A MATLAB Script for Ballistic Interplanetary Trajectory
Design and Optimization

This document describes a MATLAB script called ipto matlab that can be used to design and
optimize “patched conic” ballistic interplanetary trajectories between any two planets of our solar
system. It can also be used to find two-body trajectories between a planet and an asteroid or comet. A
patched-conic trajectory ignores the gravitational effect of both the launch and arrivals planets on the
heliocentric transfer trajectory. This technique involves the solution of Lambert's problem relative to the
Sun. Patched-conic trajectories are suitable for preliminary mission design. The ipto matlab script
also includes the option to include user-defined mission constraints such as departure energy, time-of-
flight, and so forth during the trajectory optimization.

The ipto matlab MATLAB script also performs a graphical primer vector analysis of the solution.
This program feature displays the behavior of the primer vector magnitude and primer derivative
magnitude as a function of mission elapsed time in days from departure. This script uses the SNOPT
nonlinear programming (NLP) algorithm to solve this classic astrodynamics problem.

User interaction with script

The software will ask the user for an initial guess for the launch and arrival calendar dates as well as the
launch and arrival celestial bodies. The script will also ask the user for a search boundary, in days, on

the launch and arrival dates. The algorithm will restrict its search for the optimum launch date D, and
arrival date D, as follows:
D_-AD <D, <D_+AD

D, —AD, <D, <AD, +AD,

where DLg and D s Are the user’s initial guess for launch and arrival dates, and AD, , AD,, are the
user-specified search boundaries for the launch and arrival dates, respectively.

The following is typical user interaction with this MATLAB application. This example is an Earth-to-
Mars mission that minimizes the total delta-v. The user inputs for this example are in bold font.

departure conditions - start date

please input the calendar date
(1 <= month <= 12, 1 <= day <= 31, year = all digits!)

? 6,1,2003

please input the departure date search boundary in days
? 30

arrival conditions - start date

please input the calendar date
(1 <= month <= 12, 1 <= day <= 31, year = all digits!)
? 12,1,2003

please input the arrival date search boundary in days
? 30
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celestial body menu

<1> Mercury

<2> Venus

<3> Earth

<4> Mars

<5> Jupiter

<6> Saturn

<7> Uranus

<8> Neptune

<9> Pluto

<10> asteroid/comet

please select the departure celestial body
? 3

celestial body menu

<1> Mercury

<2> Venus

<3> Earth

<4> Mars

<5> Jupiter

<6> Saturn

<7> Uranus

<8> Neptune

<9> Pluto

<10> asteroid/comet

please select the arrival celestial body
? 4

would you like to enforce mission constraints (y = yes, n = no)
?n

optimization menu
<1> minimize departure delta-v
<2> minimize arrival delta-v
<3> minimize total delta-v
<4> no optimization

selection (1, 2 or 3)
? 3

If the analyst selects an asteroid or comet as the launch or arrival body, the software will interactively
prompt the user for the name of a simple data file containing the orbital elements of the object. The
orbital elements of an asteroid or comet relative to the ecliptic and equinox of J2000 coordinate system
must be provided by the user. The following is a typical data file for the comet Tempel 1. Do not
change the number of lines of information in these data files. The data values are in bold. Please note
the correct units for each orbital element. The perihelion passage calendar date should be on the
Barycentric Dynamical Time (TDB) scale.

R R I e S b I IR e S b I Sb b S 2R 2 b S Sb S b b 2h b b Sb b Sb 2h I db S db i Sb db S 3

* asteroid/comet classical orbital elements *

* (heliocentric, Earth mean ecliptic J2000) *
hAhkhhkhk kA rhhkhkhkhkhkh kA rhhkhkhkhkhhk kA rhhkhkhkhhhkkhkhkrhkhkhkkxh*k*k
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asteroid/comet name
Tempel 1

TDB calendar date of perihelion passage (month, day, year)
7, 5.3153, 2005

perihelion distance (au)
1.506167

orbital eccentricity (non-dimensional)
0.517491

orbital inclination (degrees)
10.5301

argument of perihelion (degrees)
178.8390

longitude of the ascending node (degrees)
68.9734

Orbital elements for several comets and asteroids can be obtained from the JPL Near Earth Object
(NEO) website which is located at http://neo.jpl.nasa.gov.

The prompt for the name of the asteroid or comet data file is similar to the following;

J please input the name of the asteroid/comet data file il
Look in: I | ipto_mathworks j - l‘j‘ E~
g Name = |'| Date modified |
I &) apophis.dat 9/22/2011 12:45 PM
Recent Places & tempell.dat 9222011 12:45 PM
Desktop
Liblal.ies
3
Computer
A
4| | IO/
File name: I‘ j Open |
Files oftype: I (*.dat) LI Cancel

2

The default filename type is *.dat. However, the script will read any compatible data file.

If the user elects to enforce mission constraints during the solution process, the script will display the
following six interactive prompts. These prompts allow the user to specify lower and upper bounds for
each mission constraint. Please note the proper units for each constraint and make sure the upper bound
has a larger value than the lower bound. Appendix B contains a detailed Earth-to-Mars trajectory
optimization example with user-defined mission constraints.

please input the lower bound for departure C3 (kilometers”2/second”2)
2

please input the upper bound for departure C3 (kilometers”2/second”2)
?
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please input the lower bound for departure DLA (degrees)
2

please input the upper bound for departure DLA (degrees)
?

please input the lower bound for time-of-flight (days)
2

please input the upper bound for time-of-flight (days)
?

please input the lower bound for arrival v-infinity (kilometers/second)
?

please input the upper bound for arrival v-infinity (kilometers/second)
2

Optimal solution and trajectory graphics display

This section summarizes the program output for this example. The information provided by the
software includes the heliocentric orbital elements and state vectors of the initial orbit, transfer trajectory
and final mission orbit in the J2000 mean ecliptic and equinox coordinate system. These numerical
results also include the characteristics of the launch or departure hyperbola. Also note that the time scale
is Barycentric Dynamical Time (TDB).

program ipto matlab

minimize total delta-v

departure celestial body Earth

departure calendar date 06-Jun-2003
departure TDB time 08:17:20.579
departure julian date 2452796.8454
arrival celestial body Mars

arrival calendar date 27-Dec-2003
arrival TDB time 17:03:45.061
arrival julian date 2453001.2109
transfer time 204.3656 days

heliocentric orbital conditions prior to the first maneuver
(mean ecliptic and equinox of J2000)

sma (km) eccentricity inclination (degq) argper (deq)
1.4963256152e+08 1.6337778758e-02 3.4017832513e-04 2.7047636439e+02

raan (deqg) true anomaly (deq) arglat (deqg) period (days)
1.9168183209e+02 1.5304069734e+02 6.3517061725e+01 3.6538395691e+02

rx (km) ry (km) rz (km) rmag (km)
-3.87803247685300e+07 -1.46766164749510e+08 +8.06715976461768e+02 +1.51803230219530e+08

vx (kps) vy (kps) vz (kps) vmag (kps)
+2.83211858784698e+01 -7.71155136415724e+00 +7.88832797096184e-05 +2.93523013409698e+01

heliocentric orbital conditions after the first maneuver
(mean ecliptic and equinox of J2000)
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sma (km) eccentricity inclination (deq) argper (deq)
1.8842763117e+08 1.9438220509e-01 7.1005826334e-02 1.7892666348e+02

raan (deg) true anomaly (deg)

arglat (deg) period (days)

7.5444586386e+01 8.2764375478e-01 1.7975430724e+02 5.1632980035e+02

rx (km) ry (km)

rz (km) rmag (km)

-3.87803247685300e+07 -1.46766164749510e+08 +8.06715976461768e+02 +1.51803230219530e+08

vx (kps) vy (kps)

vz (kps) vmag (kps)

+3.12218065445462e+01 -8.32837362979744e+00 -4.00448025834237e-02 +3.23135360926159%9e+01

heliocentric orbital conditions prior to the second maneuver

(mean ecliptic and equinox of J2000)

sma (km) eccentricity inclination (deq) argper (deq)
1.8842763117e+08 1.9438220509e-01 7.1005826334e-02 1.7892666348e+02

raan (deg) true anomaly (deg)

arglat (deg) period (days)

7.5444586386e+01 1.5417471525e+02 3.3310137874e+02 5.1632980035e+02

rx (km) ry (km)

rz (km) rmag (km)

+1.45484494989705e+08 +1.64706475639684e+08 -1.23212009645380e+05 +2.19758905578943e+08

vx (kps) vy (kps)

vz (kps) vmag (kps)

-1.52127795066753e+01 +1.64941187732280e+01 +2.33850380748383e-02 +2.24384750213574e+01

heliocentric orbital conditions after the second maneuver

(mean ecliptic and equinox of J2000)

sma (km) eccentricity inclination (deg) argper (deg)
2.2793906443e+08 9.3540802481le-02 1.8493566928e+00 2.8651704692e+02

raan (deg) true anomaly (deg)

arglat (deg) period (days)

4.9540934984e+01 7.2487482568e+01 3.5900452948e+02 6.8697107415e+02

rx (km) ry (km)

rz (km) rmag (km)

+1.45484494989705e+08 +1.64706475639684e+08 -1.23212009645380e+05 +2.19758905578943e+08

vx (kps) vy (kps)

vz (kps) vmag (kps)

-1.72343278293651e+01 +1.81081767751661e+01 +8.02808925319584e-01 +2.50114498584402e+01

heliocentric orbital conditions of arrival body

(mean ecliptic and equinox of J2000)

sma (km) eccentricity inclination (deg) argper (deg)
2.2793906443e+08 9.3540802481e-02 1.8493566928e+00 2.8651704692e+02

raan (deqg) true anomaly (deg)

arglat (deg) period (days)

4.9540934984e+01 7.2487482568e+01 3.5900452948e+02 6.8697107415e+02

rx (km) ry (km)

rz (km) rmag (km)

+1.45484494989705e+08 +1.64706475639684e+08 -1.23212009645380e+05 +2.19758905578943e+08

vx (kps) vy (kps)

vz (kps) vmag (kps)

-1.72343278293651e+01 +1.81081767751661e+01 +8.02808925319584e-01 +2.50114498584402e+01

departure delta-v and energy requirements

(mean equator and equinox of J2000)

x-component of delta-v 2900.620666
y-component of delta-v -549.963079
z-component of delta-v -282.170569
delta-v magnitude 2965.751147

meters/second
meters/second
meters/second

meters/second
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energy 8.795680 kilometers”2/second”2

asymptote right ascension 349.264051 degrees
asymptote declination -5.459552 degrees

arrival delta-v and energy requirements
(mean equator and equinox of J2000)

x-component of delta-v 2021.548323 meters/second
y-component of delta-v -1170.832247 meters/second
z-component of delta-v -1357.142837 meters/second
delta-v magnitude 2701.729530 meters/second
energy 7.299342 kilometers”2/second”?2

Mars-mean-equator and IAU node of epoch

asymptote right ascension 280.631366 degrees

asymptote declination 6.277437 degrees

total delta-v 5667.480677 meters/second

total energy 16.095022 kilometers”2/second”2
Special case

If the arrival planet is Mars, the software will provide the right ascension and declination of the
incoming or arrival hyperbola asymptote in the Mars mean equator and AU node of epoch coordinate
system. Appendix C explains the orientation of this system and the algorithm used to compute the
necessary coordinate transformation.

After the solution is displayed, the software will ask the user if he or she would like to create a graphics
display of the planet orbits and transfer trajectory with the following prompt:

would you like to plot this trajectory (y = yes, n = no)
2

If the user’s response is y for yes, the script will request a plot step size with

please input the plot step size (days)
2

A plot step size between 5 and 10 days is recommended.

The ipto matlab script will also create a color Postscript graphics file with TIFF preview of the
trajectory using the following line of MATLAB source code.

print -depsc -tiff -r300 ipto matlab.eps

The following is a typical graphics display created with this MATLAB script. The plot is a north
ecliptic view where we are looking down on the ecliptic plane from the north celestial pole. The vernal
equinox direction is the labeled line pointing to the right, the launch body is labeled with an L and the
arrival body is labeled with an A. The location of the launch and arrival celestial bodies at the launch
time is marked with an asterisk. The initial orbit trace is blue, the transfer trajectory is red and the final
orbit trace is green. The small squares are the perihelion location and the small circle is aphelion of the
planetary orbits. If Earth is the departure planet, a green dotted line will be included and represents the
line of nodes of the two planetary orbits.
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Interplanetary Trajectory Optimization
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The following are graphic displays of the magnitudes of the primer vector and its derivative for this
example. From these two plots we can see the solution found by the ipto matlab software is not two
impulse optimal according to primer vector theory summarized in the Primer Vector Analysis section
which begins on page 14 of this document.
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An initial guess for the launch and arrival impulsive delta-v vectors can be determined from the solution
of the Lambert two-point boundary-value problem (TPBVP). Lambert’s Theorem states that the time to
traverse a trajectory depends only upon the length of the semimajor axis a of the transfer trajectory, the

sum r, +r, of the distances of the initial and final positions relative to a central body, and the length c of

the chord joining these two positions.
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The Lambert solution that initializes the ipto matlab software uses the user’s initial guess for the
launch and arrival calendar dates.

Lambert’s Problem

Lambert’s problem is concerned with the determination of an orbit that passes between two positions
within a specified time-of-flight. This classic astrodynamic problem is also known as the orbital two-
point boundary value problem (TPBVP).

The time to traverse a trajectory depends only upon the length of the semimajor axis a of the transfer
trajectory, the sum r, +r, of the distances of the initial and final positions relative to a central body, and
the length c of the chord joining these two positions. This relationship can be stated as follows:

tof =tof (K +r,,c,a)

From the following form of Kepler’s equation

3
t—t, :\/a—(E—esin E)

Y7,

3
tz\/g[E—EO—e(sinE—sin E,)]
7

where E is the eccentric anomaly associated with radius r, E, is the eccentric anomaly at ry, and t =0
when r =r,.

we can write

At this point we need to introduce the following trigonometric sun and difference identities:

a- a+
B os@tF

sing —sin § =2sin

2 2
COS ¢ —COS 3 = —2sin %= B gin a;ﬂ
c05a+cosﬂ:2cosa;’gcosa;’6

If we let E = and E, = £ and substitute the first trig identity into the second equation above, we have

the following equation:
3 —_—
t= ’a—{E—EO—ZsinE EO(ecosEJrEOj}
y7, 2 2

With the two substitutions given by
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E+E,
ecosT:cos—

the time equation becomes

From the elliptic relationships given by
r=a(l—ecosE)

x=a(cosE —e)
y =asin E\/1-¢?

and some more manipulation, we have the following equations:

r+r C r+r+c s
COSa:(l— Oj 1- 0"~ _1_2

2a _EZ 2a a

sin = (1—

r+r0)+£=1_r+ro—c:1_s—c
2a 2a 2a a

This part of the derivation makes use of the following three relationships:

a-— a+ r+r
cosS ﬂcos ﬁzl— 0

2 2 2
2
sma; sina;ﬂzsmE_ °\/1—(ecosE+E°]

With the use of the half angle formulas given by

. a fs . f S—C
sin==,|— sint=,|——
2 2a 2 2a

and several additional substitutions, we have the time-of-flight form of Lambert’s theorem

‘o Z[(a_ﬂ)—(sina—sinﬂ)]
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A discussion about the angles & and S can be found in “Geometrical Interpretation of the Angles « and
f in Lambert’s Problem” by J. E. Prussing, AIAA Journal of Guidance and Control, Volume 2,
Number 5, Sept.-Oct. 1979, pages 442-443.

The algorithm used in this MATLAB script is based on the method described in “A Procedure for the
Solution of Lambert’s Orbital Boundary-Value Problem” by R. H. Gooding, Celestial Mechanics and
Dynamical Astronomy 48: 145-165, 1990. This iterative solution is valid for elliptic, parabolic and
hyperbolic transfer orbits which may be either posigrade or retrograde, and involve one or more
revolutions about the central body.

The planetary ephemeris implemented in this MATLAB script is based on the JPL DE424 ephemeris.
Important Note

The binary ephemeris file provided with this computer program was created for using a Windows
compatible computer. For other platforms, you will need to create or obtain binary files specific to that
system. Information and computer programs for creating these files can be found at the JPL solar
system FTP site located at ftp://ssd.jpl.nasa.gov/pub/. This site provides ASCII data files and Fortran
computer programs for creating a binary file. A program for testing the user’s ephemeris is also
provided along with documentation.

In order to model ballistic interplanetary missions involving asteroids and comets, the classical orbital
elements of an asteroid or comet relative to the mean ecliptic and equinox of J2000 coordinate system
must be provided by the user. These elements can be obtained from the JPL Near Earth Object (NEO)
website (http://neo.jpl.nasa.gov).

These orbital elements consist of the following items:

e calendar date of perihelion passage

e perihelion distance (AU)

e orbital eccentricity (non-dimensional)
e orbital inclination (degrees)

e argument of perihelion (degrees)

¢ longitude of ascending node (degrees)

The software determines the mean anomaly of the asteroid or comet at any simulation time using the

following equation:
_ | A _ | &
M = /5 ty = /;(JD—JDpp)

where 4 is the gravitational constant of the sun, a is the semimajor axis of the celestial body, and t, is
the time since perihelion passage.

The semimajor axis is determined from the perihelion distance r, and orbital eccentricity e according to
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This solution of Kepler’s equation in this MATLAB script is based on a numerical solution devised by
Professor J.M.A. Danby at North Carolina State University. Additional information about this algorithm
can be found in “The Solution of Kepler’s Equation”, Celestial Mechanics, 31 (1983) 95-107, 317-328
and 40 (1987) 303-312.
The initial guess for Danby's method is

E, =M +0.85sign(sinM )e
The fundamental equation we want to solve is

f(E)=E—esihnE-M =0
which has the first three derivatives given by

f'(E)=1-ecosE f"(E)=esinE f"(E)=ecosE

The iteration for an updated eccentric anomaly based on a current value E, is given by the next four
equations:

f e f
A(En):_F A (En)__ 1A 1 14
f'+ = Af
2
5, (E)= f .= E, 4,

fralaprpiange
2 6

This algorithm provides quartic convergence of Kepler's equation. This process is repeated until the
following convergence test involving the fundamental equation is satisfied:

|f(E)|£8

where ¢ is the convergence tolerance. This tolerance is hardwired in the software to & =1.0e-10.
Finally, the true anomaly can be calculated with the following two equations

sind=+1-¢’sinE cosf =CosE —e
and the four quadrant inverse tangent given by
@ =tan™(sing,coso)

If the orbit is hyperbolic, the initial guess is
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H, = log (ZTM+1.8j

where H, is the hyperbolic anomaly. The fundamental equation and first three derivatives for this case

are as follows:
f(H)=esinhH-H-M f'(H)=ecoshH -1

f"(H)=esinhH f"(H)=ecoshH

Otherwise, the iteration loop which calculates A, A", and so forth is the same. The true anomaly for
hyperbolic orbits is determined with this next set of equations:

sin@ =+/e? —1sinh H cos@ =e—coshH

The true anomaly is then determined from a four quadrant inverse tangent evaluation of these two
equations.

The AV 's required at launch and arrival are simply the differences between the velocity on the transfer
trajectory determined by the solution of Lambert’s problem and the heliocentric velocities of the two
celestial bodies. If we treat each celestial body as a point mass and assume impulsive maneuvers, the
body-centered magnitude and direction of the required maneuvers are given by the two vector equations:

AV, =V, =V,
AV, =V, =V,
where
V; = heliocentric velocity vector of the transfer trajectory at launch
V; = heliocentric velocity vector of the transfer trajectory at arrival
V;_ = heliocentric velocity vector of the celestial body at launch
Vg, = heliocentric velocity vector of the celestial body at arrival

The scalar magnitude of each maneuver is also called the “hyperbolic excess velocity” or v-infinity at
launch and arrival. The hyperbolic excess velocity is the speed of the spacecraft relative to each

celestial body at an infinite distance from the body. Furthermore, the energy or C, at launch or arrival is

equal to v2 for the respective maneuver. C, is also equal to twice the orbital energy per unit mass (the
specific orbital energy).

The orientation of the departure and arrival hyperbolas is specified in terms of the right ascension and
declination of the asymptote. These coordinates can be calculated using the components of the V|
velocity vector.
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The right ascension of the asymptote is determined from o = tan™(AV,,AV, ) and the geocentric

declination of the asymptote is given by & =90° —cos’l(A\fz) where AV, is z-component of the unit
AV vector.
In this MATLAB script the heliocentric planetary coordinates are computed in the J2000 mean equator

and equinox coordinate system (EME2000). These coordinates are transformed to the mean ecliptic and
equinox of J2000 with the following matrix-vector operation.

1 0 0 1 0 0
S.=|0 cose sing|S,=|0 0.917482062069182 0.397777155931914 S,
0 -sine cose 0 -0.397777155931914 0.917482062069182

where S, is the state vector (position and velocity vectors) in the ecliptic frame, S, is the state vector

in the Earth equatorial frame and ¢ is the mean obliquity of the ecliptic at J2000. The J2000 value of
the mean obliquity of the ecliptic is equal to & =2326'21."448.

The following figure illustrates the geometry of the EME2000 coordinate system. The origin of this
heliocentric inertial coordinate system is the Sun and the fundamental plane is the Earth’s mean equator.
The z-axis of this system is normal to the Earth’s mean equator at epoch J2000, the x-axis is parallel to
the vernal equinox of the Earth’s mean orbit at epoch J2000, and the y-axis completes the right-handed
coordinate system. The epoch J2000 is the Julian Date 2451545.0 which corresponds to January 1,
2000, 12 hours Terrestrial Time (TT).

Earth Mean Orbit Pole ZEME2000
of J2000 (Ecliptic Pole) A

Earth Mean Morth Pole
of J2000

Earth Mean Orbit

Y EmME2000

-
-

Earth Mean Equator
of J2000

X EME2000 .
Earth Vernal Equinox

of J2000

Figure 1. Earth mean equator and equinox of J2000 coordinate system
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Trajectory Optimization

In the terminology of numerical optimization, this MATLAB script treats the launch and arrival dates as
control or optimization variables and attempts to minimize the launch, arrival or sum of launch and
arrival scalar AV's. The scalar magnitude of the selected AV is called the objective function or the
performance index.

The software can solve for the following types of optimized interplanetary space missions:

e minimum launch AV
e minimum arrival AV

e minimum total AV

As noted in “On the Nature of Earth-Mars Porkchop Plots”, the optimality of two impulse interplanetary
trajectories is governed by the following three factors

1) Departure and arrival near the line of nodes

2) Arrival at the aphelion of the more eccentric celestial body orbit

3) Departure from the perihelion of the less eccentric celestial body orbit

where item 1 is the most important and item 3 the least important.

Primer Vector Analysis

This section summarizes the primer vector analysis performed by ipto matlab software. The term
primer vector was invented by Derek F. Lawden and represents the adjoint vector for velocity. A
technical discussion about primer theory can be found in Lawden’s classic text, Optimal Trajectories for
Space Navigation, Butterworths, London, 1963. Another excellent resource is “Primer Vector Theory
and Applications”, Donald J. Jezewski, NASA TR R-454, November 1975, along with “Optimal, Multi-
burn, Space Trajectories”, also by Jezewski.

As shown by Lawden, the following four necessary conditions must be satisfied in order for an
impulsive orbital transfer to be locally optimal:

(1) the primer vector and its first derivative are everywhere continuous

(2) whenever a velocity impulse occurs, the primer is a unit vector aligned with the impulse and
has unit magnitude (p=p =0, and |jp|=1)

(3) the magnitude of the primer vector may not exceed unity on a coasting arc (|p|=p<1)

(4) at all interior impulses (not at the initial or final times) p«p=0; therefore, d||p|/dt =0 at the
intermediate impulses
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Furthermore, the scalar magnitude of the primer vector derivative at the initial and final impulses
provide information about how to improve the nominal transfer trajectory by changing the endpoint
times and/or moving the velocity impulse times. These four cases for non-zero slopes are summarized
as follows;

e If p,>0and p, <0— perform an initial coast before the first impulse and add a final coast
after the second impulse

e If p,>0and p, >0— perform an initial coast before the first impulse and move the second
impulse to a later time

e If p,<0and p, <0— perform the first impulse at an earlier time and add a final coast after the
second impulse

o |If p,<0and p, >0— perform the first impulse at an earlier time and move the second impulse
to a later time

The primer vector analysis of a two impulse orbital transfer involves the following steps.

First partition the two-body state transition matrix ®@(t,t,) as follows:

[or or
a_r() a_VO q)ll q)lZ cI)rl’ q)rv
CD(t’tO) ) 8V av ) |:q)21 q)22:| ) |:q)vr (vai|
ar, ov,

where
oxlox, oxloy, oxloz,

D, = _}: oylox, oyloy, oylaz,
ozlox, ozloy, ozloz,

and so forth.

The value of the primer vector at any time t along a two body trajectory is given by
P(t) =@y (L) Py + Dy, (L) Py
and the value of the primer vector derivative is

p(t) = (D21 (t’to) Po + d)22 (t’to)po

Bl
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which can also be expressed as



The primer vector boundary conditions at the initial and final impulses are as follows:

AV
_|AVZ| p(t)=p, _\Avf\

p(to) =Py
These two conditions illustrate that at the locations of velocity impulses, the primer vector is a unit
vector in the direction of the velocity impulses.

The value of the primer vector derivative at the initial time is
p(to) =P, = q)Izl(tf ’to){pf _q)ll(tf ’to)po}
provided the ®,, sub-matrix is non-singular.

The scalar magnitude of the derivative of the primer vector can be determined from

dlp| _d, 2 pep
PR L | R, p.p -
dt dt( ) Il

SNOPT algorithm implementation

This section provides details about the part of the ipto matlab MATLAB script that solves this
nonlinear programming (NLP) problem using the SNOPT algorithm. In this classic trajectory
optimization problem, the launch and arrival calendar dates are the control variables and the scalar AV
computed by the solution of Lambert’s problem is the objective function or performance index.

MATLAB versions of SNOPT for several computer platforms can be found at Professor Philip Gill’s
web site which is located at http://scicomp.ucsd.edu/~peg/.

The SNOPT algorithm requires an initial guess for the control variables. For this problem they are
computed with the following code

xg(l) = jdatel - jdateO;
xg(2) = jdate2 - jdate0;
xg = xg';

where jdatel and jdate2 are the initial user-provided launch and arrival date guesses, and §date0 is
a reference Julian date equal to 2451544.5 (January 1, 2000). This offset value is used to scale the
Julian Date control variables.

The algorithm also requires lower and upper bounds for the control variables. These are determined
from the initial guesses and user-defined search boundaries as follows:

% bounds on control variables

xlwr (1)
xupr (1)

xg(l) - ddaysl;
xg(l) + ddaysl;
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xlwr (2) = xg(2) - ddays2;

xupr (2) = xg(2) + ddays2;
x1lwr = xlwr';
Xupr = xupr';
xlwr = xlwr';
Xupr = xupr';

where ddays1 and ddays2 are the user-defined launch and arrival search boundaries, respectively.

If the mission constraints option is in effect, the following code defines the lower and upper bounds for
each of the four nonlinear mission constraints.

if (imcon == 1)

% bounds on nonlinear constraints

flow(2) = flow c3;

fupp (2) = fupp c3;
flow(3) = dtr * flow dla;
fupp (3) = dtr * fupp dla;
flow(4) = flow tof;

fupp (4) = fupp tof;
flow(5) = flow vinf;

fupp (5) = fupp_ vinf;

end

The algorithm also requires lower and upper bounds on the objective function. For this problem these
bounds are given by

% bounds on objective function

flow (1)
fupp (1)

The actual call to the SNOPT MATLAB interface function is as follows

0.0d0;
+Inf;

[x, f, inform, xmul, fmul] = snopt(xg, xlwr, xupr, flow, fupp, 'iptofunc');

where iptofunc is the name of the MATLAB function that solves Lambert’s problem and computes
the current value of the objective function and any required nonlinear constraints.

The ipto_matlab script will also read an SNOPT SPECS file. For this example the contents of this
file are as follows:

Begin SNOPT options

minor iterations limit 1000
derivative option 0
major optimality tolerance 1.0d-6
solution Yes

End SNOPT options

Please consult the SNOPT documentation for a complete explanation of the SPECS file. A PDF version
of the SNOPT user’s manual is also available at Professor Gill’s website.
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APPENDIX A
Earth-to-Tempel 1 Trajectory Analysis

This appendix summarizes typical trajectory characteristics of a ballistic and patched-conic mission
from Earth to the comet Tempel 1. This simulation example minimizes the magnitude of the departure
delta-v at the Earth departure.

Here’s the ipto matlab user interaction and the script output for this example.

program ipto matlab

< interplanetary trajectory optimization >

departure conditions - start date

please input the calendar date
(1 <= month <= 12, 1 <= day <= 31, year = all digits!)
? 12,1,2004

please input the departure date search boundary in days
? 60

arrival conditions - start date

please input the calendar date
(1 <= month <= 12, 1 <= day <= 31, year = all digits!)
? 7,1,2005

please input the arrival date search boundary in days
? 90

celestial body menu

<1> Mercury

<2> Venus

<3> Earth

<4> Mars

<5> Jupiter

<6> Saturn

<7> Uranus

<8> Neptune

<9> Pluto

<10> asteroid/comet

please select the departure celestial body
? 3

celestial body menu

<1> Mercury

<2> Venus

<3> Earth

<4> Mars

<5> Jupiter

<6> Saturn

<7> Uranus

<8> Neptune

<9> Pluto

<10> asteroid/comet
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please select the arrival celestial body
? 10

would you like to enforce mission constraints (y = yes, n = no)
?n

optimization menu
<1> minimize departure delta-v
<2> minimize arrival delta-v
<3> minimize total delta-v
<4> no optimization
selection (1, 2, 3 or 4)

21

program ipto matlab

minimize departure delta-v

departure celestial body Earth

departure calendar date 10-Jan-2005
departure TDB time 08:46:54.744
departure julian date 2453380.8659
arrival celestial body asteroid/comet
arrival calendar date 10-Jul-2005
arrival TDB time 02:24:29.401
arrival julian date 2453561.6003
transfer time 180.7344 days

heliocentric orbital conditions prior to the first maneuver
(mean ecliptic and equinox of J2000)

sma (km) eccentricity inclination (deq) argper (deq)
1.4974235642e+08 1.7610519542e-02 7.7741153172e-04 3.1647547001e+02

raan (deqg) true anomaly (deg) arglat (deg) period (days)
1.4672891357e+02 6.9458397394e+00 3.2342130975e+02 3.6578618874e+02

rx (km) ry (km) rz (km) rmag (km)
-5.06816788009146e+07 +1.38118931783621e+08 -1.18960940212756e+03 +1.47124001728279e+08

vx (kps) vy (kps) vz (kps) vmag (kps)
-2.84629803229640e+01 -1.03767268372939%9e+01 +3.29584858730136e-04 +3.02955064131610e+01

heliocentric orbital conditions after the first maneuver
(mean ecliptic and equinox of J2000)

sma (km) eccentricity inclination (deg) argper (deg)
1.9458780387e+08 2.4392147259e-01 5.7287208652e-01 1.8032512802e+02

raan (deqg) true anomaly (deg) arglat (deqg) period (days)
2.9010388993e+02 3.5972120768e+02 1.8004633570e+02 5.4185580915e+02

rx (km) ry (km) rz (km) rmag (km)
-5.06816788009146e+07 +1.38118931783621e+08 -1.18960940212756e+03 +1.47124001728279e+08
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vx (kps) vy (kps) vz (kps) vmag (kps)
-3.14344527003716e+01 -1.15686784469718e+01 -3.34917119013286e-01 +3.34973328349876e+01

heliocentric orbital conditions prior to the second maneuver
(mean ecliptic and equinox of J2000)

sma (km) eccentricity inclination (deq) argper (deg)
1.9458780387e+08 2.4392147259%9e-01 5.7287208652e-01 1.8032512802e+02

raan (deq) true anomaly (deq) arglat (deqg) period (days)
2.9010388993e+02 1.4049056085e+02 3.2081568887e+02 5.4185580915e+02

rx (km) ry (km) rz (km) rmag (km)
-7.36868621538256e+07 -2.13047243958176e+08 -1.42409963263081e+06 +2.25434934897001e+08

vx (kps) vy (kps) vz (kps) vmag (kps)
+1.92933379365169e+01 -1.10958802607591e+01 +1.43022352008143e-01 +2.22569517878554e+01

heliocentric orbital conditions after the second maneuver
(mean ecliptic and equinox of J2000)

sma (km) eccentricity inclination (deq) argper (deq)
4.6697445253e+08 5.1749100000e-01 1.0530100000e+01 1.7883900000e+02

raan (deg) true anomaly (deg) arglat (deg) period (days)
6.8973400000e+01 3.1419160077e+00 1.8198091601e+02 2.0144198451e+03

rx (km) ry (km) rz (km) rmag (km)
-7.36868621538256e+07 -2.13047243958176e+08 -1.42409963263081e+06 +2.25434934897001e+08

vx (kps) vy (kps) vz (kps) vmag (kps)
+2.75933039187317e+01 -1.00985027120853e+01 -5.46110314910779e+00 +2.98863484852647e+01

heliocentric orbital conditions of arrival body
(mean ecliptic and equinox of J2000)

sma (km) eccentricity inclination (deg) argper (deg)
4.6697445253e+08 5.1749100000e-01 1.0530100000e+01 1.7883900000e+02

raan (deqg) true anomaly (deq) arglat (deg) period (days)
6.8973400000e+01 3.1419160077e+00 1.8198091601e+02 2.0144198451e+03

rx (km) ry (km) rz (km) rmag (km)
-7.36868621538243e+07 -2.13047243958177e+08 -1.42409963263081e+06 +2.25434934897001e+08

vx (kps) vy (kps) vz (kps) vmag (kps)
+2.75933039187318e+01 -1.00985027120852e+01 -5.46110314910779e+00 +2.98863484852647e+01

departure delta-v and energy requirements
(mean equator and equinox of J2000)

x—-component of delta-v -2971.472377 meters/second
y-component of delta-v -960.240740 meters/second
z-component of delta-v -781.713958 meters/second
delta-v magnitude 3219.128311 meters/second

energy 10.362787 kilometers”2/second”?2
asymptote right ascension 197.908404 degrees

asymptote declination -14.053869 degrees

arrival delta-v and energy requirements
(mean equator and equinox of J2000)
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x—component of delta-v
y-component of delta-v
z—component of delta-v
delta-v magnitude

energy

asymptote right ascension
asymptote declination

total delta-v

total energy

-8299.965982
-3144.269113
4744.950616

meters/second
meters/second
meters/second
10064

.314180 meters/second

101.290420 kilometers”2/second”2
200.748149

28.129298

degrees
degrees
13283.

442491 meters/second

111.653207 kilometers”2/second”2

Here’s the graphics display of the interplanetary transfer trajectory along with the heliocentric orbits of
the Earth and Tempel 1. We can see from this graphics display and the screen display data above
(heliocentric true anomaly ~ 3 degrees) that spacecraft encounter with Tempel 1 occurs near perihelion

of the comet’s orbit.

Y coordinate (AU)

Interplanetary Trajectory Optimization

«L

X coordinate (AU)

Laungh

The following are graphic displays of the magnitudes of the primer vector and its derivative for this orbit
transfer example. From these two plots we can see that the solution found by the ipto matlab script
is not optimal according to primer vector theory.
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APPENDIX B

Mission Constraints Example

This appendix provides a trajectory example which demonstrates the mission constraint option of the
ipto matlab MATLAB script. When exercising the mission constraints program option, you may
receive the following screen display if all the mission constraints have not been satisfied.

check solution!!

all mission constraints may not be satisfied

If you receive this message, consider “relaxing” the mission constraint or constraints that are not
satisfied. It may also be helpful to run your example with the mission constraint graphics option of the
porkchop ftn computer program and examine the solution geometry.

The launch delta-v of the Earth-to-Mars mission opportunity in 2011 is optimized with the following
user-defined mission constraints;

6.0<C, <100

285 <DLA<+285
100.0 < TOF < 300.0
1.0V, <3.0

where C, is the departure or launch energy in kilometer per second quantity squared, DLA is the

geocentric EME2000 declination of the launch hyperbola in degrees, TOF is the time-of-flight in days,
and V, is the scalar magnitude of the arrival v-infinity vector at Mars in kilometers per second.

The following is the ipto matlab user interaction for this example.

program ipto matlab

< interplanetary trajectory optimization >

departure conditions - start date

please input the calendar date
(1 <= month <= 12, 1 <= day <= 31, year = all digits!)
? 11,17,2011

please input the departure date search boundary in days
? 60

arrival conditions - start date

please input the calendar date

(1 <= month <= 12, 1 <= day <= 31, vyear
? 8,11,2012

all digits!)

please input the arrival date search boundary in days
? 60
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celestial body menu

<1> Mercury

<2> Venus

<3> Earth

<4> Mars

<5> Jupiter

<6> Saturn

<7> Uranus

<8> Neptune

<9> Pluto

<10> asteroid/comet

please select the departure celestial body
23

celestial body menu

<1> Mercury

<2> Venus

<3> Earth

<4> Mars

<5> Jupiter

<6> Saturn

<7> Uranus

<8> Neptune

<9> Pluto

<10> asteroid/comet
please select the arrival celestial body
? 4

would you like to enforce mission constraints (y = yes, n = no)
2
(4

please input the lower bound for departure C3 (km"2/sec”2)
26

please input the upper bound for departure C3 (km"2/sec”2)
2 10

please input the lower bound for departure DLA (degrees)
? -28.5

please input the upper bound for departure DLA (degrees)
? 28.5

please input the lower bound for time-of-flight (days)
? 100

please input the upper bound for time-of-flight (days)
? 300

please input the lower bound for arrival v-infinity (km/sec)
21

please input the upper bound for arrival v-infinity (km/sec)
2 3

optimization menu
<1> minimize departure delta-v
<2> minimize arrival delta-v
<3> minimize total delta-v
<4> no optimization

selection (1, 2, 3 or 4)
21

The following is the screen output created by ipto matlab for this example.

page 24



program ipto matlab

minimize departure delta-v

departure celestial body Earth

departure calendar date 06-Nov-2011
departure TDB time 19:58:30.582
departure julian date 2455872.3323
arrival celestial body Mars

arrival calendar date 26-Aug-2012
arrival TDB time 19:20:07.434
arrival julian date 2456166.3056
transfer time 293.9733 days

heliocentric orbital conditions prior to the first maneuver
(mean ecliptic and equinox of J2000)

sma (km) eccentricity inclination (degq) argper (deg)
1.4950950904e+08 1.6641163552e-02 1.5240318293e-03 3.0847852177e+02

raan (deg) true anomaly (deg) arglat (deg) period (days)
1.5664975134e+02 2.9876217025e+02 2.4724069202e+02 3.6493333148e+02

rx (km) ry (km) rz (km) rmag (km)
+1.06861025481163e+08 +1.02800338166280e+08 -3.63707482737303e+03 +1.48280775244856e+08

vx (kps) vy (kps) vz (kps) vmag (kps)
-2.11368237379601e+01 +2.13447410995149e+01 -2.98418119946575e-04 +3.00393623504889e+01

heliocentric orbital conditions after the first maneuver
(mean ecliptic and equinox of J2000)

sma (km) eccentricity inclination (deg) argper (deg)
1.8773721478e+08 2.1185066927e-01 1.4070724552e+00 8.8956563671e+00

raan (deqg) true anomaly (deq) arglat (deg) period (days)
4.3947658224e+01 3.5104711150e+02 3.5994276787e+02 5.1349458076e+02

rx (km) ry (km) rz (km) rmag (km)
+1.06861025481163e+08 +1.02800338166280e+08 -3.63707482737303e+03 +1.48280775244856e+08

vx (kps) vy (kps) vz (kps) vmag (kps)
-2.34473547543591e+01 +2.30798404031567e+01 +8.07861196073348e-01 +3.29106383670094e+01

heliocentric orbital conditions prior to the second maneuver
(mean ecliptic and equinox of J2000)

sma (km) eccentricity inclination (deg) argper (deqg)
1.8773721478e+08 2.1185066927e-01 1.4070724552e+00 8.8956563671e+00

raan (deqg) true anomaly (deg) arglat (deqg) period (days)
4.3947658224e+01 1.9364416153e+02 2.0253981790e+02 5.1349458076e+02

rx (km) ry (km) rz (km) rmag (km)
-9.00995880751167e+07 -2.07030644205069e+08 -2.12537376708756e+06 +2.25796679835912e+08

vx (kps) vy (kps) vz (kps) vmag (kps)
+2.03489743966313e+01 -7.36818166666030e+00 -4.77187749954083e-01 +2.16471376448798e+01

heliocentric orbital conditions after the second maneuver
(mean ecliptic and equinox of J2000)
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sma (km) eccentricity inclination (deq) argper (deqg)
2.2794532984e+08 9.3344391222e-02 1.8487297043e+00 2.8652221290e+02

raan (deg) true anomaly (deg) arglat (deg) period (days)
4.9525660857e+01 2.7044180875e+02 1.9696402165e+02 6.8699939875e+02

rx (km) ry (km) rz (km) rmag (km)
-9.00995880751167e+07 -2.07030644205069e+08 -2.12537376708756e+06 +2.25796679835912e+08

vx (kps) vy (kps) vz (kps) vmag (kps)
+2.31325613200168e+01 -7.59264032750929e+00 -7.27063249673829%e-01 +2.43575902202226e+01

heliocentric orbital conditions of arrival body
(mean ecliptic and equinox of J2000)

sma (km) eccentricity inclination (deq) argper (deq)
2.2794532984e+08 9.3344391222e-02 1.8487297043e+00 2.8652221290e+02

raan (deg) true anomaly (deg) arglat (deg) period (days)
4.9525660857e+01 2.7044180875e+02 1.9696402165e+02 6.8699939875e+02

rx (km) ry (km) rz (km) rmag (km)
-9.00995880751277e+07 -2.07030644205065e+08 -2.12537376708730e+06 +2.25796679835913e+08

vx (kps) vy (kps) vz (kps) vmag (kps)
+2.31325613200162e+01 -7.59264032751061e+00 -7.27063249673843e-01 +2.43575902202225e+01

departure delta-v and energy requirements
(mean equator and equinox of J2000)

x-component of delta-v -2310.531016 meters/second
y-component of delta-v 1270.455054 meters/second
z-component of delta-v 1431.654816 meters/second
delta-v magnitude 3000.374166 meters/second

energy 9.002245 kilometers”2/second”2
asymptote right ascension 151.195623 degrees

asymptote declination 28.500000 degrees

arrival delta-v and energy requirements
(mean equator and equinox of J2000)

x-component of delta-v -2783.586923 meters/second
y-component of delta-v 106.542029 meters/second
z-component of delta-v 318.540816 meters/second
delta-v magnitude 2803.778810 meters/second
energy 7.861176 kilometers”2/second”2

Mars-mean-equator and IAU node of epoch

asymptote right ascension 133.531925 degrees

asymptote declination -21.579029 degrees

total delta-v 5804.152976 meters/second

total energy 16.863421 kilometers”2/second”?2

Here’s the graphics display of the interplanetary transfer trajectory along with the heliocentric orbits of
the Earth and Mars.
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The following are graphic displays of the magnitudes of the primer vector and its derivative for this orbit
transfer example. From these two plots we can see that the solution found by the ipto matlab script
is not optimal according to primer vector theory.
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APPENDIX C

Areocentric Coordinate Transformation
This appendix describes the transformation of coordinates between the Earth mean equator and equinox
of J2000 (EME2000) and the areocentric mean equator and IAU node of epoch coordinate systems.
This transformation is used to compute the right ascension and declination of the incoming asymptote at
Mars arrival.

A unit vector in the direction of the pole of Mars can be determined from

cosa, cos§p
Pyars =| SIN@, COSS,
sin§p

The 1AU 2000 right ascension and declination of the pole of Mars in the Earth mean equator and
equinox of J2000 (EME2000) coordinate system are given by the following expressions

a, =317.68143-0.1061T

6, =52.88650—-0.0609T

where T is the time in Julian centuries given by T =(JD —2451545.0)/36525 and JD is the TDB Julian
Date.

The unit vector in the direction of the IAU-defined x-axis is computed from
X=P;2000 X Prvtars
where P00 =[0 01]T is unit vector in the direction of the pole of the J2000 coordinate system.
The unit vector in the y-axis direction of this coordinate system is
Y = Paars XX

Finally, the components of the matrix that transforms coordinates from the EME2000 system to the
Mars-centered mean equator and IAU node of epoch system are as follows:

>

p Mars
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APPENDIX D

Near-optimal Earth-to-Mars Example

This appendix is a near-optimal Earth-to-Mars example taken from Table 3 of “On the Nature of Earth-
Mars Porkchop Plots”. It is a Type Il trajectory that starts and ends near the line of nodes.

program ipto matlab

< interplanetary trajectory optimization >

departure conditions - start date

please input the calendar date
(1 <= month <= 12, 1 <= day <= 31, year = all digits!)
? 10,15,2073

please input the departure date search boundary in days
? 30

arrival conditions - start date

please input the calendar date
(1 <= month <= 12, 1 <= day <= 31, year = all digits!)
2 9,1,2074

please input the arrival date search boundary in days
2 30

celestial body menu

<1> Mercury

<2> Venus

<3> Earth

<4> Mars

<5> Jupiter

<6> Saturn

<7> Uranus

<8> Neptune

<9> Pluto

<10> asteroid/comet

please select the departure celestial body
? 3

celestial body menu

<1> Mercury

<2> Venus

<3> Earth

<4> Mars

<5> Jupiter

<6> Saturn

<7> Uranus

<8> Neptune

<9> Pluto

<10> asteroid/comet

please select the arrival celestial body
? 4
would you like to enforce mission constraints (y = yes, n = no)
?n
optimization menu

<1> minimize departure delta-v
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<2> minimize arrival delta-v
<3> minimize total delta-v
<4> no optimization

selection (1, 2, 3 or 4)

? 3
program ipto matlab

minimize total delta-v
departure celestial body Earth
departure calendar date 27-0ct-2073
departure TDB time 09:45:45.752
departure julian date 2478507.9068
arrival celestial body Mars
arrival calendar date 05-Sep-2074
arrival TDB time 07:06:59.387
arrival julian date 2478820.7965
transfer time 312.8897 days

heliocentric orbital conditions prior to the first maneuver
(mean ecliptic and equinox of J2000)

sma (km) eccentricity inclination (deq) argper (deq)
1.4969408417e+08 1.6609453795e-02 1.1210898500e-02 2.8044520046e+02

raan (deg) true anomaly (deg) arglat (deg) period (days)
1.8037964394e+02 2.9274450652e+02 2.1318970698e+02 3.6560932598e+02

rx (km) ry (km) rz (km) rmag (km)
+1.23897648645804e+08 +8.22219010723092e+07 -1.59271354329400e+04 +1.48697910575695e+08

vx (kps) vy (kps) vz (kps) vmag (kps)
-1.69521171087165e+01 +2.47196689743472e+01 -4.85869781455861e-03 +2.99739275417134e+01

heliocentric orbital conditions after the first maneuver
(mean ecliptic and equinox of J2000)

sma (km) eccentricity inclination (degq) argper (deq)
1.9096184451e+08 2.2162235455e-01 6.9290298183e-01 3.2334603687e+00

raan (deqg) true anomaly (deg) arglat (deg) period (days)
3.4076796787e+01 3.5625905616e+02 3.5949251652e+02 5.2678113071e+02

rx (km) ry (km) rz (km) rmag (km)
+1.23897648645804e+08 +8.22219010723092e+07 -1.59271354329400e+04 +1.48697910575695e+08

vx (kps) vy (kps) vz (kps) vmag (kps)
-1.85788729046101e+01 +2.72890403856853e+01 +3.99259849140234e-01 +3.30155365245570e+01

heliocentric orbital conditions prior to the second maneuver
(mean ecliptic and equinox of J2000)

sma (km) eccentricity inclination (degq) argper (deq)
1.9096184451e+08 2.2162235455e-01 6.9290298183e-01 3.2334603687e+00

raan (deqg) true anomaly (deq) arglat (deqg) period (days)
3.4076796787e+01 2.0083994844e+02 2.0407340881e+02 5.2678113071e+02
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rx (km) ry (km) rz (km) rmag (km)
-1.20854934202438e+08 -1.94529518984791e+08 -1.12971375762974e+06 +2.29017303125122e+08

vx (kps) vy (kps) vz (kps) vmag (kps)
+1.93316889510978e+01 -9.49943866454759e+00 -2.26156867291437e-01 +2.15407678501051e+01

heliocentric orbital conditions after the second maneuver
(mean ecliptic and equinox of J2000)

sma (km) eccentricity inclination (deg) argper (deg)
2.2793037367e+08 9.3573871355e-02 1.8435637601e+00 2.8709088031e+02

raan (deq) true anomaly (deq) arglat (deq) period (days)
4.9332930572e+01 2.6172932802e+02 1.8882020833e+02 6.8693178575e+02

rx (km) ry (km) rz (km) rmag (km)
-1.20854934202438e+08 -1.94529518984791e+08 -1.12971375762974e+06 +2.29017303125122e+08

vx (kps) vy (kps) vz (kps) vmag (kps)
+2.14856494547696e+01 -1.07018196959563e+01 -7.49033288768392e-01 +2.40150604447643e+01

heliocentric orbital conditions of arrival body
(mean ecliptic and equinox of J2000)

sma (km) eccentricity inclination (deg) argper (deg)
2.2793037367e+08 9.3573871355e-02 1.8435637601e+00 2.8709088031e+02

raan (deg) true anomaly (deg) arglat (deg) period (days)
4.9332930572e+01 2.6172932802e+02 1.8882020833e+02 6.8693178575e+02

rx (km) ry (km) rz (km) rmag (km)
-1.20854934202449e+08 -1.94529518984786e+08 -1.12971375762962e+06 +2.29017303125124e+08

vx (kps) vy (kps) vz (kps) vmag (kps)
+2.14856494547688e+01 -1.07018196959575e+01 -7.49033288768398e-01 +2.40150604447641e+01

departure delta-v and energy requirements
(mean equator and equinox of J2000)

x—-component of delta-v -1626.755796 meters/second
y-component of delta-v 2196.603054 meters/second
z-component of delta-v 1392.808770 meters/second
delta-v magnitude 3067.786770 meters/second

energy 9.411316 kilometers”2/second”?2
asymptote right ascension 126.522832 degrees

asymptote declination 27.001315 degrees

arrival delta-v and energy requirements
(mean equator and equinox of J2000)

x-component of delta-v -2153.960504 meters/second
y-component of delta-v 895.174732 meters/second
z-component of delta-v 958.009444 meters/second
delta-v magnitude 2521.639496 meters/second
energy 6.358666 kilometers”2/second”?2

Mars-mean-equator and IAU node of epoch

asymptote right ascension 108.777442 degrees
asymptote declination -12.875232 degrees
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total delta-v 5589.426267 meters/second

total energy 15.769981 kilometers”2/second”2

Here’s the heliocentric graphics display for this example.
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The following plots of the primer vector and its derivative illustrate that this interplanetary transfer
trajectory is nearly optimal according to primer vector theory.
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