
Celestial Computing with MATLAB

Page 69

15. Other Lunar, Solar and Planetary Ephemeris Algorithms

The next ten MATLAB functions are based on the algorithms described in “Low-Precision

Formulae for Planetary Positions”, T. C. Van Flandern and K. F. Pulkkinen, The

Astrophysical Journal Supplement Series, 41:391-411, November 1979. To the precision of

this algorithm (one arc minute) these coordinates can be considered to be true-of-date.

Each algorithm uses time arguments given by

2451545

/ 36525 1

t JD

T t

 

 

where JD is the Julian date on the UT1 time scale.

Each MATLAB function uses fundamental trigonometric arguments (in revolutions) of the

following form:

2

4

5

4

4

0.993126 0.00273777850

0.140023 0.00445036173

0.053856 0.00145561327

0.056531 0.00023080893

0.849694 0.00145569465

0.987353 0.00145575328

sG t

G t

G t

G t

F t

L t

 

 

 

 

 

 

The heliocentric, ecliptic longitude  , latitude  and distance r are computed from series

involving these arguments. These series are of the form

   

   

 

4 4 4 4

4 4 4 4 4

4 4

38451sin 2238sin 2 181sin 3

6603sin 622sin 615sin

1.53031 0.1417cos 0.0066cos 2

L G G G

F G F G F

r G G





    

     

   

where the unit of r is Astronomical Units.

The heliocentric, ecliptic position vector of the planet is determined from

cos cos

cos sin

sin

r

 

 



 
 

  
 
 

r

sun.m – solar ephemeris

This function calculates the true-of-date geocentric right ascension, declination and position

vector of the Sun.

Celestial Computing with MATLAB

Page 70

The syntax of this MATLAB function is

function [rasc, decl, rsun] = sun (jdate)

% solar ephemeris

% input

% jdate = Julian date

% output

% rasc = right ascension of the sun (radians)

% (0 <= rasc <= 2 pi)

% decl = declination of the sun (radians)

% (-pi/2 <= decl <= pi/2)

% rsun = eci position vector of the sun (km)

moon.m – lunar ephemeris

This function calculates the true-of-date geocentric right ascension, declination and position

vector of the Moon.

The syntax of this MATLAB function is

function [rasc, decl, rmoon] = moon (jdate)

% lunar ephemeris

% input

% jdate = julian date

% output

% rasc = right ascension of the moon (radians)

% (0 <= rasc <= 2 pi)

% decl = declination of the moon (radians)

% (-pi/2 <= decl <= pi/2)

% rmoon = eci position vector of the moon (km)

mercury.m – Mercury ephemeris

This function calculates the true-of-date heliocentric ecliptic position vector of Mercury.

The syntax of this MATLAB function is

function rmercury = mercury (jdate)

% true-of-date heliocentric, ecliptic

% position vector of Mercury

% input

% jdate = julian date

Celestial Computing with MATLAB

Page 71

% output

% rmercury = position vector of Mercury (km)

venus.m – Venus ephemeris

This function calculates the true-of-date heliocentric ecliptic position vector of Venus.

The syntax of this MATLAB function is

function rvenus = venus (jdate)

% true-of-date heliocentric, ecliptic

% position vector of venus

% input

% jdate = Julian date

% output

% rvenus = position vector of Venus (km)

earth.m – Earth ephemeris

This function calculates the true-of-date heliocentric ecliptic position vector of the Earth.

The syntax of this MATLAB function is

function rearth = earth (jdate)

% true-of-date heliocentric, ecliptic

% position vector of the Earth

% input

% jdate = Julian date

% output

% rearth = position vector of the Earth (km)

mars.m – Mars ephemeris

This function calculates the true-of-date heliocentric ecliptic position vector of Mars.

The syntax of this MATLAB function is

function rmars = mars (jdate)

% true-of-date heliocentric, ecliptic

% position vector of Mars

% input

% jdate = Julian date

Celestial Computing with MATLAB

Page 72

% output

% rmars = position vector of Mars (km)

jupiter.m – Jupiter ephemeris

This function calculates the true-of-date heliocentric ecliptic position vector of Jupiter.

The syntax of this MATLAB function is

function rjupiter = jupiter (jdate)

% true-of-date heliocentric, ecliptic

% position vector of Jupiter

% input

% jdate = Julian date

% output

% rjupiter = position vector of Jupiter (km)

saturn.m – Saturn ephemeris

This function calculates the true-of-date heliocentric ecliptic position vector of Saturn.

The syntax of this MATLAB function is

function rsaturn = saturn (jdate)

% true-of-date heliocentric, ecliptic

% position vector of Saturn

% input

% jdate = Julian date

% output

% rsaturn = position vector of Saturn (km)

uranus.m – Uranus ephemeris

This function calculates the true-of-date heliocentric ecliptic position vector of Uranus.

The syntax of this MATLAB function is

function ruranus = uranus (jdate)

% true-of-date heliocentric, ecliptic

% position vector of Uranus

% input

Celestial Computing with MATLAB

Page 73

% jdate = Julian date

% output

% ruranus = position vector of Uranus (km)

neptune.m – Neptune ephemeris

This function calculates the true-of-date heliocentric ecliptic position vector of Neptune.

The syntax of this MATLAB function is

function rneptune = neptune (jdate)

% true-of-date heliocentric, ecliptic

% position vector of Neptune

% input

% jdate = Julian date

% output

% rneptune = position vector of Neptune (km)

pluto.m – Pluto ephemeris

This function calculates the heliocentric position vector of Pluto relative to the ecliptic and

equinox of J2000. This algorithm is based on the method described in Chapter 36 of

Astronomical Algorithms by Jean Meeus.

The fundamental time argument for this method is a function of the Julian Ephemeris Date

JED as follows:

2451545

36525

JED
T




The heliocentric ecliptic coordinates of Pluto are computed from series of the form

43

1

sin cosm

i

A B   


  

where

 coordinate mean value

, , mean longitudes of Jupiter, Saturn and Pluto

, , integer constants

, coefficients of periodic term

m

iJ jS kP

J S P

i j k

A B







  







The syntax of this MATLAB function is

Celestial Computing with MATLAB

Page 74

function rpluto = pluto(jdate)

% heliocentric coordinates of pluto

% heliocentric position vector of Pluto

% ecliptic and equinox of J2000

% input

% jdate = Julian date

% output

% rpluto = position vector of Pluto (km)

sun1.m – precision Sun ephemeris

This MATLAB function computes a true-of-date geocentric ephemeris of the Sun based on

the data and numerical methods described in the book, Planetary Programs and Tables by

Pierre Bretagnon and Jean-Louis Simon.

The fundamental time argument of this method is the number of days relative to the Julian

epoch January 1, 2000 normalized with respect to 3652500 Julian days. This value can be

calculated for any Julian Ephemeris Date JED with the following expression

2451545

3652500

JED
U




The geocentric, ecliptic mean longitude of the Sun is calculated with a trigonometric series of

the form

  
50

0 1

1

sinm

s i i i

i

U l U    


   

The geocentric distance of the Sun is calculated with another series of the form

  
50

0 1

1

coss i i i

i

r r r U r U 


   

The longitude of the Sun is corrected for the effect of aberration (in radians) with the

following equation:

   710 993 17cos 3.10 62830.14a

s U     

The nutation in longitude (in radians) is calculated from

  7

1 210 834sin 64sinA A    

 where

Celestial Computing with MATLAB

Page 75

2

1

2

2

2.18 3375.70 0.36

3.51 125666.39 0.10

A U U

A U U

  

  

The apparent, geocentric ecliptic longitude of the Sun is determined as the combination of

these three components with the next equation

 m a

s s s     

The three components of the geocentric, ecliptic position vector of the Sun are given by

cos

sin

0

s s s

s s s

s

x r

y r

z











The apparent geocentric, equatorial right ascension s and declination s of the Sun can be

found from

 

 

arctan cos ,sin sin

arcsin sin sin

s s s

s s

   

  





where  is the true obliquity of the ecliptic. This number is calculated from the mean

obliquity of the ecliptic m and the nutation in obliquity  in this function with the

following expressions:

  

    

7

1 2

7

10 4090928 446cos 28cos

10 226938 75 96926 2491 12104

m

m A A

U U U U U

  









  

  

        

Finally, we can compute the three components of the apparent, geocentric equatorial position

vector of the Sun with the following three expressions:

cos cos

sin cos

sin

x s s

y s s

z s

r r

r r

r r

 

 









where r is the geocentric distance of the Sun.

This function requires initialization the first time it is called. The following statement in the

main MATLAB script will accomplish this:

Celestial Computing with MATLAB

Page 76

 suncoef = 1;

This variable should also be placed in a global statement at the beginning of the main

script that calls this function.

The syntax of this MATLAB function is

function [rasc, decl, rsun] = sun1 (jdate)

% precision ephemeris of the Sun

% input

% jdate = julian ephemeris date

% output

% rasc = right ascension of the Sun (radians)

% (0 <= rasc <= 2 pi)

% decl = declination of the Sun (radians)

% (-pi/2 <= decl <= pi/2)

% rsun = eci position vector of the Sun (km)

elp2000.m – osculating orbital elements of the moon

This function calculates the osculating classical orbital elements of the Moon in the mean

ecliptic and mean equinox of date coordinate system. It is based on the book Lunar Tables

and Programs From 4000 B.C. TO A.D. 8000 by Michelle Chapront-Touze and Jean

Chapront. This book and its optional companion software are available from Willmann-Bell

(www.willbell.com).

The fundamental time argument of this algorithm is

2451545

36525

JED
t




where JED is the Julian Ephemeris Date.

The osculating orbital elements are calculated from series of the form

 383397.6 a aa S tS  

where

          

    

30
0 1 2 3 44 2 6 3 8 4

1

3
0 1

1

cos 10 10 10

cos

a n n n n n n

n

a n n n

n

S a t t t t

S a t

    

 

  





    

    





The first few multipliers and trigonometric arguments for this orbital element are

Celestial Computing with MATLAB

Page 77

n
na

 0

n
 1

n
 2

n
 3

n
 4

n

1 3400.4 235.7004 890534.223

0

 -32.601 3.664 -1.769

2 -635.6 100.7370 413335.355

4

-122.571 -10.684 5.028

n
na  0

n 
 1

n 

1 -0.55 238.2 854535.2

2 0.10 103.2 377336.3

The following is the syntax for this MATLAB function.

function oev = elp2000(tjd)

% osculating orbital elements of the moon

% mean ecliptic and mean equinox of date

% input

% tjd = tdt Julian date

% output

% oev(1) = semimajor axis (kilometers)

% oev(2) = orbital eccentricity (non-dimensional)

% (0 <= eccentricity < 1)

% oev(3) = orbital inclination (radians)

% (0 <= inclination <= pi)

% oev(4) = argument of perigee (radians)

% (0 <= argument of perigee <= 2 pi)

% oev(5) = right ascension of ascending node (radians)

% (0 <= raan <= 2 pi)

% oev(6) = true anomaly (radians)

% (0 <= true anomaly <= 2 pi)

A MATLAB script called demoelp.m which demonstrates how to interact with this

ephemeris function is included with this software. The following is a typical user interaction

with this script.

 demoelp

 < orbital elements of the moon >

please input the calendar date

(1 <= month <= 12, 1 <= day <= 31, year = all digits!)

? 1,1,1999

please input the simulation period (days)

? 360

Celestial Computing with MATLAB

Page 78

please input the graphics step size (days)

? .1

please select the orbital element to plot

 <1> semimajor axis

 <2> eccentricity

 <3> orbital inclination

 <4> argument of perigee

 <5> right ascension of the ascending node

 <6> true anomaly

 <7> apogee radius

 <8> perigee radius

 <9> geocentric distance

? 2

The following is the graphics display for this example.

planet1.m – mean ecliptic and equinox of data planetary ephemeredes

This MATLAB calculates the position and velocity vectors of the planets with respect to the

mean ecliptic and equinox of date. These calculations are based on the algorithm described in

Chapter 30 of Astronomical Algorithms by Jean Meeus. Each orbital element is represented

by a cubic polynomial of the form

2 3

0 1 2 3a a T a T a T  

Celestial Computing with MATLAB

Page 79

where the fundamental time argument T is given by

2451545

36525

JED
T




In this expression JED is the Julian ephemeris date.

The syntax of this MATLAB function is

function [r, v] = planet1(ip, jdate)

% planetary ephemeris

% input

% ip = planet index (1 = mercury, 2 = venus, etc.)

% jdate = Julian date

% output

% r = heliocentric position vector (kilometers)

% v = heliocentric velocity vector (kilometers/second)

planet2.m – mean ecliptic and equinox of J2000 planetary ephemerides

This MATLAB calculates the position and velocity vectors of the planets with respect to the

mean ecliptic and equinox of J2000. These calculations are based on the algorithm described

in Chapter 30 of Astronomical Algorithms by Jean Meeus. Each orbital element is

represented by a cubic polynomial of the form

2 3

0 1 2 3a a T a T a T  

where the fundamental time argument T is given by

2451545

36525

JED
T




In this expression JED is the Julian ephemeris date.

The syntax of this MATLAB function is

function [r, v] = planet2(ip, jdate)

% planetary ephemeris

% input

% ip = planet index (1 = mercury, 2 = venus, etc.)

% jdate = Julian date

Celestial Computing with MATLAB

Page 80

% output

% r = heliocentric position vector (kilometers)

% v = heliocentric velocity vector (kilometers/second)

seleno.m – selenographic coordinate transformation

This MATLB function computes a transformation matrix that can be used to convert vectors

in the ECI mean of date coordinates to selenographic mean of date or true of date coordinate

system. The transformation is based on the algorithms given in Section 4.8 of the classic text

Methods of Orbit Determination.

The syntax of this MATLAB function is

function a = seleno(jd, it)

% transformation matrix from eci mean of date to

% selenographic mean of date or true of date

% input

% jd = julian date

% it = transformation flag

% = 0 transform to mean selenographic

% <> 0 transform to true selenographic

% (include physical librations)

% output

% a(3, 3) = transformation matrix

A MATLAB script that demonstrates how to use this function is included in the Celestial

Computing with MATLAB software suite. The script is called demosen.m and it graphically

displays the topocentric coordinates of the Sun relative to a selenographic location on the

Moon.

