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15. Other Lunar, Solar and Planetary Ephemeris Algorithms 
 

The next ten MATLAB functions are based on the algorithms described in “Low-Precision 

Formulae for Planetary Positions”, T. C. Van Flandern and K. F. Pulkkinen, The 

Astrophysical Journal Supplement Series, 41:391-411, November 1979. To the precision of 

this algorithm (one arc minute) these coordinates can be considered to be true-of-date. 

 

Each algorithm uses time arguments given by 
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where JD is the Julian date on the UT1 time scale. 

 

Each MATLAB function uses fundamental trigonometric arguments (in revolutions) of the 

following form: 
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The heliocentric, ecliptic longitude  , latitude   and distance r are computed from series 

involving these arguments. These series are of the form 
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where the unit of r is Astronomical Units. 

 

The heliocentric, ecliptic position vector of the planet is determined from 
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sun.m – solar ephemeris 

 

This function calculates the true-of-date geocentric right ascension, declination and position 

vector of the Sun. 
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The syntax of this MATLAB function is 

 
function [rasc, decl, rsun] = sun (jdate) 

 

% solar ephemeris 

 

% input 

     

%  jdate = Julian date 

 

% output 

 

%  rasc = right ascension of the sun (radians) 

%         (0 <= rasc <= 2 pi) 

%  decl = declination of the sun (radians) 

%         (-pi/2 <= decl <= pi/2) 

%  rsun = eci position vector of the sun (km) 

 

moon.m – lunar ephemeris 

 

This function calculates the true-of-date geocentric right ascension, declination and position 

vector of the Moon. 

 

The syntax of this MATLAB function is 

 
function [rasc, decl, rmoon] = moon (jdate) 

 

% lunar ephemeris 

 

% input 

 

%  jdate = julian date 

 

% output 

 

%  rasc  = right ascension of the moon (radians) 

%          (0 <= rasc <= 2 pi) 

%  decl  = declination of the moon (radians) 

%          (-pi/2 <= decl <= pi/2) 

%  rmoon = eci position vector of the moon (km) 

 

mercury.m – Mercury ephemeris 

 

This function calculates the true-of-date heliocentric ecliptic position vector of Mercury. 

 

The syntax of this MATLAB function is 

 
function rmercury = mercury (jdate) 

 

% true-of-date heliocentric, ecliptic 

% position vector of Mercury 

 

% input 

     

%  jdate = julian date 
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% output 

 

%  rmercury = position vector of Mercury (km) 

 

venus.m – Venus ephemeris 

 

This function calculates the true-of-date heliocentric ecliptic position vector of Venus. 

 

The syntax of this MATLAB function is 

 
function rvenus = venus (jdate) 

 

% true-of-date heliocentric, ecliptic 

% position vector of venus 

 

% input 

 

%  jdate = Julian date 

 

% output 

 

%  rvenus = position vector of Venus (km) 

 

earth.m – Earth ephemeris 

 

This function calculates the true-of-date heliocentric ecliptic position vector of the Earth. 

 

The syntax of this MATLAB function is 

 
function rearth = earth (jdate) 

 

% true-of-date heliocentric, ecliptic 

% position vector of the Earth 

 

% input 

     

%  jdate = Julian date 

 

% output 

 

%  rearth = position vector of the Earth (km) 

 

mars.m – Mars ephemeris 

 

This function calculates the true-of-date heliocentric ecliptic position vector of Mars. 

 

The syntax of this MATLAB function is 

 
function rmars = mars (jdate) 

 

% true-of-date heliocentric, ecliptic 

% position vector of Mars 

 

% input 

     

%  jdate = Julian date 
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% output 

 

%  rmars = position vector of Mars (km) 

 

jupiter.m – Jupiter ephemeris 

 

This function calculates the true-of-date heliocentric ecliptic position vector of Jupiter. 

 

The syntax of this MATLAB function is 

 
function rjupiter = jupiter (jdate) 

 

% true-of-date heliocentric, ecliptic 

% position vector of Jupiter 

 

% input 

     

%  jdate = Julian date 

 

% output 

 

%  rjupiter = position vector of Jupiter (km) 

 

saturn.m – Saturn ephemeris 

 

This function calculates the true-of-date heliocentric ecliptic position vector of Saturn. 

 

The syntax of this MATLAB function is 

 
function rsaturn = saturn (jdate) 

 

% true-of-date heliocentric, ecliptic 

% position vector of Saturn 

 

% input 

     

%  jdate = Julian date 

 

% output 

 

%  rsaturn = position vector of Saturn (km) 

 

uranus.m – Uranus ephemeris 

 

This function calculates the true-of-date heliocentric ecliptic position vector of Uranus. 

 

The syntax of this MATLAB function is 

 
function ruranus = uranus (jdate) 

 

% true-of-date heliocentric, ecliptic 

% position vector of Uranus 

 

% input 
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%  jdate = Julian date 

 

% output 

 

%  ruranus = position vector of Uranus (km) 

 

neptune.m – Neptune ephemeris 

 

This function calculates the true-of-date heliocentric ecliptic position vector of Neptune. 

 

The syntax of this MATLAB function is 

 
function rneptune = neptune (jdate) 

 

% true-of-date heliocentric, ecliptic 

% position vector of Neptune 

 

% input 

     

%  jdate = Julian date 

 

% output 

 

%  rneptune = position vector of Neptune (km) 

 

pluto.m – Pluto ephemeris 

 

This function calculates the heliocentric position vector of Pluto relative to the ecliptic and 

equinox of J2000. This algorithm is based on the method described in Chapter 36 of 

Astronomical Algorithms by Jean Meeus. 

 

The fundamental time argument for this method is a function of the Julian Ephemeris Date 

JED as follows: 
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The heliocentric ecliptic coordinates of Pluto are computed from series of the form 
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The syntax of this MATLAB function is 
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function rpluto = pluto(jdate) 

 

% heliocentric coordinates of pluto 

 

% heliocentric position vector of Pluto 

% ecliptic and equinox of J2000 

 

% input 

     

%  jdate = Julian date 

 

% output 

 

%  rpluto = position vector of Pluto (km) 

 

sun1.m – precision Sun ephemeris 

 

This MATLAB function computes a true-of-date geocentric ephemeris of the Sun based on 

the data and numerical methods described in the book, Planetary Programs and Tables by 

Pierre Bretagnon and Jean-Louis Simon. 

 

The fundamental time argument of this method is the number of days relative to the Julian 

epoch January 1, 2000 normalized with respect to 3652500 Julian days. This value can be 

calculated for any Julian Ephemeris Date JED with the following expression 
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The geocentric, ecliptic mean longitude of the Sun is calculated with a trigonometric series of 

the form 
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The geocentric distance of the Sun is calculated with another series of the form 
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The longitude of the Sun is corrected for the effect of aberration (in radians) with the 

following equation: 

   710 993 17cos 3.10 62830.14a
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The nutation in longitude (in radians) is calculated from 
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 where 
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The apparent, geocentric ecliptic longitude of the Sun is determined as the combination of 

these three components with the next equation 
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The three components of the geocentric, ecliptic position vector of the Sun are given by 

 

 

cos

sin

0

s s s

s s s

s

x r

y r

z











 

 

The apparent geocentric, equatorial right ascension s  and declination s  of the Sun can be 

found from 
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where   is the true obliquity of the ecliptic. This number is calculated from the mean 

obliquity of the ecliptic m  and the nutation in obliquity   in this function with the 

following expressions: 
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Finally, we can compute the three components of the apparent, geocentric equatorial position 

vector of the Sun with the following three expressions: 
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where r is the geocentric distance of the Sun. 

 

This function requires initialization the first time it is called. The following statement in the 

main MATLAB script will accomplish this: 
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 suncoef = 1; 

 

This variable should also be placed in a global statement at the beginning of the main 

script that calls this function. 

 

The syntax of this MATLAB function is 

 
function [rasc, decl, rsun] = sun1 (jdate) 

 

% precision ephemeris of the Sun 

 

% input 

     

%  jdate = julian ephemeris date 

 

% output 

 

%  rasc = right ascension of the Sun (radians) 

%         (0 <= rasc <= 2 pi) 

%  decl = declination of the Sun (radians) 

%         (-pi/2 <= decl <= pi/2) 

%  rsun = eci position vector of the Sun (km) 

 

elp2000.m – osculating orbital elements of the moon 

 

This function calculates the osculating classical orbital elements of the Moon in the mean 

ecliptic and mean equinox of date coordinate system. It is based on the book Lunar Tables 

and Programs From 4000 B.C. TO A.D. 8000 by Michelle Chapront-Touze and Jean 

Chapront. This book and its optional companion software are available from Willmann-Bell 

(www.willbell.com). 

 

The fundamental time argument of this algorithm is 
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where JED is the Julian Ephemeris Date. 

 

The osculating orbital elements are calculated from series of the form 
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The first few multipliers and trigonometric arguments for this orbital element are 
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n 
na  

 0

n  
 1

n  
 2

n  
 3

n  
 4

n  

1 3400.4 235.7004 890534.223

0 

 -32.601   3.664 -1.769 

2 -635.6 100.7370 413335.355

4 

-122.571 -10.684  5.028 

 

n 
na   0

n   
 1

n   

1 -0.55 238.2 854535.2 

2  0.10 103.2 377336.3 

 

The following is the syntax for this MATLAB function. 

 
function oev = elp2000(tjd) 

 

% osculating orbital elements of the moon 

 

% mean ecliptic and mean equinox of date 

 

% input 

 

%  tjd = tdt Julian date 

 

% output 

 

%  oev(1)  = semimajor axis (kilometers) 

%  oev(2)  = orbital eccentricity (non-dimensional) 

%            (0 <= eccentricity < 1) 

%  oev(3)  = orbital inclination (radians) 

%            (0 <= inclination <= pi) 

%  oev(4)  = argument of perigee (radians) 

%            (0 <= argument of perigee <= 2 pi) 

%  oev(5)  = right ascension of ascending node (radians) 

%            (0 <= raan <= 2 pi) 

%  oev(6)  = true anomaly (radians) 

%            (0 <= true anomaly <= 2 pi) 

 

A MATLAB script called demoelp.m which demonstrates how to interact with this 

ephemeris function is included with this software. The following is a typical user interaction 

with this script. 

 
                  demoelp 

 

   < orbital elements of the moon > 

 

 

please input the calendar date 

(1 <= month <= 12, 1 <= day <= 31, year = all digits!) 

? 1,1,1999 

 

 

please input the simulation period (days) 

? 360 
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please input the graphics step size (days) 

? .1 

 

please select the orbital element to plot 

 

  <1> semimajor axis 

  <2> eccentricity 

  <3> orbital inclination 

  <4> argument of perigee 

  <5> right ascension of the ascending node 

  <6> true anomaly 

  <7> apogee radius 

  <8> perigee radius 

  <9> geocentric distance 

 

? 2 

 

The following is the graphics display for this example. 
 

 
 

planet1.m – mean ecliptic and equinox of data planetary ephemeredes 

 

This MATLAB calculates the position and velocity vectors of the planets with respect to the 

mean ecliptic and equinox of date. These calculations are based on the algorithm described in 

Chapter 30 of Astronomical Algorithms by Jean Meeus. Each orbital element is represented 

by a cubic polynomial of the form 
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where the fundamental time argument T is given by 
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In this expression JED is the Julian ephemeris date. 

 

The syntax of this MATLAB function is 

 
function [r, v] = planet1(ip, jdate) 

 

% planetary ephemeris 

 

% input 

 

%  ip    = planet index (1 = mercury, 2 = venus, etc.) 

%  jdate = Julian date 

 

% output 

 

%  r = heliocentric position vector (kilometers) 

%  v = heliocentric velocity vector (kilometers/second) 

 

planet2.m – mean ecliptic and equinox of J2000 planetary ephemerides 

 

This MATLAB calculates the position and velocity vectors of the planets with respect to the 

mean ecliptic and equinox of J2000. These calculations are based on the algorithm described 

in Chapter 30 of Astronomical Algorithms by Jean Meeus. Each orbital element is 

represented by a cubic polynomial of the form 
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where the fundamental time argument T is given by 
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In this expression JED is the Julian ephemeris date. 

 

The syntax of this MATLAB function is 

 
function [r, v] = planet2(ip, jdate) 

 

% planetary ephemeris 

 

% input 

 

%  ip    = planet index (1 = mercury, 2 = venus, etc.) 

%  jdate = Julian date 
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% output 

 

%  r = heliocentric position vector (kilometers) 

%  v = heliocentric velocity vector (kilometers/second) 

 

seleno.m – selenographic coordinate transformation 

 

This MATLB function computes a transformation matrix that can be used to convert vectors 

in the ECI mean of date coordinates to selenographic mean of date or true of date coordinate 

system. The transformation is based on the algorithms given in Section 4.8 of the classic text 

Methods of Orbit Determination. 

 

The syntax of this MATLAB function is 

 
function a = seleno(jd, it) 

 

% transformation matrix from eci mean of date to 

% selenographic mean of date or true of date 

 

% input 

 

%  jd = julian date 

%  it = transformation flag 

%     = 0 transform to mean selenographic 

%    <> 0 transform to true selenographic 

%         (include physical librations) 

 

% output 

 

%  a(3, 3) = transformation matrix 

 

A MATLAB script that demonstrates how to use this function is included in the Celestial 

Computing with MATLAB software suite. The script is called demosen.m and it graphically 

displays the topocentric coordinates of the Sun relative to a selenographic location on the 

Moon. 

 


