in seconds.

For users who may want to see other variables used in the software, "R1" is the laurich site density in kilograms per cubic meters. The variable "X2" is the coast altitude increment in meters and "K2" is the variable $1 / 2 \rho C d A$ in the units of kilograms fer meter. "FI' is the average thrust of the model rocket engine in newtons.

IV. TECHNICAL DISCUSSION

Frogram "ROCKET: first corverts the lift-off and frofellarit masses to kilograms and determines the cross-sectional area of the model rocket in square meters. The atmosfheric dersits at the launch site is then computed as a function of the launch site altitude and temperature.

The burnout altitude and velocits are computed with the following equations,

```
\(X b o=(m / k) 1 n d \cosh (t a / m \sqrt{k(F-m G)})]\)
```

Ubo $=\sqrt{(F-m G) / k} \quad \tanh \left[t d / m_{1} \sqrt{k\left(F-m_{i} G\right)}\right]$
where,

```
m = average mass = lift-off mass -- (profellarit mass / 2)
k=1/2\rhoCdA
\rho = atmosfheric density
Co= drag coefficient
A = cross-sectional area
F= average thrust= total impulse/thrust duration
tg= thrust duration
```

The altitude gained during the coast flight and the coast time are determined using the rext set of equations,


```
tc = (m/k.G) atari(Vbo \sqrt{}{k/mG})
```

where,

```
\(m_{1}=\) burnout mass= lift-off mass - profellarit mass
G = acceleration of gravity
```

The maximum altitude and total flight time are given bs,

$$
\begin{aligned}
& x=x b o+x c \\
& T=t a+t c
\end{aligned}
$$

U. FFOGRAM EXAMFIE

The followirg is an example of the frogram wrintout which inlustrates
the features of Frogram ROCETi".
Program ROCKET1
Launch site altitude (meters)
? 0
Launch site temperature (deg f)
? 59
Thrust duration (seconds)
? 1.2
Total impulse (newton-seconds)
? 5
Initial mass (grams)
? 40
Propellant mass (grams)
? 8.33
Frontal diameter (millimeters)
? 18
Drag coefficient
? 321
Burnout altitude (meters) 74.07
Burnout velocity (m/s) 119.36
Coast time (seconds) 7.93
Total flight time (seconds) 9.13
Maximum altitude (meters) 451.39

