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A MATLAB Script for Ballistic Interplanetary Trajectory 
Design and Optimization 

 

This document describes a MATLAB script called ipto_matlab that can be used to design and 

optimize “patched conic” ballistic interplanetary trajectories between any two planets of our solar 

system.  It can also be used to find two-body trajectories between a planet and an asteroid or comet.  A 

patched-conic trajectory ignores the gravitational effect of both the launch and arrivals planets on the 

heliocentric transfer trajectory.  This technique involves the solution of Lambert's problem relative to the 

Sun.  Patched-conic trajectories are suitable for preliminary mission design.  The ipto_matlab script 

also includes the option to include user-defined mission constraints such as departure energy, time-of-

flight, and so forth during the trajectory optimization. 

 

The ipto_matlab MATLAB script also performs a graphical primer vector analysis of the solution.  

This program feature displays the behavior of the primer vector magnitude and primer derivative 

magnitude as a function of mission elapsed time in days from departure.  This script uses the SNOPT 

nonlinear programming (NLP) algorithm to solve this classic astrodynamics problem. 

 

User interaction with script 
 

The software will ask the user for an initial guess for the launch and arrival calendar dates as well as the 

launch and arrival celestial bodies.  The script will also ask the user for a search boundary, in days, on 

the launch and arrival dates.  The algorithm will restrict its search for the optimum launch date LD  and 

arrival date AD  as follows: 
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where 
gLD  and 

gAD  are the user’s initial guess for launch and arrival dates, and LD , AD , are the 

user-specified search boundaries for the launch and arrival dates, respectively. 

 

The following is typical user interaction with this MATLAB application.  This example is an Earth-to-

Mars mission that minimizes the total delta-v.  The user inputs for this example are in bold font. 

 
departure conditions - start date 

 

please input the calendar date 

(1 <= month <= 12, 1 <= day <= 31, year = all digits!) 

? 6,1,2003 

 

please input the departure date search boundary in days 

? 30 

 

 

arrival conditions - start date 

 

please input the calendar date 

(1 <= month <= 12, 1 <= day <= 31, year = all digits!) 

? 12,1,2003 

 

please input the arrival date search boundary in days 

? 30 
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 celestial body menu 

 

  <1>  Mercury 

  <2>  Venus 

  <3>  Earth 

  <4>  Mars 

  <5>  Jupiter 

  <6>  Saturn 

  <7>  Uranus 

  <8>  Neptune 

  <9>  Pluto 

  <10> asteroid/comet 

 

please select the departure celestial body 

? 3 

 

 celestial body menu 

 

  <1>  Mercury 

  <2>  Venus 

  <3>  Earth 

  <4>  Mars 

  <5>  Jupiter 

  <6>  Saturn 

  <7>  Uranus 

  <8>  Neptune 

  <9>  Pluto 

  <10> asteroid/comet 

 

please select the arrival celestial body 

? 4 

 

 

would you like to enforce mission constraints (y = yes, n = no) 

? n 

 

      optimization menu 

 

 <1> minimize departure delta-v 

 

 <2> minimize arrival delta-v 

 

 <3> minimize total delta-v 

 

 <4> no optimization 

 

 selection (1, 2 or 3) 

? 3 

 

If the analyst selects an asteroid or comet as the launch or arrival body, the software will interactively 

prompt the user for the name of a simple data file containing the orbital elements of the object.  The 

orbital elements of an asteroid or comet relative to the ecliptic and equinox of J2000 coordinate system 

must be provided by the user.  The following is a typical data file for the comet Tempel 1.  Do not 

change the number of lines of information in these data files.  The data values are in bold.  Please note 

the correct units for each orbital element.  The perihelion passage calendar date should be on the 

Barycentric Dynamical Time (TDB) scale. 

 
********************************************* 

* asteroid/comet classical orbital elements * 

* (heliocentric, Earth mean ecliptic J2000) * 

********************************************* 
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asteroid/comet name 

Tempel 1 

 

TDB calendar date of perihelion passage (month, day, year) 

7, 5.3153, 2005 

 

perihelion distance (au) 

1.506167 

 

orbital eccentricity (non-dimensional) 

0.517491 

 

orbital inclination (degrees) 

10.5301 

 

argument of perihelion (degrees) 

178.8390 

 

longitude of the ascending node (degrees) 

68.9734 

 

Orbital elements for several comets and asteroids can be obtained from the JPL Near Earth Object 

(NEO) website which is located at http://neo.jpl.nasa.gov. 

 

The prompt for the name of the asteroid or comet data file is similar to the following; 

 

 
 

The default filename type is *.dat.  However, the script will read any compatible data file. 

 

If the user elects to enforce mission constraints during the solution process, the script will display the 

following six interactive prompts.  These prompts allow the user to specify lower and upper bounds for 

each mission constraint.  Please note the proper units for each constraint and make sure the upper bound 

has a larger value than the lower bound.  Appendix B contains a detailed Earth-to-Mars trajectory 

optimization example with user-defined mission constraints. 

 
please input the lower bound for departure C3 (kilometers^2/second^2) 

? 

 

please input the upper bound for departure C3 (kilometers^2/second^2) 

? 

 

http://neo.jpl.nasa.gov/
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please input the lower bound for departure DLA (degrees) 

? 

 

please input the upper bound for departure DLA (degrees) 

? 

 

please input the lower bound for time-of-flight (days) 

? 

 

please input the upper bound for time-of-flight (days) 

? 

 

please input the lower bound for arrival v-infinity (kilometers/second) 

? 

 

please input the upper bound for arrival v-infinity (kilometers/second) 

? 

 

Optimal solution and trajectory graphics display 
 

This section summarizes the program output for this example.  The information provided by the 

software includes the heliocentric orbital elements and state vectors of the initial orbit, transfer trajectory 

and final mission orbit in the J2000 mean ecliptic and equinox coordinate system.  These numerical 

results also include the characteristics of the launch or departure hyperbola. Also note that the time scale 

is Barycentric Dynamical Time (TDB). 

 
       program ipto_matlab 

 

     minimize total delta-v 

 

departure celestial body     Earth          

 

departure calendar date      06-Jun-2003 

departure TDB time           08:17:20.579 

 

departure julian date        2452796.8454 

 

 

arrival celestial body       Mars           

 

arrival calendar date        27-Dec-2003 

arrival TDB time             17:03:45.061 

 

arrival julian date          2453001.2109 

 

transfer time                  204.3656  days  

  

heliocentric orbital conditions prior to the first maneuver 

(mean ecliptic and equinox of J2000) 

------------------------------------ 

 

      sma (km)        eccentricity     inclination (deg)    argper (deg) 

 1.4963256152e+08  1.6337778758e-02  3.4017832513e-04  2.7047636439e+02  

 

     raan (deg)     true anomaly (deg)   arglat (deg)       period (days) 

 1.9168183209e+02  1.5304069734e+02  6.3517061725e+01  3.6538395691e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -3.87803247685300e+07  -1.46766164749510e+08  +8.06715976461768e+02  +1.51803230219530e+08   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +2.83211858784698e+01  -7.71155136415724e+00  +7.88832797096184e-05  +2.93523013409698e+01   

 

 

heliocentric orbital conditions after the first maneuver 

(mean ecliptic and equinox of J2000) 

------------------------------------ 
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      sma (km)        eccentricity     inclination (deg)    argper (deg) 

 1.8842763117e+08  1.9438220509e-01  7.1005826334e-02  1.7892666348e+02  

 

     raan (deg)     true anomaly (deg)   arglat (deg)       period (days) 

 7.5444586386e+01  8.2764375478e-01  1.7975430724e+02  5.1632980035e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -3.87803247685300e+07  -1.46766164749510e+08  +8.06715976461768e+02  +1.51803230219530e+08   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +3.12218065445462e+01  -8.32837362979744e+00  -4.00448025834237e-02  +3.23135360926159e+01   

 

 

heliocentric orbital conditions prior to the second maneuver 

(mean ecliptic and equinox of J2000) 

------------------------------------ 

 

      sma (km)        eccentricity     inclination (deg)    argper (deg) 

 1.8842763117e+08  1.9438220509e-01  7.1005826334e-02  1.7892666348e+02  

 

     raan (deg)     true anomaly (deg)   arglat (deg)       period (days) 

 7.5444586386e+01  1.5417471525e+02  3.3310137874e+02  5.1632980035e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +1.45484494989705e+08  +1.64706475639684e+08  -1.23212009645380e+05  +2.19758905578943e+08   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -1.52127795066753e+01  +1.64941187732280e+01  +2.33850380748383e-02  +2.24384750213574e+01   

 

 

heliocentric orbital conditions after the second maneuver 

(mean ecliptic and equinox of J2000) 

------------------------------------ 

 

      sma (km)        eccentricity     inclination (deg)    argper (deg) 

 2.2793906443e+08  9.3540802481e-02  1.8493566928e+00  2.8651704692e+02  

 

     raan (deg)     true anomaly (deg)   arglat (deg)       period (days) 

 4.9540934984e+01  7.2487482568e+01  3.5900452948e+02  6.8697107415e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +1.45484494989705e+08  +1.64706475639684e+08  -1.23212009645380e+05  +2.19758905578943e+08   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -1.72343278293651e+01  +1.81081767751661e+01  +8.02808925319584e-01  +2.50114498584402e+01   

 

 

heliocentric orbital conditions of arrival body 

(mean ecliptic and equinox of J2000) 

------------------------------------ 

 

      sma (km)        eccentricity     inclination (deg)    argper (deg) 

 2.2793906443e+08  9.3540802481e-02  1.8493566928e+00  2.8651704692e+02  

 

     raan (deg)     true anomaly (deg)   arglat (deg)       period (days) 

 4.9540934984e+01  7.2487482568e+01  3.5900452948e+02  6.8697107415e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +1.45484494989705e+08  +1.64706475639684e+08  -1.23212009645380e+05  +2.19758905578943e+08   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -1.72343278293651e+01  +1.81081767751661e+01  +8.02808925319584e-01  +2.50114498584402e+01   

 

 

departure delta-v and energy requirements 

(mean equator and equinox of J2000) 

----------------------------------- 

 

x-component of delta-v       2900.620666  meters/second 

y-component of delta-v       -549.963079  meters/second 

z-component of delta-v       -282.170569  meters/second 

 

delta-v magnitude            2965.751147  meters/second 
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energy                          8.795680  kilometers^2/second^2 

 

asymptote right ascension     349.264051  degrees 

asymptote declination          -5.459552  degrees 

 

 

arrival delta-v and energy requirements 

(mean equator and equinox of J2000) 

----------------------------------- 

 

x-component of delta-v       2021.548323  meters/second 

y-component of delta-v      -1170.832247  meters/second 

z-component of delta-v      -1357.142837  meters/second 

 

delta-v magnitude            2701.729530  meters/second 

 

energy                          7.299342  kilometers^2/second^2 

 

Mars-mean-equator and IAU node of epoch 

 

asymptote right ascension     280.631366  degrees 

asymptote declination           6.277437  degrees 

 

 

total delta-v                5667.480677  meters/second 

 

total energy                   16.095022  kilometers^2/second^2 

 

Special case 

 

If the arrival planet is Mars, the software will provide the right ascension and declination of the 

incoming or arrival hyperbola asymptote in the Mars mean equator and IAU node of epoch coordinate 

system.  Appendix C explains the orientation of this system and the algorithm used to compute the 

necessary coordinate transformation. 

 

After the solution is displayed, the software will ask the user if he or she would like to create a graphics 

display of the planet orbits and transfer trajectory with the following prompt: 
 

would you like to plot this trajectory (y = yes, n = no) 

? 

 

If the user’s response is y for yes, the script will request a plot step size with 
 

please input the plot step size (days) 

? 

 

A plot step size between 5 and 10 days is recommended. 

 

The ipto_matlab script will also create a color Postscript graphics file with TIFF preview of the 

trajectory using the following line of MATLAB source code. 
 

print -depsc -tiff -r300 ipto_matlab.eps 

 

The following is a typical graphics display created with this MATLAB script.  The plot is a north 

ecliptic view where we are looking down on the ecliptic plane from the north celestial pole.  The vernal 

equinox direction is the labeled line pointing to the right, the launch body is labeled with an L and the 

arrival body is labeled with an A.  The location of the launch and arrival celestial bodies at the launch 

time is marked with an asterisk.  The initial orbit trace is blue, the transfer trajectory is red and the final 

orbit trace is green.  The small squares are the perihelion location and the small circle is aphelion of the 

planetary orbits.  If Earth is the departure planet, a green dotted line will be included and represents the 

line of nodes of the two planetary orbits. 
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The following are graphic displays of the magnitudes of the primer vector and its derivative for this 

example.  From these two plots we can see the solution found by the ipto_matlab software is not two 

impulse optimal according to primer vector theory summarized in the Primer Vector Analysis section 

which begins on page 14 of this document. 

 

     
 

 

Technical Discussion 
 

An initial guess for the launch and arrival impulsive delta-v vectors can be determined from the solution 

of the Lambert two-point boundary-value problem (TPBVP).  Lambert’s Theorem states that the time to 

traverse a trajectory depends only upon the length of the semimajor axis a of the transfer trajectory, the 

sum r ri f  of the distances of the initial and final positions relative to a central body, and the length c of 

the chord joining these two positions. 
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The Lambert solution that initializes the ipto_matlab software uses the user’s initial guess for the 

launch and arrival calendar dates. 

 

Lambert’s Problem 

 

Lambert’s problem is concerned with the determination of an orbit that passes between two positions 

within a specified time-of-flight.  This classic astrodynamic problem is also known as the orbital two-

point boundary value problem (TPBVP). 

 

The time to traverse a trajectory depends only upon the length of the semimajor axis a of the transfer 

trajectory, the sum r ri f  of the distances of the initial and final positions relative to a central body, and 

the length c of the chord joining these two positions.  This relationship can be stated as follows: 

 

  , ,i ftof tof r r c a   

 

From the following form of Kepler’s equation 

 

  
3

0 sin
a

t t E e E


    

we can write 

  
3

0 0sin sin
a

t E E e E E


       

 

where E is the eccentric anomaly associated with radius r, E0  is the eccentric anomaly at r0 , and t  0 

when r r 0. 

 

At this point we need to introduce the following trigonometric sun and difference identities: 

 

 

sin sin 2sin cos
2 2

cos cos 2sin sin
2 2

cos cos 2cos cos
2 2

a

a
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If we let E   and E0    and substitute the first trig identity into the second equation above, we have 

the following equation: 
 

 
3

0 0
0 2sin cos

2 2

a E E E E
t E E e



   
    

  
 

 

With the two substitutions given by 
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 0 0cos cos sin sin
2 2 2 2

E E E E
e

      
   

 

the time equation becomes 

 

  
3

2sin cos
2 2

a
t

   
 



  
   

 
 

 

From the elliptic relationships given by 

 

 

 

 

2

1 cos

cos

sin 1

r a e E

x a E e

y a E e

 

 

 

 

 

and some more manipulation, we have the following equations: 

 

 

0 0

0 0

cos 1 1 1
2 2 2

sin 1 1 1
2 2 2

r r c r r c s

a a a a

r r c r r c s c

a a a a





   
       
 

    
       
 

 

 

This part of the derivation makes use of the following three relationships: 

 

 

0

2

0 0

2 2 2 2

0 0

cos cos 1
2 2 2

sin sin sin 1 cos
2 2 2 2

sin sin
2 2 2 2 2

r r

E E E E
e

x x y y c

a a a

   

   

   

  
 

    
   

 

          
         

       

 

 

With the use of the half angle formulas given by 

 

 sin sin
2 2 2 2

s s c

a a

  
   

 

and several additional substitutions, we have the time-of-flight form of Lambert’s theorem 

 

    
3

sin sin
a

t    
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A discussion about the angles   and   can be found in “Geometrical Interpretation of the Angles   and 

  in Lambert’s Problem” by J. E. Prussing, AIAA Journal of Guidance and Control, Volume 2, 

Number 5, Sept.-Oct. 1979, pages 442-443. 

 

The algorithm used in this MATLAB script is based on the method described in “A Procedure for the 

Solution of Lambert’s Orbital Boundary-Value Problem” by R. H. Gooding, Celestial Mechanics and 

Dynamical Astronomy 48: 145-165, 1990.  This iterative solution is valid for elliptic, parabolic and 

hyperbolic transfer orbits which may be either posigrade or retrograde, and involve one or more 

revolutions about the central body. 

 

The planetary ephemeris implemented in this MATLAB script is based on the JPL DE424 ephemeris. 

 

Important Note 

 

The binary ephemeris file provided with this computer program was created for using a Windows 

compatible computer.  For other platforms, you will need to create or obtain binary files specific to that 

system.  Information and computer programs for creating these files can be found at the JPL solar 

system FTP site located at ftp://ssd.jpl.nasa.gov/pub/.  This site provides ASCII data files and Fortran 

computer programs for creating a binary file.  A program for testing the user’s ephemeris is also 

provided along with documentation. 

 

In order to model ballistic interplanetary missions involving asteroids and comets, the classical orbital 

elements of an asteroid or comet relative to the mean ecliptic and equinox of J2000 coordinate system 

must be provided by the user.  These elements can be obtained from the JPL Near Earth Object (NEO) 

website (http://neo.jpl.nasa.gov). 

 

These orbital elements consist of the following items: 

 

 calendar date of perihelion passage 

 perihelion distance (AU) 

 orbital eccentricity (non-dimensional) 

 orbital inclination (degrees) 

 argument of perihelion (degrees) 

 longitude of ascending node (degrees) 

 

The software determines the mean anomaly of the asteroid or comet at any simulation time using the 

following equation: 

  3 3

s s
pp ppM t JD JD

a a

 
    

 

where s  is the gravitational constant of the sun, a is the semimajor axis of the celestial body, and ppt  is 

the time since perihelion passage. 

 

The semimajor axis is determined from the perihelion distance pr  and orbital eccentricity e according to 

ftp://ssd.jpl.nasa.gov/pub/
http://neo.jpl.nasa.gov/
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 1

pr
a

e



 

 

This solution of Kepler’s equation in this MATLAB script is based on a numerical solution devised by 

Professor J.M.A. Danby at North Carolina State University.  Additional information about this algorithm 

can be found in “The Solution of Kepler’s Equation”, Celestial Mechanics, 31 (1983) 95-107, 317-328 

and 40 (1987) 303-312. 

 

The initial guess for Danby's method is 

 

  0 0.85sign sinE M M e   

 

The fundamental equation we want to solve is 

 

   sin 0f E E e E M     

 

which has the first three derivatives given by 

 

      1 cos sin cosf E e E f E e E f E e E       

 

The iteration for an updated eccentric anomaly based on a current value nE  is given by the next four 

equations: 

 

   

  1
2

1

2

1 1

2 6

n n

n n n n n

f f
E E

f f f

f
E E E

f f f






     
   

     

     

 

 

This algorithm provides quartic convergence of Kepler's equation.  This process is repeated until the 

following convergence test involving the fundamental equation is satisfied: 

 

  f E   

 

where   is the convergence tolerance.  This tolerance is hardwired in the software to   =1.0e-10.  

Finally, the true anomaly can be calculated with the following two equations 

 

 2sin 1 sin cos cose E E e      

 

and the four quadrant inverse tangent given by 

 

  1tan sin ,cos    

 

If the orbit is hyperbolic, the initial guess is 
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0

2
log 1.8

M
H

e

 
  

 
 

 

where 0H  is the hyperbolic anomaly.  The fundamental equation and first three derivatives for this case 

are as follows: 

 
   

   

sinh cosh 1

sinh cosh

f H e H H M f H e H

f H e H f H e H

    

  
 

 

Otherwise, the iteration loop which calculates ,   , and so forth is the same.  The true anomaly for 

hyperbolic orbits is determined with this next set of equations: 

 

 2sin 1sinh cos coshe H e H      

 

The true anomaly is then determined from a four quadrant inverse tangent evaluation of these two 

equations. 

 

The 'V s  required at launch and arrival are simply the differences between the velocity on the transfer 

trajectory determined by the solution of Lambert’s problem and the heliocentric velocities of the two 

celestial bodies.  If we treat each celestial body as a point mass and assume impulsive maneuvers, the 

body-centered magnitude and direction of the required maneuvers are given by the two vector equations: 

 

 
L L

A A

L T B

A B T

  

  

V V V

V V V
 

where 

 

 

 heliocentric velocity vector of the transfer trajectory at launch

 heliocentric velocity vector of the transfer trajectory at arrival

 heliocentric velocity vector of the celestial body at 

L

A

L

T

T

B







V

V

V launch

 heliocentric velocity vector of the celestial body at arrival
AB V

 

 

The scalar magnitude of each maneuver is also called the “hyperbolic excess velocity” or v-infinity at 

launch and arrival.  The hyperbolic excess velocity is the speed of the spacecraft relative to each 

celestial body at an infinite distance from the body.  Furthermore, the energy or 3C  at launch or arrival is 

equal to 2v  for the respective maneuver.  3C  is also equal to twice the orbital energy per unit mass (the 

specific orbital energy). 

 

The orientation of the departure and arrival hyperbolas is specified in terms of the right ascension and 

declination of the asymptote.  These coordinates can be calculated using the components of the V  

velocity vector. 
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The right ascension of the asymptote is determined from  1tan ,y zV V     and the geocentric 

declination of the asymptote is given by  0 1 ˆ90 cos zV     where ˆ
zV  is z-component of the unit 

V  vector. 

 

In this MATLAB script the heliocentric planetary coordinates are computed in the J2000 mean equator 

and equinox coordinate system (EME2000).  These coordinates are transformed to the mean ecliptic and 

equinox of J2000 with the following matrix-vector operation. 

 

 

1 0 0 1 0 0

0 cos sin 0 0.917482062069182 0.397777155931914

0 sin cos 0 -0.397777155931914 0.917482062069182

ec eq eq 

 

   
    
   

      

S S S  

 

where ecS  is the state vector (position and velocity vectors) in the ecliptic frame, eqS  is the state vector 

in the Earth equatorial frame and   is the mean obliquity of the ecliptic at J2000.  The J2000 value of 

the mean obliquity of the ecliptic is equal to 23 26 21. 448   . 

 

The following figure illustrates the geometry of the EME2000 coordinate system.  The origin of this 

heliocentric inertial coordinate system is the Sun and the fundamental plane is the Earth’s mean equator.  

The z-axis of this system is normal to the Earth’s mean equator at epoch J2000, the x-axis is parallel to 

the vernal equinox of the Earth’s mean orbit at epoch J2000, and the y-axis completes the right-handed 

coordinate system.  The epoch J2000 is the Julian Date 2451545.0 which corresponds to January 1, 

2000, 12 hours Terrestrial Time (TT). 
 

 
Figure 1.  Earth mean equator and equinox of J2000 coordinate system 
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Trajectory Optimization 

 

In the terminology of numerical optimization, this MATLAB script treats the launch and arrival dates as 

control or optimization variables and attempts to minimize the launch, arrival or sum of launch and 

arrival scalar V s' .  The scalar magnitude of the selected V  is called the objective function or the 

performance index. 

 

The software can solve for the following types of optimized interplanetary space missions: 
 

 minimum launch V 

 minimum arrival V 

 minimum total V 

 

As noted in “On the Nature of Earth-Mars Porkchop Plots”, the optimality of two impulse interplanetary 

trajectories is governed by the following three factors 

 

1) Departure and arrival near the line of nodes 

2) Arrival at the aphelion of the more eccentric celestial body orbit 

3) Departure from the perihelion of the less eccentric celestial body orbit 

 

where item 1 is the most important and item 3 the least important. 

 

 

Primer Vector Analysis 
 

This section summarizes the primer vector analysis performed by ipto_matlab software.  The term 

primer vector was invented by Derek F. Lawden and represents the adjoint vector for velocity.  A 

technical discussion about primer theory can be found in Lawden’s classic text, Optimal Trajectories for 

Space Navigation, Butterworths, London, 1963.  Another excellent resource is “Primer Vector Theory 

and Applications”, Donald J. Jezewski, NASA TR R-454, November 1975, along with “Optimal, Multi-

burn, Space Trajectories”, also by Jezewski. 

 

As shown by Lawden, the following four necessary conditions must be satisfied in order for an 

impulsive orbital transfer to be locally optimal: 

 

(1) the primer vector and its first derivative are everywhere continuous 

(2) whenever a velocity impulse occurs, the primer is a unit vector aligned with the impulse and 

has unit magnitude  ˆ ˆ  and 1T  p p u p  

(3) the magnitude of the primer vector may not exceed unity on a coasting arc  1p p  

(4) at all interior impulses (not at the initial or final times) 0p p ; therefore, 0d dt p  at the 

intermediate impulses 
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Furthermore, the scalar magnitude of the primer vector derivative at the initial and final impulses 

provide information about how to improve the nominal transfer trajectory by changing the endpoint 

times and/or moving the velocity impulse times.  These four cases for non-zero slopes are summarized 

as follows; 

 

 If 0 0p   and 0fp    perform an initial coast before the first impulse and add a final coast 

after the second impulse 
 

 If 0 0p   and 0fp    perform an initial coast before the first impulse and move the second 

impulse to a later time 
 

 If 0 0p   and 0fp    perform the first impulse at an earlier time and add a final coast after the 

second impulse 
 

 If 0 0p   and 0fp    perform the first impulse at an earlier time and move the second impulse 

to a later time 

 

The primer vector analysis of a two impulse orbital transfer involves the following steps. 

 

First partition the two-body state transition matrix  0,t t  as follows: 

 

   0 0 11 12

0

21 22

0 0

,
rr rv

vr vv

t t

  
        
                
   

r r

r v

v v

r v

 

where 

 

0 0 0

11 0 0 0

0

0 0 0

/ / /

/ / /

/ / /

x x x y x z

y x y y y z

z x z y z z

      
               

       

r

r
 

 

and so forth. 

 

The value of the primer vector at any time t along a two body trajectory is given by 

 

      11 0 0 12 0 0, ,t t t t t p p p  

 

and the value of the primer vector derivative is 

 

      21 0 0 22 0 0, ,t t t t t p p p  

 

which can also be expressed as 

   0

0

0

,t t
  

    
   

pp

pp
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The primer vector boundary conditions at the initial and final impulses are as follows: 

 

    0
0 0

0

f

f f

f

t t


   
 

VV
p p p p

V V
 

 

These two conditions illustrate that at the locations of velocity impulses, the primer vector is a unit 

vector in the direction of the velocity impulses. 

 

The value of the primer vector derivative at the initial time is 

 

       1

0 0 12 0 11 0 0, ,f f ft t t t t  p p p p  

 

provided the 12  sub-matrix is non-singular. 

 

The scalar magnitude of the derivative of the primer vector can be determined from 

 

  
2d d

dt dt
 

p p p
p p

p
 

 

SNOPT algorithm implementation 
 

This section provides details about the part of the ipto_matlab MATLAB script that solves this 

nonlinear programming (NLP) problem using the SNOPT algorithm.  In this classic trajectory 

optimization problem, the launch and arrival calendar dates are the control variables and the scalar V  

computed by the solution of Lambert’s problem is the objective function or performance index. 

 

MATLAB versions of SNOPT for several computer platforms can be found at Professor Philip Gill’s 

web site which is located at http://scicomp.ucsd.edu/~peg/. 

 

The SNOPT algorithm requires an initial guess for the control variables.  For this problem they are 

computed with the following code 
 

xg(1) = jdate1 - jdate0; 

 

xg(2) = jdate2 - jdate0; 

 

xg = xg'; 

 

where jdate1 and jdate2 are the initial user-provided launch and arrival date guesses, and jdate0 is 

a reference Julian date equal to 2451544.5 (January 1, 2000).  This offset value is used to scale the 

Julian Date control variables. 

 

The algorithm also requires lower and upper bounds for the control variables.  These are determined 

from the initial guesses and user-defined search boundaries as follows: 
 

% bounds on control variables 

 

xlwr(1) = xg(1) - ddays1; 

xupr(1) = xg(1) + ddays1; 

 

http://scicomp.ucsd.edu/~peg/
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xlwr(2) = xg(2) - ddays2; 

xupr(2) = xg(2) + ddays2; 

 

xlwr = xlwr'; 

xupr = xupr'; 

 

xlwr = xlwr'; 

xupr = xupr'; 

 

where ddays1 and ddays2 are the user-defined launch and arrival search boundaries, respectively. 

 

If the mission constraints option is in effect, the following code defines the lower and upper bounds for 

each of the four nonlinear mission constraints. 
 

if (imcon == 1) 

 

   % bounds on nonlinear constraints 

 

   flow(2) = flow_c3; 

   fupp(2) = fupp_c3; 

 

   flow(3) = dtr * flow_dla; 

   fupp(3) = dtr * fupp_dla; 

 

   flow(4) = flow_tof; 

   fupp(4) = fupp_tof; 

 

   flow(5) = flow_vinf; 

   fupp(5) = fupp_vinf; 

 

end 

 

The algorithm also requires lower and upper bounds on the objective function.  For this problem these 

bounds are given by 
 

% bounds on objective function 

 

flow(1) = 0.0d0; 

fupp(1) = +Inf; 

 

The actual call to the SNOPT MATLAB interface function is as follows 
 

[x, f, inform, xmul, fmul] = snopt(xg, xlwr, xupr, flow, fupp, 'iptofunc'); 

 

where iptofunc is the name of the MATLAB function that solves Lambert’s problem and computes 

the current value of the objective function and any required nonlinear constraints. 

 

The ipto_matlab script will also read an SNOPT SPECS file.  For this example the contents of this 

file are as follows: 

 
Begin SNOPT options 

    minor iterations limit       1000 

    derivative option            0 

    major optimality tolerance   1.0d-6 

    solution                     Yes 

End SNOPT options 

 

Please consult the SNOPT documentation for a complete explanation of the SPECS file.  A PDF version 

of the SNOPT user’s manual is also available at Professor Gill’s website. 
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APPENDIX A 
 

Earth-to-Tempel 1 Trajectory Analysis 
 

This appendix summarizes typical trajectory characteristics of a ballistic and patched-conic mission 

from Earth to the comet Tempel 1.  This simulation example minimizes the magnitude of the departure 

delta-v at the Earth departure. 

 

Here’s the ipto_matlab user interaction and the script output for this example. 

 
            program ipto_matlab 

 

< interplanetary trajectory optimization > 

 

 

departure conditions - start date 

 

please input the calendar date 

(1 <= month <= 12, 1 <= day <= 31, year = all digits!) 

? 12,1,2004 

 

please input the departure date search boundary in days 

? 60 

 

 

arrival conditions - start date 

 

please input the calendar date 

(1 <= month <= 12, 1 <= day <= 31, year = all digits!) 

? 7,1,2005 

 

please input the arrival date search boundary in days 

? 90 

 

 celestial body menu 

 

  <1>  Mercury 

  <2>  Venus 

  <3>  Earth 

  <4>  Mars 

  <5>  Jupiter 

  <6>  Saturn 

  <7>  Uranus 

  <8>  Neptune 

  <9>  Pluto 

  <10> asteroid/comet 

 

please select the departure celestial body 

? 3 

 

 celestial body menu 

 

  <1>  Mercury 

  <2>  Venus 

  <3>  Earth 

  <4>  Mars 

  <5>  Jupiter 

  <6>  Saturn 

  <7>  Uranus 

  <8>  Neptune 

  <9>  Pluto 

  <10> asteroid/comet 
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please select the arrival celestial body 

? 10 

 

 

would you like to enforce mission constraints (y = yes, n = no) 

? n 

 

      optimization menu 

 

 <1> minimize departure delta-v 

 

 <2> minimize arrival delta-v 

 

 <3> minimize total delta-v 

 

 <4> no optimization 

 

 selection (1, 2, 3 or 4) 

? 1 

 

 

       program ipto_matlab 

 

   minimize departure delta-v 

 

departure celestial body     Earth          

 

departure calendar date      10-Jan-2005 

departure TDB time           08:46:54.744 

 

departure julian date        2453380.8659 

 

 

arrival celestial body       asteroid/comet 

 

arrival calendar date        10-Jul-2005 

arrival TDB time             02:24:29.401 

 

arrival julian date          2453561.6003 

 

transfer time                  180.7344  days  

  

heliocentric orbital conditions prior to the first maneuver 

(mean ecliptic and equinox of J2000) 

------------------------------------ 

 

      sma (km)        eccentricity     inclination (deg)    argper (deg) 

 1.4974235642e+08  1.7610519542e-02  7.7741153172e-04  3.1647547001e+02  

 

     raan (deg)     true anomaly (deg)   arglat (deg)       period (days) 

 1.4672891357e+02  6.9458397394e+00  3.2342130975e+02  3.6578618874e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -5.06816788009146e+07  +1.38118931783621e+08  -1.18960940212756e+03  +1.47124001728279e+08   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -2.84629803229640e+01  -1.03767268372939e+01  +3.29584858730136e-04  +3.02955064131610e+01   

 

 

heliocentric orbital conditions after the first maneuver 

(mean ecliptic and equinox of J2000) 

------------------------------------ 

 

      sma (km)        eccentricity     inclination (deg)    argper (deg) 

 1.9458780387e+08  2.4392147259e-01  5.7287208652e-01  1.8032512802e+02  

 

     raan (deg)     true anomaly (deg)   arglat (deg)       period (days) 

 2.9010388993e+02  3.5972120768e+02  1.8004633570e+02  5.4185580915e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -5.06816788009146e+07  +1.38118931783621e+08  -1.18960940212756e+03  +1.47124001728279e+08   
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        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -3.14344527003716e+01  -1.15686784469718e+01  -3.34917119013286e-01  +3.34973328349876e+01   

 

 

heliocentric orbital conditions prior to the second maneuver 

(mean ecliptic and equinox of J2000) 

------------------------------------ 

 

      sma (km)        eccentricity     inclination (deg)    argper (deg) 

 1.9458780387e+08  2.4392147259e-01  5.7287208652e-01  1.8032512802e+02  

 

     raan (deg)     true anomaly (deg)   arglat (deg)       period (days) 

 2.9010388993e+02  1.4049056085e+02  3.2081568887e+02  5.4185580915e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -7.36868621538256e+07  -2.13047243958176e+08  -1.42409963263081e+06  +2.25434934897001e+08   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +1.92933379365169e+01  -1.10958802607591e+01  +1.43022352008143e-01  +2.22569517878554e+01   

 

 

heliocentric orbital conditions after the second maneuver 

(mean ecliptic and equinox of J2000) 

------------------------------------ 

 

      sma (km)        eccentricity     inclination (deg)    argper (deg) 

 4.6697445253e+08  5.1749100000e-01  1.0530100000e+01  1.7883900000e+02  

 

     raan (deg)     true anomaly (deg)   arglat (deg)       period (days) 

 6.8973400000e+01  3.1419160077e+00  1.8198091601e+02  2.0144198451e+03  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -7.36868621538256e+07  -2.13047243958176e+08  -1.42409963263081e+06  +2.25434934897001e+08   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +2.75933039187317e+01  -1.00985027120853e+01  -5.46110314910779e+00  +2.98863484852647e+01   

 

 

heliocentric orbital conditions of arrival body 

(mean ecliptic and equinox of J2000) 

------------------------------------ 

 

      sma (km)        eccentricity     inclination (deg)    argper (deg) 

 4.6697445253e+08  5.1749100000e-01  1.0530100000e+01  1.7883900000e+02  

 

     raan (deg)     true anomaly (deg)   arglat (deg)       period (days) 

 6.8973400000e+01  3.1419160077e+00  1.8198091601e+02  2.0144198451e+03  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -7.36868621538243e+07  -2.13047243958177e+08  -1.42409963263081e+06  +2.25434934897001e+08   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +2.75933039187318e+01  -1.00985027120852e+01  -5.46110314910779e+00  +2.98863484852647e+01   

 

 

departure delta-v and energy requirements 

(mean equator and equinox of J2000) 

----------------------------------- 

 

x-component of delta-v      -2971.472377  meters/second 

y-component of delta-v       -960.240740  meters/second 

z-component of delta-v       -781.713958  meters/second 

 

delta-v magnitude            3219.128311  meters/second 

 

energy                         10.362787  kilometers^2/second^2 

 

asymptote right ascension     197.908404  degrees 

asymptote declination         -14.053869  degrees 

 

 

arrival delta-v and energy requirements 

(mean equator and equinox of J2000) 

----------------------------------- 
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x-component of delta-v      -8299.965982  meters/second 

y-component of delta-v      -3144.269113  meters/second 

z-component of delta-v       4744.950616  meters/second 

 

delta-v magnitude           10064.314180  meters/second 

 

energy                        101.290420  kilometers^2/second^2 

 

asymptote right ascension     200.748149  degrees 

asymptote declination          28.129298  degrees 

 

total delta-v               13283.442491  meters/second 

 

total energy                  111.653207  kilometers^2/second^2 

 

Here’s the graphics display of the interplanetary transfer trajectory along with the heliocentric orbits of 

the Earth and Tempel 1.  We can see from this graphics display and the screen display data above 

(heliocentric true anomaly   3 degrees) that spacecraft encounter with Tempel 1 occurs near perihelion 

of the comet’s orbit. 

 
 

The following are graphic displays of the magnitudes of the primer vector and its derivative for this orbit 

transfer example.  From these two plots we can see that the solution found by the ipto_matlab script 

is not optimal according to primer vector theory. 
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APPENDIX B 
 

Mission Constraints Example 
 

This appendix provides a trajectory example which demonstrates the mission constraint option of the 

ipto_matlab MATLAB script.  When exercising the mission constraints program option, you may 

receive the following screen display if all the mission constraints have not been satisfied. 

 
check solution!! 

 

all mission constraints may not be satisfied 

 

If you receive this message, consider “relaxing” the mission constraint or constraints that are not 

satisfied.  It may also be helpful to run your example with the mission constraint graphics option of the 

porkchop_ftn computer program and examine the solution geometry. 

 

The launch delta-v of the Earth-to-Mars mission opportunity in 2011 is optimized with the following 

user-defined mission constraints; 

 

36.0 10.0

28.5 28.5

100.0 300.0

1.0 3.0

L

a

C

DLA

TOF

V

 

   

 

 

 

 

where 3L
C  is the departure or launch energy in kilometer per second quantity squared, DLA is the 

geocentric EME2000 declination of the launch hyperbola in degrees, TOF is the time-of-flight in days, 

and 
a

V  is the scalar magnitude of the arrival v-infinity vector at Mars in kilometers per second. 

 

The following is the ipto_matlab user interaction for this example. 

 
            program ipto_matlab 

 

< interplanetary trajectory optimization > 

 

 

departure conditions - start date 

 

please input the calendar date 

(1 <= month <= 12, 1 <= day <= 31, year = all digits!) 

? 11,17,2011 

 

please input the departure date search boundary in days 

? 60 

 

 

arrival conditions - start date 

 

please input the calendar date 

(1 <= month <= 12, 1 <= day <= 31, year = all digits!) 

? 8,11,2012 

 

please input the arrival date search boundary in days 

? 60 
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celestial body menu 

 

  <1>  Mercury 

  <2>  Venus 

  <3>  Earth 

  <4>  Mars 

  <5>  Jupiter 

  <6>  Saturn 

  <7>  Uranus 

  <8>  Neptune 

  <9>  Pluto 

  <10> asteroid/comet 

 

please select the departure celestial body 

? 3 

 

celestial body menu 

 

  <1>  Mercury 

  <2>  Venus 

  <3>  Earth 

  <4>  Mars 

  <5>  Jupiter 

  <6>  Saturn 

  <7>  Uranus 

  <8>  Neptune 

  <9>  Pluto 

  <10> asteroid/comet 

 

please select the arrival celestial body 

? 4 

 

 

would you like to enforce mission constraints (y = yes, n = no) 

? y 

 

please input the lower bound for departure C3 (km^2/sec^2) 

? 6 

 

please input the upper bound for departure C3 (km^2/sec^2) 

? 10 

 

please input the lower bound for departure DLA (degrees) 

? -28.5 

 

please input the upper bound for departure DLA (degrees) 

? 28.5 

 

please input the lower bound for time-of-flight (days) 

? 100 

 

please input the upper bound for time-of-flight (days) 

? 300 

 

please input the lower bound for arrival v-infinity (km/sec) 

? 1 

 

please input the upper bound for arrival v-infinity (km/sec) 

? 3 

 

      optimization menu 

 

 <1> minimize departure delta-v 

 

 <2> minimize arrival delta-v 

 

 <3> minimize total delta-v 

 

 <4> no optimization 

 

 selection (1, 2, 3 or 4) 

? 1 

 

The following is the screen output created by ipto_matlab for this example. 
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       program ipto_matlab 

 

   minimize departure delta-v 

 

departure celestial body     Earth          

 

departure calendar date      06-Nov-2011 

departure TDB time           19:58:30.582 

 

departure julian date        2455872.3323 

 

 

arrival celestial body       Mars           

 

arrival calendar date        26-Aug-2012 

arrival TDB time             19:20:07.434 

 

arrival julian date          2456166.3056 

 

transfer time                  293.9733  days  

  

heliocentric orbital conditions prior to the first maneuver 

(mean ecliptic and equinox of J2000) 

------------------------------------ 

 

      sma (km)        eccentricity     inclination (deg)    argper (deg) 

 1.4950950904e+08  1.6641163552e-02  1.5240318293e-03  3.0847852177e+02  

 

     raan (deg)     true anomaly (deg)   arglat (deg)       period (days) 

 1.5664975134e+02  2.9876217025e+02  2.4724069202e+02  3.6493333148e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +1.06861025481163e+08  +1.02800338166280e+08  -3.63707482737303e+03  +1.48280775244856e+08   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -2.11368237379601e+01  +2.13447410995149e+01  -2.98418119946575e-04  +3.00393623504889e+01   

 

 

heliocentric orbital conditions after the first maneuver 

(mean ecliptic and equinox of J2000) 

------------------------------------ 

 

      sma (km)        eccentricity     inclination (deg)    argper (deg) 

 1.8773721478e+08  2.1185066927e-01  1.4070724552e+00  8.8956563671e+00  

 

     raan (deg)     true anomaly (deg)   arglat (deg)       period (days) 

 4.3947658224e+01  3.5104711150e+02  3.5994276787e+02  5.1349458076e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +1.06861025481163e+08  +1.02800338166280e+08  -3.63707482737303e+03  +1.48280775244856e+08   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -2.34473547543591e+01  +2.30798404031567e+01  +8.07861196073348e-01  +3.29106383670094e+01   

 

 

heliocentric orbital conditions prior to the second maneuver 

(mean ecliptic and equinox of J2000) 

------------------------------------ 

 

      sma (km)        eccentricity     inclination (deg)    argper (deg) 

 1.8773721478e+08  2.1185066927e-01  1.4070724552e+00  8.8956563671e+00  

 

     raan (deg)     true anomaly (deg)   arglat (deg)       period (days) 

 4.3947658224e+01  1.9364416153e+02  2.0253981790e+02  5.1349458076e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -9.00995880751167e+07  -2.07030644205069e+08  -2.12537376708756e+06  +2.25796679835912e+08   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +2.03489743966313e+01  -7.36818166666030e+00  -4.77187749954083e-01  +2.16471376448798e+01   

 

 

heliocentric orbital conditions after the second maneuver 

(mean ecliptic and equinox of J2000) 
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------------------------------------ 

 

      sma (km)        eccentricity     inclination (deg)    argper (deg) 

 2.2794532984e+08  9.3344391222e-02  1.8487297043e+00  2.8652221290e+02  

 

     raan (deg)     true anomaly (deg)   arglat (deg)       period (days) 

 4.9525660857e+01  2.7044180875e+02  1.9696402165e+02  6.8699939875e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -9.00995880751167e+07  -2.07030644205069e+08  -2.12537376708756e+06  +2.25796679835912e+08   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +2.31325613200168e+01  -7.59264032750929e+00  -7.27063249673829e-01  +2.43575902202226e+01   

 

 

heliocentric orbital conditions of arrival body 

(mean ecliptic and equinox of J2000) 

------------------------------------ 

 

      sma (km)        eccentricity     inclination (deg)    argper (deg) 

 2.2794532984e+08  9.3344391222e-02  1.8487297043e+00  2.8652221290e+02  

 

     raan (deg)     true anomaly (deg)   arglat (deg)       period (days) 

 4.9525660857e+01  2.7044180875e+02  1.9696402165e+02  6.8699939875e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -9.00995880751277e+07  -2.07030644205065e+08  -2.12537376708730e+06  +2.25796679835913e+08   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +2.31325613200162e+01  -7.59264032751061e+00  -7.27063249673843e-01  +2.43575902202225e+01   

 

 

departure delta-v and energy requirements 

(mean equator and equinox of J2000) 

----------------------------------- 

 

x-component of delta-v      -2310.531016  meters/second 

y-component of delta-v       1270.455054  meters/second 

z-component of delta-v       1431.654816  meters/second 

 

delta-v magnitude            3000.374166  meters/second 

 

energy                          9.002245  kilometers^2/second^2 

 

asymptote right ascension     151.195623  degrees 

asymptote declination          28.500000  degrees 

 

 

arrival delta-v and energy requirements 

(mean equator and equinox of J2000) 

----------------------------------- 

 

x-component of delta-v      -2783.586923  meters/second 

y-component of delta-v        106.542029  meters/second 

z-component of delta-v        318.540816  meters/second 

 

delta-v magnitude            2803.778810  meters/second 

 

energy                          7.861176  kilometers^2/second^2 

 

Mars-mean-equator and IAU node of epoch 

 

asymptote right ascension     133.531925  degrees 

asymptote declination         -21.579029  degrees 

 

 

total delta-v                5804.152976  meters/second 

 

total energy                   16.863421  kilometers^2/second^2 

 

Here’s the graphics display of the interplanetary transfer trajectory along with the heliocentric orbits of 

the Earth and Mars. 
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The following are graphic displays of the magnitudes of the primer vector and its derivative for this orbit 

transfer example.  From these two plots we can see that the solution found by the ipto_matlab script 

is not optimal according to primer vector theory. 
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APPENDIX C 
 

Areocentric Coordinate Transformation 
 

This appendix describes the transformation of coordinates between the Earth mean equator and equinox 

of J2000 (EME2000) and the areocentric mean equator and IAU node of epoch coordinate systems.  

This transformation is used to compute the right ascension and declination of the incoming asymptote at 

Mars arrival. 

 

A unit vector in the direction of the pole of Mars can be determined from 

 

 

cos cos

ˆ sin cos

sin

p p

Mars p p

p

 

 



 
 

  
 
 

p  

 

The IAU 2000 right ascension and declination of the pole of Mars in the Earth mean equator and 

equinox of J2000 (EME2000) coordinate system are given by the following expressions 

 

  

 

where T is the time in Julian centuries given by  2451545.0 / 36525T JD   and JD is the TDB Julian 

Date. 

 

The unit vector in the direction of the IAU-defined x-axis is computed from 

 

 2000
ˆ ˆˆ

J Mars x p p  

 

where  2000
ˆ 0 01

T

J p  is unit vector in the direction of the pole of the J2000 coordinate system. 

 

The unit vector in the y-axis direction of this coordinate system is 

 

 ˆˆ ˆ
Mars y p x  

 

Finally, the components of the matrix that transforms coordinates from the EME2000 system to the 

Mars-centered mean equator and IAU node of epoch system are as follows: 

 

 

ˆ

ˆ

ˆ
Mars

 
 
 
  

x

M y

p

 

  

317.68143 0.1061

52.88650 0.0609

p

p

T

T
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APPENDIX D 
 

Near-optimal Earth-to-Mars Example 
 

This appendix is a near-optimal Earth-to-Mars example taken from Table 3 of “On the Nature of Earth-

Mars Porkchop Plots”.  It is a Type II trajectory that starts and ends near the line of nodes. 

 
            program ipto_matlab 

 

< interplanetary trajectory optimization > 

 

 

departure conditions - start date 

 

please input the calendar date 

(1 <= month <= 12, 1 <= day <= 31, year = all digits!) 

? 10,15,2073 

 

please input the departure date search boundary in days 

? 30 

 

 

arrival conditions - start date 

 

please input the calendar date 

(1 <= month <= 12, 1 <= day <= 31, year = all digits!) 

? 9,1,2074 

 

please input the arrival date search boundary in days 

? 30 

 

 celestial body menu 

 

  <1>  Mercury 

  <2>  Venus 

  <3>  Earth 

  <4>  Mars 

  <5>  Jupiter 

  <6>  Saturn 

  <7>  Uranus 

  <8>  Neptune 

  <9>  Pluto 

  <10> asteroid/comet 

 

please select the departure celestial body 

? 3 

 

 celestial body menu 

 

  <1>  Mercury 

  <2>  Venus 

  <3>  Earth 

  <4>  Mars 

  <5>  Jupiter 

  <6>  Saturn 

  <7>  Uranus 

  <8>  Neptune 

  <9>  Pluto 

  <10> asteroid/comet 

 

please select the arrival celestial body 

? 4 

 

 

would you like to enforce mission constraints (y = yes, n = no) 

? n 

 

      optimization menu 

 

 <1> minimize departure delta-v 
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 <2> minimize arrival delta-v 

 

 <3> minimize total delta-v 

 

 <4> no optimization 

 

 selection (1, 2, 3 or 4) 

? 3 

 

 

       program ipto_matlab 

 

     minimize total delta-v 

 

departure celestial body     Earth          

 

departure calendar date      27-Oct-2073 

departure TDB time           09:45:45.752 

 

departure julian date        2478507.9068 

 

 

arrival celestial body       Mars           

 

arrival calendar date        05-Sep-2074 

arrival TDB time             07:06:59.387 

 

arrival julian date          2478820.7965 

 

transfer time                  312.8897  days  

  

heliocentric orbital conditions prior to the first maneuver 

(mean ecliptic and equinox of J2000) 

------------------------------------ 

 

      sma (km)        eccentricity     inclination (deg)    argper (deg) 

 1.4969408417e+08  1.6609453795e-02  1.1210898500e-02  2.8044520046e+02  

 

     raan (deg)     true anomaly (deg)   arglat (deg)       period (days) 

 1.8037964394e+02  2.9274450652e+02  2.1318970698e+02  3.6560932598e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +1.23897648645804e+08  +8.22219010723092e+07  -1.59271354329400e+04  +1.48697910575695e+08   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -1.69521171087165e+01  +2.47196689743472e+01  -4.85869781455861e-03  +2.99739275417134e+01   

 

 

heliocentric orbital conditions after the first maneuver 

(mean ecliptic and equinox of J2000) 

------------------------------------ 

 

      sma (km)        eccentricity     inclination (deg)    argper (deg) 

 1.9096184451e+08  2.2162235455e-01  6.9290298183e-01  3.2334603687e+00  

 

     raan (deg)     true anomaly (deg)   arglat (deg)       period (days) 

 3.4076796787e+01  3.5625905616e+02  3.5949251652e+02  5.2678113071e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +1.23897648645804e+08  +8.22219010723092e+07  -1.59271354329400e+04  +1.48697910575695e+08   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -1.85788729046101e+01  +2.72890403856853e+01  +3.99259849140234e-01  +3.30155365245570e+01   

 

 

heliocentric orbital conditions prior to the second maneuver 

(mean ecliptic and equinox of J2000) 

------------------------------------ 

 

      sma (km)        eccentricity     inclination (deg)    argper (deg) 

 1.9096184451e+08  2.2162235455e-01  6.9290298183e-01  3.2334603687e+00  

 

     raan (deg)     true anomaly (deg)   arglat (deg)       period (days) 

 3.4076796787e+01  2.0083994844e+02  2.0407340881e+02  5.2678113071e+02  
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        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -1.20854934202438e+08  -1.94529518984791e+08  -1.12971375762974e+06  +2.29017303125122e+08   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +1.93316889510978e+01  -9.49943866454759e+00  -2.26156867291437e-01  +2.15407678501051e+01   

 

 

heliocentric orbital conditions after the second maneuver 

(mean ecliptic and equinox of J2000) 

------------------------------------ 

 

      sma (km)        eccentricity     inclination (deg)    argper (deg) 

 2.2793037367e+08  9.3573871355e-02  1.8435637601e+00  2.8709088031e+02  

 

     raan (deg)     true anomaly (deg)   arglat (deg)       period (days) 

 4.9332930572e+01  2.6172932802e+02  1.8882020833e+02  6.8693178575e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -1.20854934202438e+08  -1.94529518984791e+08  -1.12971375762974e+06  +2.29017303125122e+08   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +2.14856494547696e+01  -1.07018196959563e+01  -7.49033288768392e-01  +2.40150604447643e+01   

 

 

heliocentric orbital conditions of arrival body 

(mean ecliptic and equinox of J2000) 

------------------------------------ 

 

      sma (km)        eccentricity     inclination (deg)    argper (deg) 

 2.2793037367e+08  9.3573871355e-02  1.8435637601e+00  2.8709088031e+02  

 

     raan (deg)     true anomaly (deg)   arglat (deg)       period (days) 

 4.9332930572e+01  2.6172932802e+02  1.8882020833e+02  6.8693178575e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -1.20854934202449e+08  -1.94529518984786e+08  -1.12971375762962e+06  +2.29017303125124e+08   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +2.14856494547688e+01  -1.07018196959575e+01  -7.49033288768398e-01  +2.40150604447641e+01   

 

 

departure delta-v and energy requirements 

(mean equator and equinox of J2000) 

----------------------------------- 

 

x-component of delta-v      -1626.755796  meters/second 

y-component of delta-v       2196.603054  meters/second 

z-component of delta-v       1392.808770  meters/second 

 

delta-v magnitude            3067.786770  meters/second 

 

energy                          9.411316  kilometers^2/second^2 

 

asymptote right ascension     126.522832  degrees 

asymptote declination          27.001315  degrees 

 

 

arrival delta-v and energy requirements 

(mean equator and equinox of J2000) 

----------------------------------- 

 

x-component of delta-v      -2153.960504  meters/second 

y-component of delta-v        895.174732  meters/second 

z-component of delta-v        958.009444  meters/second 

 

delta-v magnitude            2521.639496  meters/second 

 

energy                          6.358666  kilometers^2/second^2 

 

Mars-mean-equator and IAU node of epoch 

 

asymptote right ascension     108.777442  degrees 

asymptote declination         -12.875232  degrees 
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total delta-v                5589.426267  meters/second 

 

total energy                   15.769981  kilometers^2/second^2 

 

 

Here’s the heliocentric graphics display for this example. 

 

 
 

The following plots of the primer vector and its derivative illustrate that this interplanetary transfer 

trajectory is nearly optimal according to primer vector theory. 

 

     
 


