
Orbital Mechanics with MATLAB

page 1

Ephemeris Functions

This document describes a series of MATLAB scripts and functions that compute ephemerides
of the moon, sun, planets and stars. Routines are provided with different levels of fidelity along
with demonstration scripts that illustrate the proper interaction with many of these functions.
MATLAB scripts are also provided that calculate both apparent geocentric and topocentric
coordinates of these objects using MATLAB versions of Fortran subroutines from the Naval
Observatory Vector Astrometry Subroutines (NOVAS) software suite.

The next ten MATLAB functions are based on the algorithms described in Low-Precision
Formulae for Planetary Positions, T. C. Van Flandern and K. F. Pulkkinen, The Astrophysical
Journal Supplement Series, 41:391-411, November 1979. To the precision of this algorithm (one
arc minute) these coordinates can be considered to be true-of-date.

Each algorithm uses time arguments given by

2451545

/ 36525 1

t JD

T t

where JD is the Julian date.

Each function uses fundamental trigonometric arguments (in revolutions) of the following form:

2

4

5

4

4

0.993126 0.00273777850

0.140023 0.00445036173

0.053856 0.00145561327

0.056531 0.00023080893

0.849694 0.00145569465

0.987353 0.00145575328

sG t

G t

G t

G t

F t

L t

The heliocentric, ecliptic longitude , latitude and distance r are computed from series
involving these arguments. These series are of the form

4 4 4 4

4 4 4 4 4

4 4

38451sin 2238sin 2 181sin 3

6603sin 622sin 615sin

1.53031 0.1417cos 0.0066cos 2

L G G G

F G F G F

r G G

where the unit of r is Astronomical Units (AU). In these functions, the value of AU is equal to
149597870.691 kilometers.

Orbital Mechanics with MATLAB

page 2

The heliocentric, ecliptic position vector of the planet is determined from

cos cos

cos sin

sin

r

r

sun1.m – solar ephemeris

This function calculates the true-of-date geocentric right ascension, declination and position
vector of the Sun.

The syntax of this MATLAB function is

function [rasc, decl, rsun] = sun1 (jdate)

% solar ephemeris

% input

% jdate = Julian date

% output

% rasc = right ascension of the sun (radians)
% (0 <= rasc <= 2 pi)
% decl = declination of the sun (radians)
% (-pi/2 <= decl <= pi/2)
% rsun = eci position vector of the sun (km)

moon.m – lunar ephemeris

This function calculates the true-of-date geocentric right ascension, declination and position
vector of the Moon.

The syntax of this MATLAB function is

function [rasc, decl, rmoon] = moon (jdate)

% lunar ephemeris

% input

% jdate = julian date

% output

% rasc = right ascension of the moon (radians)
% (0 <= rasc <= 2 pi)
% decl = declination of the moon (radians)
% (-pi/2 <= decl <= pi/2)
% rmoon = eci position vector of the moon (km)

Orbital Mechanics with MATLAB

page 3

mercury.m – Mercury ephemeris

This function calculates the true-of-date heliocentric ecliptic position vector of Mercury.

The syntax of this MATLAB function is

function rmercury = mercury (jdate)

% true-of-date heliocentric, ecliptic
% position vector of Mercury

% input

% jdate = julian date

% output

% rmercury = position vector of Mercury (km)

venus.m – Venus ephemeris

This function calculates the true-of-date heliocentric ecliptic position vector of Venus.

The syntax of this MATLAB function is

function rvenus = venus (jdate)

% true-of-date heliocentric, ecliptic
% position vector of venus

% input

% jdate = Julian date

% output

% rvenus = position vector of Venus (km)

earth.m – Earth ephemeris

This function calculates the true-of-date heliocentric ecliptic position vector of the Earth.

The syntax of this MATLAB function is

function rearth = earth (jdate)

% true-of-date heliocentric, ecliptic
% position vector of the Earth

% input

% jdate = Julian date

Orbital Mechanics with MATLAB

page 4

% output

% rearth = position vector of the Earth (km)

mars.m – Mars ephemeris

This function calculates the true-of-date heliocentric ecliptic position vector of Mars.

The syntax of this MATLAB function is

function rmars = mars (jdate)

% true-of-date heliocentric, ecliptic
% position vector of Mars

% input

% jdate = Julian date

% output

% rmars = position vector of Mars (km)

jupiter.m – Jupiter ephemeris

This function calculates the true-of-date heliocentric ecliptic position vector of Jupiter.

The syntax of this MATLAB function is

function rjupiter = jupiter (jdate)

% true-of-date heliocentric, ecliptic
% position vector of Jupiter

% input

% jdate = Julian date

% output

% rjupiter = position vector of Jupiter (km)

saturn.m – Saturn ephemeris

This function calculates the true-of-date heliocentric ecliptic position vector of Saturn.

The syntax of this MATLAB function is

function rsaturn = saturn (jdate)

% true-of-date heliocentric, ecliptic

Orbital Mechanics with MATLAB

page 5

% position vector of Saturn

% input

% jdate = Julian date

% output

% rsaturn = position vector of Saturn (km)

uranus.m – Uranus ephemeris

This function calculates the true-of-date heliocentric ecliptic position vector of Uranus.

The syntax of this MATLAB function is

function ruranus = uranus (jdate)

% true-of-date heliocentric, ecliptic
% position vector of Uranus

% input

% jdate = Julian date

% output

% ruranus = position vector of Uranus (km)

neptune.m – Neptune ephemeris

This function calculates the true-of-date heliocentric ecliptic position vector of Neptune.

The syntax of this MATLAB function is

function rneptune = neptune (jdate)

% true-of-date heliocentric, ecliptic
% position vector of Neptune

% input

% jdate = Julian date

% output

% rneptune = position vector of Neptune (km)

Orbital Mechanics with MATLAB

page 6

pluto.m – Pluto ephemeris

This function calculates the heliocentric position vector of Pluto relative to the ecliptic and
equinox of J2000. This algorithm is based on the method described in Chapter 36 of
Astronomical Algorithms by Jean Meeus.

The fundamental time argument for this method is a function of the Julian Ephemeris Date JED
as follows:

2451545

36525

JED
T

The heliocentric ecliptic coordinates of Pluto are computed from series of the form

43

1

sin cosm

i

A B

where

 coordinate mean value

, , mean longitudes of Jupiter, Saturn and Pluto

, , integer constants

, coefficients of periodic term

m

iJ jS kP

J S P

i j k

A B

The syntax of this MATLAB function is

function rpluto = pluto(jdate)

% heliocentric coordinates of pluto

% heliocentric position vector of Pluto
% ecliptic and equinox of J2000

% input

% jdate = Julian date

% output

% rpluto = position vector of Pluto (km)

sun2.m – precision Sun ephemeris

This MATLAB function computes a true-of-date geocentric ephemeris of the Sun based on the
data and numerical methods described in the book, Planetary Programs and Tables by Pierre
Bretagnon and Jean-Louis Simon.

Orbital Mechanics with MATLAB

page 7

The fundamental time argument of this method is the number of days relative to the Julian epoch
January 1, 2000 normalized with respect to 3652500 Julian days. This value can be calculated
for any Julian Ephemeris Date JED with the following expression

2451545

3652500

JED
U

The geocentric, ecliptic mean longitude of the Sun is calculated with a trigonometric series of the
form

50

0 1
1

sinm
s i i i

i

U l U

The geocentric distance of the Sun is calculated with another series of the form

50

0 1
1

coss i i i
i

r r r U r U

The longitude of the Sun is corrected for the effect of aberration (in radians) with the following
equation:

 710 993 17cos 3.10 62830.14a
s U

The nutation in longitude (in radians) is calculated from

 7
1 210 834sin 64sinA A

 where

2

1

2
2

2.18 3375.70 0.36

3.51 125666.39 0.10

A U U

A U U

The apparent, geocentric ecliptic longitude of the Sun is determined as the combination of these
three components with the next equation

 m a
s s s

The three components of the geocentric, ecliptic position vector of the Sun are given by

cos

sin

0

s s s

s s s

s

x r

y r

z

The apparent geocentric, equatorial right ascension s and declination s of the Sun can be

found from

Orbital Mechanics with MATLAB

page 8

1

1

tan cos ,sin sin

sin sin sin

s s s

s s

where is the true obliquity of the ecliptic. This number is calculated from the mean obliquity
of the ecliptic m and the nutation in obliquity in this function with the following

expressions:

7
1 2

7

10 4090928 446cos 28cos

10 226938 75 96926 2491 12104

m

m A A

U U U U U

Finally, we can compute the three components of the apparent, geocentric equatorial position
vector of the Sun with the following three expressions:

cos cos

sin cos

sin

x s s

y s s

z s

r r

r r

r r

where r is the geocentric distance of the Sun.

This function requires initialization the first time it is called. The following statement in the
main MATLAB script will accomplish this:

 suncoef = 1;

This variable should also be placed in a global statement at the beginning of the main script
that calls this function.

The syntax of this MATLAB function is

function [rasc, decl, rsun] = sun2 (jdate)

% precision ephemeris of the Sun

% input

% jdate = julian ephemeris date

% output

% rasc = right ascension of the Sun (radians)
% (0 <= rasc <= 2 pi)
% decl = declination of the Sun (radians)
% (-pi/2 <= decl <= pi/2)
% rsun = eci position vector of the Sun (km)

Orbital Mechanics with MATLAB

page 9

elp2000.m – osculating orbital elements of the moon

This function calculates the osculating classical orbital elements of the Moon in the mean ecliptic
and mean equinox of date coordinate system. It is based on the book Lunar Tables and
Programs From 4000 B.C. TO A.D. 8000 by Michelle Chapront-Touze and Jean Chapront. This
book and its optional companion software are available from Willmann-Bell (www.willbell.com).

The fundamental time argument of this algorithm is

2451545

36525

JED
t

where JED is the Julian Ephemeris Date.

The osculating orbital elements are calculated from series of the form

383397.6 a aa S tS

where

30
0 1 2 3 44 2 6 3 8 4

1

3
0 1

1

cos 10 10 10

cos

a n n n n n n
n

a n n n
n

S a t t t t

S a t

The first few multipliers and trigonometric arguments for this orbital element are

n
na

 0
n

 1
n

 2
n

 3
n

 4
n

1 3400.4 235.7004 890534.2230 -32.601 3.664 -1.769

2 -635.6 100.7370 413335.3554 -122.571 -10.684 5.028

n

na 0
n 1

n

1 -0.55 238.2 854535.2

2 0.10 103.2 377336.3

The syntax for this MATLAB function is

function oev = elp2000(tjd)

% osculating orbital elements of the moon

% mean ecliptic and mean equinox of date

% input

Orbital Mechanics with MATLAB

page 10

% tjd = tdt Julian date

% output

% oev(1) = semimajor axis (kilometers)
% oev(2) = orbital eccentricity (non-dimensional)
% (0 <= eccentricity < 1)
% oev(3) = orbital inclination (radians)
% (0 <= inclination <= pi)
% oev(4) = argument of perigee (radians)
% (0 <= argument of perigee <= 2 pi)
% oev(5) = right ascension of ascending node (radians)
% (0 <= raan <= 2 pi)
% oev(6) = true anomaly (radians)
% (0 <= true anomaly <= 2 pi)

This software suite includes a script called demo_elp.m that demonstrates how to interact with
this function. The following is a typical user interaction with this script.

 program demo_elp

< orbital elements of the moon >

please input the calendar date
(1 <= month <= 12, 1 <= day <= 31, year = all digits!)
? 1,1,2001

please input the simulation period (days)
? 360

please input the graphics step size (days)
? .25

please select the orbital element to plot

 <1> semimajor axis
 <2> eccentricity
 <3> orbital inclination
 <4> argument of perigee
 <5> right ascension of the ascending node
 <6> true anomaly
 <7> apogee radius
 <8> perigee radius
 <9> geocentric distance

? 3

The following is the graphics display created for this example.

Orbital Mechanics with MATLAB

page 11

01/01/01 04/01/01 07/01/01 10/01/01 01/01/02
4.95

5

5.05

5.1

5.15

5.2

5.25

5.3

5.35

5.4

Calendar Date

O
rb

ita
l I

nc
lin

at
io

n
(d

eg
re

es
)

Orbital Inclination of the Moon

planet.m – mean planetary ephemerides

This MATLAB function calculates the position and velocity vectors of the planets with respect
to the mean ecliptic and equinox of date. These calculations are based on the algorithm
described in Chapter 30 of Astronomical Algorithms by Jean Meeus. Each orbital element is
represented by a cubic polynomial of the form

2 3
0 1 2 3a a T a T a T

where the fundamental time argument T is given by

2451545
36525

JED
T

In this expression JED is the Julian ephemeris date.

The syntax of this MATLAB function is

function [r, v] = planet(ip, jdate)

% planetary ephemeris

% input

% ip = planet index (1 = mercury, 2 = venus, etc.)

Orbital Mechanics with MATLAB

page 12

% jdate = Julian date

% output

% r = heliocentric position vector (kilometers)
% v = heliocentric velocity vector (kilometers/second)

p2000.m – J2000 planetary ephemerides

This MATLAB function calculates the position and velocity vectors of the planets with respect
to the mean ecliptic and equinox of J2000. These calculations are based on the algorithm
described in Chapter 30 of Astronomical Algorithms by Jean Meeus. Each orbital element is
represented by a cubic polynomial of the form

2 3
0 1 2 3a a T a T a T

where the fundamental time argument T is given by

2451545
36525

JED
T

In this expression JED is the Julian ephemeris date.

The syntax of this MATLAB function is

function [r, v] = p2000(ip, jdate)

% planetary ephemeris

% input

% ip = planet index (1 = mercury, 2 = venus, etc.)
% jdate = julian date

% output

% r = heliocentric position vector (kilometers)
% v = heliocentric velocity vector (kilometers/second)

% Note: coordinates are with respect to the
% ecliptic and equinox of J2000.

pecl2000.m – J2000 ecliptic planetary ephemerides – JPL binary source

This MATLAB function calculates the position and velocity vectors of the planets with respect
to the Earth mean ecliptic and equinox of J2000. The source ephemeris is a JPL binary file
which provides planetary coordinates in the Earth mean equator and equinox of J2000 system.

These state vectors are transformed to the ecliptic frame using the following transformation
matrix:

Orbital Mechanics with MATLAB

page 13

1 -0.000000479966 0

0.000000440360 0.917482137087 0.397776982902

-0.000000190919 -0.397776982902 0.917482137087

The syntax of this MATLAB function is

function [r, v] = pecl2000(ntarg, jdate)

% heliocentric planetary state vector

% earth mean ecliptic and equinox of j2000
% coordinate system (jpl ephemeris)

% input

% jdate = TDB julian date
% ntarg = "target" body

% output

% r = position vector (kilometers)
% v = velocity vector (kilometers/second)

% NOTE: requires equatorial to ecliptic
% transformation matrix eq2000 via global

% eq2000 = [+1.000000000000d0 -0.000000479966d0 0.000000000000d0]
% [+0.000000440360d0 +0.917482137087d0 +0.397776982902d0]
% [-0.000000190919d0 -0.397776982902d0 +0.917482137087d0]

Please note that the eq2000 transformation matrix must be provided to this function using a
global eq2000 statement in this function and the main script. The main script provides this
matrix using the following MATLAB source code.

% equatorial-to-ecliptic transformation matrix

eq2000 = [[+1.000000000000d0 -0.000000479966d0 0.000000000000d0]; ...
 [+0.000000440360d0 +0.917482137087d0 +0.397776982902d0]; ...
 [-0.000000190919d0 -0.397776982902d0 +0.917482137087d0]];

slp96.m and demo_slp.m – lunar and planetary ephemeris - Bureau of Longitudes/IMCCE

This MATLAB function and script demonstrate how to read SLP96 binary ephemeris files
created using the Fortran programs and ASCII data files provided by the Institut de Mecanique
Celeste et de Calcul des Ephemerides (IMCCE), and calculate the position and velocity vectors
of a planet or the moon in either the J2000 FK5 or dynamical coordinate systems. The slp96.m
function was ported to MATLAB using the Fortran source code subroutine provided by the
IMCCE. These ASCII files and source code can be found on the Internet at
ftp://ftp.imcce.fr/pub/ephem/sun/slp96/.

Orbital Mechanics with MATLAB

page 14

The slp96 function requires initialization the first time it is called. The following statement in
the main MATLAB script will accomplish this:

 islp96 = 1;

This variable should also be placed in a global statement at the beginning of the main script
which calls this function.

demo_slp is a simple MATLAB script that demonstrates how to call the slp96 routine. A
sample binary file (slp96.bin) for IBM-PC compatible computers can be downloaded from the
Celestial and Orbital Mechanics web site.

The following is a summary of the inputs and outputs for this MATLAB function:

function [result, ierr] = slp96 (tjd, ibody, icent, ipv, iframe, icoord)

% solar, lunar and planetary coordinates j2000

% input

% tjd julian date tdb

% ibody body index

% ibody=01 : mercury ibody=07 : uranus
% ibody=02 : venus ibody=08 : neptune
% ibody=03 : e-m baryc. ibody=09 : void
% ibody=04 : mars ibody=10 : moon
% ibody=05 : jupiter ibody=11 : sun
% ibody=06 : saturn ibody=12 : earth

% icent frame center index

% icent=00 : barycenter of solar system
% icent=01 : mercury icent=07 : uranus
% icent=02 : venus icent=08 : neptune
% icent=03 : e-m baryc. icent=09 : void
% icent=04 : mars icent=10 : moon
% icent=05 : jupiter icent=11 : sun
% icent=06 : saturn icent=12 : earth

% ipv position-velocity index

% ipv=1 : position.
% ipv=2 : position and velocity.

% iframe frame index

% iframe=1 : equinox and equator j2000 (fk5)
% iframe=2 : equinox and ecliptic j2000 (dynamical)

% icoord coordinates index

Orbital Mechanics with MATLAB

page 15

% icoord=1 : rectangular coordinates
% icoord=2 : spherical coordinates

% fname name of the slp96 data file
% note: passed via global

% output

% result results table

% rectangular coordinates (icoord = 1)

% position

% result(1) : equatorial or ecliptic component x (au)
% result(2) : equatorial or ecliptic component y (au)
% result(3) : equatorial or ecliptic component z (au)

% velocity

% result(4) : equatorial or ecliptic component x (au/day)
% result(5) : equatorial or ecliptic component y (au/day)
% result(6) : equatorial or ecliptic component z (au/day)

% spherical coordinates (icoord = 2)

% position

% result(1) : right ascension or longitude (radians)
% result(2) : declination or latitude (radians)
% result(3) : geometric distance (au)

% velocity

% result(4) : right ascension or longitude (rad/day)
% result(5) : declination or latitude (rad/day)
% result(6) : geometric distance (au/day)

% ierr error index

% ierr=0 : no error
% ierr=10 : file error
% ierr=11 : date error (tjd)
% ierr=12 : body error (ibody)
% ierr=13 : frame center error (icent)
% ierr=14 : position-velocity error (ipv)
% ierr=15 : frame error (iframe)
% ierr=16 : coordinates error (icoord)

The processing steps used in this script are as follows:

 input a calendar date on the UTC time scale
 compute the UTC Julian date
 compute the TDB Julian date
 select the target body

Orbital Mechanics with MATLAB

page 16

 select the central body
 define type of coordinate system
 define type of coordinate calculations
 specify the name of the SLP96 binary data file
 evaluate the ephemeris

The following is a typical user interaction with this script.

demo_slp - demonstrates how to use the slp96.m function

please input a UTC calendar date between 12/14/1949 and 1/2/2050

please input the calendar date
(1 <= month <= 12, 1 <= day <= 31, year = all digits!)
? 10,21,1998

please input a value for TAI-UTC in seconds
? 31

 target body menu

 <1> Mercury
 <2> Venus
 <3> Earth-Moon barycenter
 <4> Mars
 <5> Jupiter
 <6> Saturn
 <7> Uranus
 <8> Neptune
 <9> void
 <10> Moon
 <11> Sun
 <12> Earth

please select the target body
? 10

 central body menu

 <0> solar system barycenter
 <1> Mercury
 <2> Venus
 <3> Earth-Moon barycenter
 <4> Mars
 <5> Jupiter
 <6> Saturn
 <7> Uranus
 <8> Neptune
 <9> void
 <10> Moon
 <11> Sun
 <12> Earth

please select the central body

Orbital Mechanics with MATLAB

page 17

? 12

 coordinate system menu

 <1> equinox and equator j2000 (fk5)

 <2> equinox and ecliptic j2000 (dynamical)

please select the coordinate system type
? 1

 coordinate type menu

 <1> rectangular coordinates

 <2> spherical coordinates

please select the coordinate type
? 1

The following is the program output created for this example.

program demo_slp

equinox and equator j2000 (fk5)

target body 'Moon'

central body 'Earth'

UTC calendar date 21-Oct-1998

UTC Julian date 2451107.500000

TDB Julian date 2451107.500731

state vector

 rx (km) ry (km) rz (km) rmag (km)
 -3.37366628520218e+005 -2.19024631174909e+005 -5.98176564646602e+004 +4.06652410696565e+005

 vx (kps) vy (kps) vz (kps) vmag (kps)
 +5.39083860486982e-001 -7.55355619416334e-001 -2.86179804099060e-001 +9.71119148557765e-001

jplephem.m and demo_jpl.m – JPL lunar and planetary ephemeris

This MATLAB function and main script demonstrate how to read binary ephemeris files created
using the Fortran programs and ASCII data files provided by the Jet Propulsion Laboratory, and
calculate the position and velocity vectors of a planet, the sun or the Moon. The jplephem.m
function was ported to MATLAB using the Fortran source code subroutine provided by JPL.
These ASCII files can be found on the Internet at ftp://ssd.jpl.nasa.gov/pub/eph/planets/ascii/. A

Orbital Mechanics with MATLAB

page 18

CD ROM containing these ASCII data files and the companion Fortran source code is also
available from Willmann-Bell, www.willbell.com.

The jplephem function requires initialization the first time it is called. The following statement
in the main MATLAB script will accomplish this:

 iephem = 1;

This variable should also be placed in a global statement at the beginning of the main script
which calls this function. The value of the Astronomical Unit, in kilometers, used in a particular
JPL ephemeris is available as the constant au which is placed in global by the jplephem
function described below.

demo_jpl is a simple MATLAB script that demonstrates how to call the jplephem routine.
Binary ephemeris files for IBM-PC compatible computers can be downloaded from the Celestial
and Orbital Mechanics web site. The coordinates calculated by this function are with respect to
the International Celestial Reference System (ICRS) which is described in “The International
Celestial Reference Frame as Realized by Very Long Baseline Interferometry”, C. Ma, E.
Arias, T. Eubanks, A. Fey, A. Gontier, C. Jacobs, O. Sovers, B. Archinal and P. Charlot, The
Astronomical Journal, 116:516-546, 1998, July.

The following is the syntax for this MATLAB function:

function rrd = jplephem (et, ntarg, ncent)

% reads the jpl planetary ephemeris and gives
% the position and velocity of the point 'ntarg'
% with respect to point 'ncent'

% input

% et = julian ephemeris date at which interpolation is wanted

% ntarg = integer number of 'target' point

% ncent = integer number of center point

% the numbering convention for 'ntarg' and 'ncent' is:

% 1 = mercury 8 = neptune
% 2 = venus 9 = pluto
% 3 = earth 10 = moon
% 4 = mars 11 = sun
% 5 = jupiter 12 = solar-system barycenter
% 6 = saturn 13 = earth-moon barycenter
% 7 = uranus 14 = nutations (longitude and obliq)
% 15 = librations, if on ephemeris file

% if nutations are wanted, set ntarg = 14.
% for librations, set ntarg = 15. set ncent = 0.

% output

Orbital Mechanics with MATLAB

page 19

% rrd = output 6-word array containing position and velocity
% of point 'ntarg' relative to 'ncent'. the units are au and
% au/day. for librations the units are radians and radians
% per day. in the case of nutations the first four words of
% rrd will be set to nutations and rates, having units of
% radians and radians/day.

% the option is available to have the units in km and km/sec.
% for this, set km = 1 via global in the calling program.

The following is a typical user interaction with this script using the DE421 ephemeris file.

demo_jpl - demonstrates how to use the jplephem.m function

please input a UTC calendar date

please input the calendar date
(1 <= month <= 12, 1 <= day <= 31, year = all digits!)
? 10,21,1998

please input a value for TAI-UTC in seconds
? 31

 target body menu

 <1> Mercury
 <2> Venus
 <3> Earth
 <4> Mars
 <5> Jupiter
 <6> Saturn
 <7> Uranus
 <8> Neptune
 <9> Pluto
 <10> Moon
 <11> Sun

please select the target body
? 10

 central body menu

 <1> Mercury
 <2> Venus
 <3> Earth
 <4> Mars
 <5> Jupiter
 <6> Saturn
 <7> Uranus
 <8> Neptune
 <9> Pluto
 <10> Moon
 <11> Sun
 <12> solar-system barycenter
 <13> Earth-Moon barycenter

Orbital Mechanics with MATLAB

page 20

please select the central body
? 3

The following is the script output for this example.

program demo_jpl

ephemeris file de421.bin

target body 'Moon'

central body 'Earth'

UTC calendar date 21-Oct-1998

UTC Julian date 2451107.500000

TDB Julian date 2451107.500731

state vector

 rx (km) ry (km) rz (km) rmag (km)
 -3.37366639992093e+005 -2.19024588322606e+005 -5.98176034774959e+004 +4.06652389339142e+005

 vx (kps) vy (kps) vz (kps) vmag (kps)
 +5.39083723067669e-001 -7.55355631361622e-001 -2.86179850104219e-001 +9.71119095122677e-001

Please note the following extracted from JPL IOM 343R-08-003, dated 31-March 2008.

In a resolution adopted by the International Astronomical Union in 2006 (GA26.3), the time
scale TDB (Temps Dynamique Barycentrique, Barycentric Dynamical Time) was defined to be
consistent with the JPL ephemeris time.

The axes of the ephemeris are oriented with respect to the International Celestial Reference
Frame (ICRF).

Furthermore, the relationship between the ICRF and EME 2000 frames is described in the
moon_080317.tf text file which is located on the Internet at
ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/fk/satellites/,

The IERS Celestial Reference Frame (ICRF) is offset from the J2000 reference frame (equivalent
to EME 2000) by a small rotation; the J2000 pole offset magnitude is about 18 milliarcseconds
(mas) and the equinox offset magnitude is approximately 78 milliarcseconds.

A MATLAB function (j2000_icrs.m) that transforms vectors between these two systems
follows later in this section.

Orbital Mechanics with MATLAB

page 21

jplephem_inpop.m and demo_inpop.m – INPOP06C binary ephemeris

This MATLAB function and script demonstrate how to read the INPOP06C binary ephemeris
file and calculate the position and velocity vectors of a planet, the sun or the Moon. The
jplephem_inpop.m function is identical to the jplephem.m described above with a minor
update for the format of the INPOP06C binary file. This binary file for several computer
platforms can be found at http://www.imcce.fr/fr/presentation/equipes/ASD/inpop/.

The jplephem_inpop function requires initialization the first time it is called. The following
statement in the main MATLAB script will accomplish this:

 iephem = 1;

This variable should also be placed in a global statement at the beginning of the main script
which calls this function.

demo_inpop is a simple MATLAB script that demonstrates how to interact with the
jplephem_inpop routine.

The following is a typical user interaction with this script.

demo_inpop - demonstrates how to use the jplephem_inpop.m function

please input a UTC calendar date

please input the calendar date
(1 <= month <= 12, 1 <= day <= 31, year = all digits!)
? 10,21,1998

please input a value for TAI-UTC in seconds
? 31

 target body menu

 <1> Mercury
 <2> Venus
 <3> Earth
 <4> Mars
 <5> Jupiter
 <6> Saturn
 <7> Uranus
 <8> Neptune
 <9> Pluto
 <10> Moon
 <11> Sun

please select the target body
? 10

 central body menu

 <1> Mercury

Orbital Mechanics with MATLAB

page 22

 <2> Venus
 <3> Earth
 <4> Mars
 <5> Jupiter
 <6> Saturn
 <7> Uranus
 <8> Neptune
 <9> Pluto
 <10> Moon
 <11> Sun
 <12> solar-system barycenter
 <13> Earth-Moon barycenter

please select the central body
? 3

The following is the script output for this example.

program demo_inpop

ephemeris file inpop06c.bin

target body 'Moon'

central body 'Earth'

UTC calendar date 21-Oct-1998

UTC Julian date 2451107.500000

TDB Julian date 2451107.500731

state vector

 rx (km) ry (km) rz (km) rmag (km)
 -3.37366643255620e+005 -2.19024582193350e+005 -5.98176002387135e+004 +4.06652388268967e+005

 vx (kps) vy (kps) vz (kps) vmag (kps)
 +5.39083706462739e-001 -7.55355639411607e-001 -2.86179853720789e-001 +9.71119093232223e-001

hcb.m – ephemeris of a heliocentric celestial body

This MATLAB function determines the position and velocity vectors of a heliocentric celestial
body such as an asteroid or comet.

The following is the syntax for this MATLAB function:

function [r, v] = hcb(jdate, oev)

% ephemeris of a heliocentric celestial body

% input

Orbital Mechanics with MATLAB

page 23

% jdate = julian date
% oev(1) = radius at perihelion passage (au)
% oev(2) = orbital eccentricity (non-dimensional)
% oev(3) = orbital inclination (radians)
% oev(4) = argument of perihelion (radians)
% oev(5) = longitude of ascending node (radians)
% oev(6) = julian date at perihelion passage

% output

% r = heliocentric position vector (kilometers)
% v = heliocentric velocity vector (kilometers/second)

% Note: state vector is output in the same coordinate
% system as the input orbital elements

The state vector is output in the same coordinate system as the input orbital elements.

The orbital elements of an asteroid or comet relative to the ecliptic and equinox of J2000
coordinate system can be obtained from the JPL Small-Body Database Browser
(http://ssd.jpl.nasa.gov/sbdb.cgi) or the MPC database at Harvard (http://cfa-www.harvard.edu).

These orbital elements consist of the following items:

 calendar date of perihelion passage
 perihelion distance (AU)
 orbital eccentricity (non-dimensional)
 orbital inclination (degrees)
 argument of perihelion (degrees)
 longitude of ascending node (degrees)

The software determines the mean anomaly of the asteroid or comet at any simulation time JD
using the following equation:

 3 3
s s

pp ppM t JD JD
a a

where s is the gravitational constant of the sun, a is the semimajor axis of the celestial body,

and ppt is the time since perihelion passage.

The semimajor axis is determined from the perihelion distance pr and orbital eccentricity e

according to

 1

pra
e

This MATLAB function uses kepler1.m to calculate the true anomaly.

Orbital Mechanics with MATLAB

page 24

j2000_icrs.m – J2000-to-ICRS transformation matrix

This MATLAB function returns the transformation matrix from the mean dynamical equator and
equinox at J2000 to the International Celestial Reference System (ICRS). There are two options
for this matrix based on different data types.

The following is the syntax for this MATLAB function:

function tmatrix = j2000_icrs(itype)

% transformation matrix from the mean dynamical
% equator and equinox at j2000 to the
% International Celestial Reference System (ICRS)

% input

% itype = type of transformation
% 1 = LLR + VLBI
% 2 = Chapront et al. LLR

% output

% tmatrix = transformation matrix

% reference: Rotation Matrix from the Mean Dynamical
% Equator and Equinox at J2000.0 to the ICRS, Astronomy
% and Astrophysics, October 1, 2003.

To transform coordinates from the ICRS system to the J2000 system, the programmer should use
the transpose of the matrix returned by this function.

applan1.m – apparent coordinates of a planet or the Moon - JPL ephemeris

This MATLAB function determines the apparent geocentric and topocentric coordinates of a
planet or the Moon. The source ephemeris for this routine is a JPL binary file. The algorithms
used in this function are based on the Fortran versions found in NOVAS.

The following is the syntax for this function.

function [ra, dec, dis] = applan1 (tjd, ujd, l, n, topo, glon, glat, ht)

% this function computes the apparent geocentric or topocentric place
% of a planet or other solar system body. rectangular coordinates of
% solar system bodies are obtained from function solsys.

% input

% tjd = tdt julian date for apparent geocentric place
% ujd = ut1 julian date for apparent topocentric place
% l = body identification number for desired planet

Orbital Mechanics with MATLAB

page 25

% n = body identification number for the earth
% topo = type of apparent place calculation
% = 0 ==> geocentric
% = 1 ==> topocentric
% glon = geodetic longitude of observer (east +, degrees)
% glat = geodetic latitude of observer (north +, degrees)
% ht = height of observer (meters)

% output

% ra = apparent geocentric or topocentric right ascension,
% referred to true equator and equinox of date (hours)
% dec = apparent geocentric or topocentric declination,
% referred to true equator and equinox of date (degrees)
% dis = true distance from earth to planet (astronomical units)

This software suite includes a script called demo_aplanet1 that demonstrates how to use this
function. The following is a typical user interaction with this demonstration script.

 demo_aplanet1 - apparent coordinates

please input a UTC calendar date between 12/18/1997 and 1/20/2010

please input the calendar date
(1 <= month <= 12, 1 <= day <= 31, year = all digits!)
? 1,1,1998

please input the universal time
(0 <= hours <= 24, 0 <= minutes <= 60, 0 <= seconds <= 60)
? 10,20,30

 target body menu

 <1> Mercury
 <2> Venus
 <3> Earth
 <4> Mars
 <5> Jupiter
 <6> Saturn
 <7> Uranus
 <8> Neptune
 <9> Pluto
 <10> Sun
 <11> Moon

please select the target body
? 11

coordinate type menu

 <1> geocentric

 <2> topocentric

Orbital Mechanics with MATLAB

page 26

please select coordinate type
? 2

please input the geographic latitude of the ground site
(-90 <= degrees <= +90, 0 <= minutes <= 60, 0 <= seconds <= 60)
(north latitude is positive, south latitude is negative)
? 40,0,0

please input the geographic longitude of the ground site
(0 <= degrees <= 360, 0 <= minutes <= 60, 0 <= seconds <= 60)
(east longitude is positive, west longitude is negative)
? -105,0,0

please input the altitude of the ground site (meters)
(positive above sea level, negative below sea level)
? 1000

The following is the program output created for this example.

apparent topocentric coordinates

'Moon'

UTC calendar date 01-Jan-1998

universal time 10:20:30

UTC julian date 2450814.9309

observer latitude -105d 00m 00.00s

observer east longitude +40d 00m 00.00s

observer altitude 1000.0000 meters

right ascension +21h 12m 2.9587s

declination -14d 17m 47.57s

topocentric distance 376284.4187 kilometers

applan2.m – apparent coordinates of a planet or the Moon - SLP96 ephemeris

This MATLAB function determines the apparent geocentric and topocentric coordinates of a
planet or the Moon. The source ephemeris for this routine is the SLP96 binary file slp96.bin.
The algorithms used in this function are based on the Fortran versions found in NOVAS.

The following is the syntax for this function.

function [ra, dec, dis] = applan2(tjd, ujd, l, n, topo, glon, glat, ht)

% this function computes the apparent geocentric or topocentric place
% of a planet or other solar system body. rectangular coordinates of

Orbital Mechanics with MATLAB

page 27

% solar system bodies are obtained from function slp96.

% input

% tjd = tdt julian date for apparent geocentric place
% ujd = ut1 julian date for apparent topocentric place
% l = body identification number for desired planet
% n = body identification number for the earth
% topo = type of apparent place calculation
% = 0 ==> geocentric
% = 1 ==> topocentric
% glon = geodetic longitude of observer (east +, degrees)
% glat = geodetic latitude of observer (north +, degrees)
% ht = height of observer (meters)

% output

% ra = apparent geocentric or topocentric right ascension,
% referred to true equator and equinox of date (hours)
% dec = apparent geocentric or topocentric declination,
% referred to true equator and equinox of date (degrees)
% dis = true distance from earth to planet (astronomical units)

This software collection includes a script called demo_aplanet2 which demonstrates how to
use this function. The user interaction with this script is identical to the interaction with the
demo_aplanet1 script described above.

apstar1.m – apparent coordinates of a star - JPL ephemeris

This MATLAB function determines the apparent geocentric and topocentric coordinates of a
star. The source ephemeris for this routine is a JPL binary file.

This software suite includes scripts that demonstrate how to calculate the apparent topocentric
and geocentric coordinates of a star. The first script is called demo_astar1 and it uses a JPL
binary ephemeris file as its source ephemeris. The second script is called demo_astar2 and it
uses SLP96 as its source ephemeris. These applications use several functions ported to
MATLAB from the Fortran versions of the NOVAS (Naval Observatory Vector Astrometry
Subroutines) source code that was developed at the United States Naval Observatory.

This MATLAB script includes the following types of coordinate corrections:

(1) precession

(2) nutation

(3) aberration

(4) gravitational deflection of light

(5) proper motion

(6) parallax

Orbital Mechanics with MATLAB

page 28

(7) radial velocity

Please note that this program does not include a correction for atmospheric refraction. For
extragalatic objects the proper motions, parallax and radial velocity should all be set to 0.

An excellent discussion about these corrections can be found in “Mean and Apparent Place
Computations in the New IAU System. III. Apparent, Topocentric, and Astrometric Places of
Planets and Stars”, G.H. Kaplan, J.A. Hughes, P.K. Seidelmann, C.A. Smith and B.D. Yallop,
The Astronomical Journal, Vol. 97, No. 4, pages 1197-1210, 1989.

The processing steps used in this program are as follows:

(1) input a calendar date on the UT1 time scale

(2) compute the UT1 Julian date

(3) compute the TDT Julian date

(4) compute the TDB Julian date

(5) read the star's coordinates, proper motions, parallax and radial velocity

(6) define type of coordinates

(7) calculate apparent coordinates

The syntax and arguments for the MATLAB function that actually performs most of the
calculations are as follows:

function [ra, dec] = apstar1 (tjd, ujd, n, topo, glon, glat, ht, ...
 ram, decm, pmra, pmdec, parlax, radvel)

% this subroutine computes the geocentric or topocentric apparent place
% of a star, given its mean place, proper motion, parallax, and radial
% velocity for j2000.0.

% input

% tjd = tdt julian date for apparent place
% ujd = ut1 julian date for apparent topocentric place
% n = body identification number for the earth
% topo = type of apparent place calculation
% = 0 ==> geocentric
% = 1 ==> topocentric
% ram = mean right ascension j2000.0 (hours)
% decm = mean declination j2000.0 (degrees)
% pmra = proper motion in ra (seconds of time/julian century)
% pmdec = proper motion in dec (seconds of arc/julian century)
% parlax = parallax (seconds of arc)
% radvel = radial velocity (kilometers per second)

% output

Orbital Mechanics with MATLAB

page 29

% ra = apparent geocentric or topocentric right ascension,
% referred to true equator and equinox of date (hours)
% dec = apparent geocentric or topocentric declination,
% referred to true equator and equinox of date (degrees)

The demo_astar software will prompt you for the calendar date, universal time, observer
coordinates, the name of the star data file and the type of ephemeris (topocentric or geocentric).

The following is a typical star data file named altair.dat. Do not delete any lines of text or
data as the software expects to find exactly 20 lines of information.

star name
ALTAIR

J2000 right ascension (hours)
19.8463894440

J2000 declination (degrees)
8.8683416670

J2000 proper motion in right ascension (seconds/Julian century)
3.6290

J2000 proper motion in declination (arcseconds/Julian century)
38.6300

parallax (arcseconds)
0.1981

radial velocity (kilometers/second)
-26.30

The following is the syntax of the MATLAB function that reads this data file.

function [fid, sname, ram, decm, pmra, pmdec, parlax, radvel] =
 readstar(filename)

% read star data file

% required by star*.m

% input

% filename = name of star data file

% output

% sname = star name
% ram = J2000 right ascension (hours)
% decm = J2000 declination (degrees)
% pmra = J2000 proper motion in right ascension
% (seconds/Julian century)
% pmdec = J2000 proper motion in declination
% (arcseconds/Julian century)

Orbital Mechanics with MATLAB

page 30

% parlax = parallax (arcseconds)
% radvel = radial velocity (kilometers/second)
% fid = file id

The following is a typical user interaction with the demo_astar1 (and demo_astar2) scripts.
It illustrates the topocentric coordinates of the star Altair relative to a sea level observer at 40
north latitude and 105 west longitude, at 0 hours UT.

demo_astar1 - apparent coordinates - jplephem ephemeris

please input a UTC calendar date

please input the calendar date
(1 <= month <= 12, 1 <= day <= 31, year = all digits!)
? 1,1,1998

please input the universal time
(0 <= hours <= 24, 0 <= minutes <= 60, 0 <= seconds <= 60)
? 0,0,0

please input the star data file name
(be sure to include the file name extension)
? altair.dat

coordinate type menu

 <1> geocentric

 <2> topocentric

please select coordinate type
? 2

please input the geographic latitude of the ground site
(-90 <= degrees <= +90, 0 <= minutes <= 60, 0 <= seconds <= 60)
(north latitude is positive, south latitude is negative)
? 40,0,0

please input the geographic longitude of the ground site
(0 <= degrees <= 360, 0 <= minutes <= 60, 0 <= seconds <= 60)
(east longitude is positive, west longitude is negative)
? -105,0,0

please input the altitude of the ground site (meters)
(positive above sea level, negative below sea level)
? 0

Here’s the program output computed by this MATLAB script.

 apparent topocentric coordinates

ALTAIR

UTC calendar date 01-Jan-1998

Orbital Mechanics with MATLAB

page 31

universal time 00:00:00

UTC julian date 2450814.5000

observer latitude -105d 00m 00.00s

observer east longitude +40d 00m 00.00s

observer altitude 0.0000 meters

right ascension +19h 50m 39.1674s

declination +08d 51m 46.09s

apstar2.m – apparent coordinates of a star - SLP96 ephemeris

This MATLAB function determines the apparent geocentric and topocentric coordinates of a
star. The source ephemeris for this routine is the SLP96 binary file slp96.bin.

The syntax for this MATLAB function is

function [ra, dec] = apstar2 (tjd, ujd, n, topo, glon, glat, ht, ...
 ram, decm, pmra, pmdec, parlax, radvel)

% this subroutine computes the geocentric or topocentric apparent place
% of a star, given its mean place, proper motion, parallax, and radial
% velocity for j2000.0. the coordinates of the earth are determined
% using slp96.

% input

% tjd = tdt julian date for apparent place
% ujd = ut1 julian date for apparent topocentric place
% n = body identification number for the earth
% topo = type of apparent place calculation
% = 0 ==> geocentric
% = 1 ==> topocentric
% ram = mean right ascension j2000.0 (hours)
% decm = mean declination j2000.0 (degrees)
% pmra = proper motion in ra (seconds of time/julian century)
% pmdec = proper motion in dec (seconds of arc/julian century)
% parlax = parallax (seconds of arc)
% radvel = radial velocity (kilometers per second)

% output

% ra = apparent geocentric or topocentric right ascension,
% referred to true equator and equinox of date (hours)
% dec = apparent geocentric or topocentric declination,
% referred to true equator and equinox of date (degrees)

The prior discussion about the demo_apstar1 script also applies to the demonstration
demo_apstar2 script included with this software suite.

Orbital Mechanics with MATLAB

page 32

BINARY EPHEMERIS FILES

This section summarizes information about the binary ephemeris files used by many of these
MATLAB functions and scripts. This summary includes the name of the disk file and the
approximate size of the disk files for each ephemeris along with the valid date range.

JPL DE405 ephemeris

file name – de405_1959_2019.bin
file size – 5.5 MB
valid dates – 1959-2019

file name – de405_1999_2060.bin
file size – 11 MB
valid dates – 1999-2060

file name – de405_2000_2030.bin
file size – 2 MB
valid dates – 2000 – 2020

JPL DE421 ephemeris

file name – de421.bin
file size – 14 MB
valid dates – 1/1/1900 – 12/31/2049

IMMCE SLP96 ephemeris

file name – slp96.bin
file size – 13 MB
valid dates – 12/24/1999 – 1/2/2050

IMMCE INPOP06C ephemeris

file name – inpop06c.bin
file size – 13 MB
valid dates – J2000 +/– 100 years

These files can be downloaded from the Celestial and Orbital Mechanics website.

