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The Design and Analysis of Geosynchronous Orbits 
 

This document describes several MATLAB scripts that are useful for performing mission design and 

analysis for Earth satellites in geosynchronous orbits.  Geosynchronous satellites are usually in 

equatorial or low-inclination orbits with an orbital period very close to the time required for the Earth to 

complete one inertial rotation. 

 

The algorithms implemented in these MATLAB scripts are based on the numerical techniques described 

in the following two articles: 

 

“East-west Stationkeeping Requirements of Nearly Synchronous Satellites Due to Earth’s Triaxiality 

and Luni-Solar Effects”, A. Kamel, D. Ekman and R. Tibbitts, Celestial Mechanics 8 (1973) 129-148. 

 

“On the Orbital Eccentricity Control of Synchronous Satellites”, A. Kamel and C. Wagner, The Journal 

of the Astronautical Sciences, Vol. XXX, No. 1, pp. 61-73, January-March, 1982. 

 

geosync1.m – equilibrium longitudes and radii of geosynchronous satellites 

 

This MATLAB script calculates the equilibrium longitudes and radii of geosynchronous satellites based 

on the EGM96 gravity model of degree (zonals) and order (tesserals) 3.  These are the four Earth-

relative locations where the proper combination of geocentric radius and east longitude will minimize 

the longitudinal drift of satellites located at these points. 

 

The following is the output created by this script. 

 
                          program geosync1 

 

         < equilibrium longitudes, radii and acceleration > 

 

 

location      east longitude         radius          drift acceleration 

                (degrees)         (kilometers)         (degrees/day^2) 

 

   1              75.0602          42166.2409        -2.2287387749e-012 

 

   2             162.0816          42166.2847        7.5875859013e-012 

 

   3             255.0880          42166.2411        2.0642563986e-012 

 

   4             348.5962          42166.2811        4.3719224598e-012 

 

 

drift cycle period at longitude   75.0602 degrees =  2339.2602 days 

 

drift cycle period at longitude  255.0880 degrees =  2883.5951 days 

 

The very small values of drift acceleration confirm that these east longitude locations are indeed 

equilibrium points relative to a triaxial Earth. 

 

The fundamental astrodynamic constants of the EGM96 gravity model are: 
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 Earth equatorial radius 6378.1363 km

 Earth gravitational constant 398600.4415 km /sec

 Earth inertial rotation rate 7.292115 10  radians/sec
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The spherical harmonic and longitude coefficients of the EGM96 gravity model are determined from the 

following expressions: 
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where n is the degree and m is the order of these terms. 

 

The first few unnormalized gravity coefficients are given by 
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The geocentric radius of a synchronous satellite is given by 

 

 s sk sa a a   

 

where ska  is the Keplerian or unperturbed geosynchronous semimajor axis which is given by 
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In this equation   is the gravitational constant of the Earth and e  is the inertial rotation rate of the 

Earth.  The “correction” of the Keplerian semimajor axis due to the triaxial shape of the Earth and a 

gravity model of degree and order 3 for a satellite located at an east longitude denoted by s  is given by 

the expression 
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The equilibrium longitudes are the points at which the ratio 
1 2g g  is equal to zero.  The “g” factors 

1g  

and 
2g  are determined from the following two equations: 
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The normalized longitudinal acceleration can be determined from the following expression: 

 

 
      22 22 31 31 33 3318 sin2 0.25 sin 7.5 sin3s s sc c c             

 

In this equation  
n

nm nm eq sc J r a .  The dimensional longitude acceleration is 2

e .  The equilibrium 

longitudes are determined using Brent’s root-finding algorithm. 

 

Equilibrium longitudes with negative 
1g  values are stable while those with positive 

1g  values are 

unstable.  The equilibrium longitudes located at 75.0602 and 255.088 are stable points with drift cycle 

periods given by 
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After this MATLAB script has calculated the characteristics of the equilibrium points, it will ask if you 

would like to create and display a plot of the longitudinal acceleration as a function of east longitude of 

the satellite.  This information can be used to graphically verify the calculations described in this 

section.  The following is the graphics display for this program option.  The location of each equilibrium 

point computed by this script is marked by a small red circle. 
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geosync2.m – required osculating semimajor axis 

 

This MATLAB script can be used to estimate the initial osculating semimajor axis required for an Earth 

satellite in geosynchronous orbit.  The calculations include perturbations due to the point-mass gravity 

of the Sun and Moon and non-spherical Earth gravity.  The user can also elect to include the effect of 

solar radiation pressure in the calculations.  The script also allows the user to specify the degree and 

order of the Earth gravity model to use during the solution. 

 

The numerical method implemented in this script uses a combination of one-dimensional root-finding 

and numerical integration of the orbital equations of motion to determine the initial osculating 

semimajor axis that will result in a satellite orbit with a geosynchronous period subject to the 

perturbations mentioned above. 

 

The one-dimensional objective function used during the root-finding calculations is 

 

 
 

0m mf t     

 

where m  is the mean east longitude of the satellite’s subpoint at any time t and 
0m  is mean east 

longitude at the initial time. 

 

The true east longitude of the satellite subpoint at any time is given by 

 

 
 t gt       

 

and the mean east longitude is 
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 m gt M      

 

In these two equations,   is the argument of perigee,   is the right ascension of the ascending node,   

is the satellite’s true anomaly, M is the mean anomaly and g  is the Greenwich sidereal time at any 

simulation time t. 

 

The relationship between mean and true anomaly is given by Kepler’s equation for elliptic orbits, 
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via the following intermediate calculations for eccentric anomaly: 
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The inverse tangent calculation in the last equation is a four quadrant operation. 

 

The orbital period of a geosynchronous satellite in seconds is given by 
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where e  is the inertial rotation rate of the Earth in radians per second.  The algorithm numerically 

integrates the equations of motion for one or more orbital periods, evaluates the mean east longitude 

objective function and uses Brent’s root-finding method to drive the difference to a small tolerance.  The 

user can specify how many orbital periods to use during the solution process.  More orbital periods will 

provide a better semimajor axis solution at the expense of longer computation times.  A value between 1 

and 5 orbits is recommended. 

 

During the solution the algorithm uses a bracketing interval for the required osculating semimajor axis a 

given by 

 0 0100 100a a a     

 

where 0a  is the initial semimajor axis guess (in kilometers) provided by the user. 

 

The geosync2.m script will begin by prompting the user for the initial calendar date and universal 

time.  It will then ask for the degree and order of the gravity model and which perturbations to include in 

the simulation.  Finally, the script will prompt the user for the initial orbital elements of the satellite.  If 

the initial orbit is not equatorial (orbital inclination > 0), the software assumes that the true east 

longitude input by the user is at the ascending node. 

 

The following is a typical interaction with this script. 
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                  program geosync2  

 

   < geosynchronous osculating semimajor axis >  

 

 

initial calendar date and time 

 

please input the calendar date 

(1 <= month <= 12, 1 <= day <= 31, year = all digits!) 

? 1,1,1998 

 

please input the universal time 

(0 <= hours <= 24, 0 <= minutes <= 60, 0 <= seconds <= 60) 

? 0,0,0 

 

 

gravity model inputs  

 

 

please input the degree of the gravity model (zonals) 

(0 <= zonals <= 18) 

? 4 

 

please input the order of the gravity model (tesserals) 

(0 <= tesserals <= 18) 

? 4 

 

 

orbital perturbations  

 

 

would you like to include solar perturbations (y = yes, n = no) 

? y 

 

would you like to include lunar perturbations (y = yes, n = no) 

? y 

 

would you like to include srp perturbations (y = yes, n = no) 

? y 

 

 

solar radiation pressure inputs  

 

 

please input the reflectivity constant (non-dimensional) 

? 1.85 

 

please input the cross-sectional area (square meters) 

? 10 

 

please input the spacecraft mass (kilograms) 

? 2000 

 

 

please input the numerical integration error tolerance 

(a value between 1.0e-8 and 1.0e-10 is recommended) 

? 1e-8 
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orbital elements menu 

 

   <1> user input 

 

   <2> data file 

 

? 1 

 

 

initial orbital elements  

 

 

please input the semimajor axis (kilometers) 

(semimajor axis > 0) 

? 42160 

 

please input the orbital eccentricity (non-dimensional) 

(0 <= eccentricity < 1) 

? 0 

 

please input the orbital inclination (degrees) 

(0 <= inclination <= 180) 

? 0 

 

please input the satellite's east longitude (degrees) 

(0 <= east longitude <= 360) 

? 45 

 

 

please input the number of orbits to model 

(integer >= 1) 

? 5 

 

The software will display the initial and final east longitude and geodetic latitude.  This information 

indicates how well the orbit “closed” at the solution.  The following is the program output created for 

this example. 

 
                  program geosync2  

 

   < geosynchronous osculating semimajor axis >  

 

initial calendar date          01-Jan-1998 

initial universal time         00:00:00 

 

initial mean east longitude     45.000000  degrees  

final mean east longitude       45.000000  degrees  

 

initial geodetic latitude        0.000000  degrees  

final geodetic latitude          0.272835  degrees  

 

reflectivity constant            1.850000   

 

cross-sectional area            10.000000  sqr meters  

 

spacecraft mass               2000.000000  kilograms  

 

degree of gravity model          4.0  

order of gravity model           4.0  
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number of orbits modeled         5.0  

 

initial orbital elements 

 

      sma (km)        eccentricity     inclination (deg)    argper (deg) 

 4.2166908088e+004  0.0000000000e+000  0.0000000000e+000  0.0000000000e+000  

 

     raan (deg)     true anomaly (deg)   arglat (deg)       period (min) 

 0.0000000000e+000  1.4544413882e+002  1.4544413882e+002  1.4362080817e+003 

 

After the script solves the problem it will ask the user if he or she would like to create a graphics display 

of the evolution of the satellite’s east longitude.  A typical user interaction with this program option is as 

follows: 

 
would you like to create and display graphics (y = yes, n = no) 

? y 

 

please input the simulation period (days) 

? 8 

 

please input the graphics step size (minutes) 

? 30 

 

The following is a plot of the long-term evolution of both the true and mean east longitude for this 

example.  It illustrates that the secular variation of the east longitude is small and only starts to “drift” 

after about 5 days which is the prediction period used in this example. 
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geosync3.m – repositioning a geosynchronous satellite 

 

This MATLAB script determines the impulsive maneuvers required to reposition a geosynchronous 

satellite.  Repositioning is the process of moving a geosynchronous satellite in longitude to the east or 

west relative to some initial location.  This orbit modification is performed by creating an elliptical drift 

orbit with one impulsive maneuver and then applying a second impulse that re-establishes a circular 

geosynchronous orbit at the “target” longitude. 

 

The semimajor axis of the elliptical drift orbit is given by 
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where sa  is the semimajor axis of the initial geosynchronous circular orbit. 

 

The drift rate D is given by  

 d
D n   

 

In this equation   is the longitude change (+ west,   east) relative to the initial location, and dn  is the 

integer number of drift orbits that the spacecraft travels during the change. 

 

The longitude drift during one drift orbit is given by 

 

 e d s d        

 

In this equation e  is the inertial rotation rate of the Earth, s  is the orbital rate of the drift orbit and d  

is the orbital period of the drift orbit.  The longitude drift is caused by the difference between the Earth 

rotation and orbital rates during the drift period. 

 

For a longitude change to the west, the orbital eccentricity of the drift orbit is determined from 
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The perigee velocity of the drift orbit is given by 
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The magnitude of the delta-v that creates the elliptical drift orbit is 

 

 p lcV V V    

 

where lcV  is the local circular velocity of the initial geosynchronous orbit, lc sV a .  This delta-v is 

applied in the direction of orbital motion and creates an elliptical orbit that has a longer period than the 
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original circular orbit.  After the satellite has drifted for dn  orbits, a delta-v of equal magnitude but 

opposite direction is applied.  This delta-v re-circularizes the elliptical drift orbit and creates a 

geosynchronous orbit at the new longitude. 

 

For a longitude change to the east, the orbital eccentricity of the drift orbit is determined from 
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The apogee velocity of the drift orbit is given by 
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The magnitude of the delta-v that creates the elliptical drift orbit is 

 

 lc aV V V    

 

This delta-v is applied opposite to the direction of orbital motion and creates an elliptical orbit that has a 

shorter period than the original circular orbit.  As before a delta-v of equal magnitude but opposite 

direction is applied to create a geosynchronous orbit at the new user-defined east longitude. 

 

The following is a typical user interaction with this MATLAB script. 

 
               program geosync3  

 

< repositioning maneuvers for gso satellites >  

 

 

please input the semimajor axis (kilometers) 

? 42165 

 

please input the longitude change 

(+ west, - east; degrees) 

? -30 

 

please input the number of drift orbits 

? 10 

 

               program geosync3  

 

   < repositioning maneuvers for gso satellites >  

 

 

semimajor axis           42165.000000  kilometers  

 

delta-longitude            -30.000000  degrees  

 

number of orbits           10.0   

 

drift period               237.357151  hours  
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drift orbit characteristics  

 

semimajor axis           41930.423442  kilometers  

 

eccentricity (nd)            0.005594  

 

perigee altitude         35317.709884  kilometers  

 

apogee altitude          35786.863000  kilometers  

 

keplerian period          1424.142906  minutes  

 

total delta-v               17.224908  meters/second 

 

geosync4.m – east-west stationkeeping of geosynchronous satellites 

 

This MATLAB script can be used to determine the impulsive delta-v and drift cycle period required for 

east-west stationkeeping of geosynchronous satellites in equatorial orbits.  The east-west stationkeeping 

requirement is specified by a longitude “deadband” centered about the nominal east longitude of the 

satellite. 

 

A “drift” orbit is established by biasing the initial semimajor axis such that the satellite moves from this 

initial condition to the edge of the deadband.  After reaching the edge of the deadband the satellite then 

drifts toward the other side.  When the satellite reaches the other end of the deadband, a single impulsive 

maneuver is performed to create an elliptical orbit with an apogee equal to the original semimajor axis 

of the drift orbit.  Once the satellite reaches this new apogee, another single maneuver is performed to 

circularize the satellite’s orbit at this radius. 

 

The following is a typical user interaction with this MATLAB script. 

 
                    program geosync4 

 

< east-west stationkeeping of geosynchronous satellites > 

 

 

initial east longitude and deadband 

 

please input the satellite's east longitude (degrees) 

(0 <= east longitude <= 360) 

? 45 

 

 

please input the total deadband constraint (degrees) 

? 1 

 

The following is the program output for this example. 

 
                    program geosync4 

 

< east-west stationkeeping of geosynchronous satellites > 

 

satellite east longitude            45.0000 degrees 

 

total longitude deadband             1.0000 degrees 
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initial drift rate                   0.0575 degrees/day 

 

single maneuver delta-v              0.3262 meters/second 

 

total annual delta-v                 1.7113 meters/second/year 

 

drift cycle period                  69.6248 days 

 

 

geosynchronous semimajor axis    42166.2534 kilometers 

drift cycle semimajor axis       42170.7272 kilometers 

delta semimajor axis                 4.4738 kilometers 

 

After the script has solved the problem it will ask the user if he or she would like to create a graphics 

display of the satellite’s orbital motion during the stationkeeping.  The following is a typical user 

response to this option: 

 
would you like to create and display graphics (y = yes, n = no) 

? y 

 

initial calendar date and time 

 

please input the calendar date 

(1 <= month <= 12, 1 <= day <= 31, year = all digits!) 

? 1,1,1998 

 

please input the universal time 

(0 <= hours <= 24, 0 <= minutes <= 60, 0 <= seconds <= 60) 

? 0,0,0 

 

please input the graphics step size (days) 

? 1 

 

orbital perturbations  

 

would you like to include solar perturbations (y = yes, n = no) 

? n 

 

would you like to include lunar perturbations (y = yes, n = no) 

? n 

 

please input the algorithm error tolerance 

(a value of 1.0e-8 is recommended) 

? 1e-8 

 

The following is a plot of delta-semimajor axis versus east longitude of the satellite.  The delta-

semimajor axis of this plot is the difference between the instantaneous semimajor axis and the 

synchronous semimajor axis sa  at the nominal east longitude. 
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The following is a plot of this example that includes the point-mass gravity perturbation of the sun and 

moon. 

 

 
 

In both of these plots the “nominal” east longitude of the satellite is marked with an asterisk. 
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After the graphics are complete the software will display the following information which is based on 

the numerical integration of the satellite’s motion. 

 
                    program geosync4 

 

< east-west stationkeeping of geosynchronous satellites > 

 

integrated solution 

 

initial calendar date       01-Jan-1998 

initial universal time      00:00:00 

 

final calendar date         11-Mar-1998 

final universal time        14:59:40 

 

final semimajor axis      42161.7620 kilometers 

 

final eccentricity          0.000041  

 

final east longitude       45.508808 degrees 

 

first delta-v               0.163431 meters/second 

 

second delta-v              0.163422 meters/second 

 

total delta-v               0.326853 meters/second 

 

This information can be used to verify the calculations described in the following section. 

 

Technical Discussion 

 

If 1g  is positive, the initial east longitude of the satellite is given by 

 

 0

1

2
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If 1g  is negative, the initial east longitude of the satellite is given by 

 

 0
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2
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where   is the total deadband longitude constraint. 

 

The drift cycle period is determined with the following expression: 
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In this equation e  is the inertial rotation rate of the Earth and   is the normalized longitudinal 

acceleration given by 

 



Orbital Mechanics with MATLAB 

Page 15 

 

 
      22 22 31 31 33 3318 sin2 0.25 sin 7.5 sin3s s sc c c             

 

In this equation  
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The spherical harmonic and longitude coefficients of the EGM96 gravity model are determined from the 

following expressions: 
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where n is the degree (zonals) and m is the order (tesserals) of these terms. 

 

The delta-v required for each two-impulse Hohmann orbit transfer is given by 
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The total annual V  required for east-west stationkeeping is given by 

 

 

1 365.25

3
D e syn D

D

V V P
P

 
 

   
 

 

 

The initial semimajor axis required for the drifting motion can be determined from 

 

 
 0 1sa a    

 

where  1 1

4
3

3
g sign g     and sa  is the “reference” synchronous radius at the satellite’s nominal 

east longitude s .  The equations used to determine this radius are described in the technical discussion 

for the geosync1.m script.  The positive sign in the expression for   should be used whenever 1g  is 

positive. 

 

The initial drift rate of the satellite is determined from 

 

 
 0 1 1 02 3g sign g     

 

where the negative sign of this equation is used whenever 1 0g   and the positive sign is used whenever 

1 0g  . 
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geosync5.m – north-south stationkeeping of geosynchronous satellites 

 

This MATLAB script can be used to graphically display the long-term orbital inclination behavior of 

geosynchronous satellites.  It can also be used to calculate the impulsive delta-v required to correct these 

inclination changes.  The inclination perturbation of geosynchronous satellites is caused mainly by the 

gravitational attraction of the sun and moon. 

 

This script numerically integrates the Cartesian form of the equations of orbital motion.  These equations 

include the point-mass gravity of the sun and moon and the 
2J  gravity effect of the Earth.  The orbital 

conditions at the time of a north-south correction maneuver are computed using a one-dimensional root-

finder based on Brent’s method. 

 

The delta-v required to correct the inclination change is applied at either the ascending or descending 

node.  The scalar magnitude of this impulsive maneuver is given by 
 

 2 sin
2

i
V V
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   

 
 

 

where V is the speed of the spacecraft prior to the maneuver and i  is the inclination change. 

 

The following is a typical user interaction with the graphics option of this script. 

 
                   program geosync5 

 

< north-south stationkeeping of geosynchronous satellites > 

 

 

(1) create and display graphics 

 

(2) predict time and delta-v 

 

? 1 

 

 

please input the integration error tolerance 

(a value of 1.0e-8 is recommended) 

? 1e-8 

 

 

initial calendar date and time 

 

please input the calendar date 

(1 <= month <= 12, 1 <= day <= 31, year = all digits!) 

? 1,1,2003 

 

please input the universal time 

(0 <= hours <= 24, 0 <= minutes <= 60, 0 <= seconds <= 60) 

? 0,0,0 

 

 

initial orbital elements  
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please input the semimajor axis (kilometers) 

(semimajor axis > 0) 

? 42164 

 

please input the orbital eccentricity (non-dimensional) 

(0 <= eccentricity < 1) 

? 0 

 

please input the orbital inclination (degrees) 

(0 <= inclination <= 180) 

? 0 

 

please input the satellite's east longitude (degrees) 

(0 <= east longitude <= 360) 

? 45 

 

 

please input the simulation period (days) 

? 30 

 

please input the graphics step size (minutes) 

? 120 

 

The following is the graphics display for this example. 

 

 
 

The following is a typical user interaction with the “predict time and delta-v” option of this 

script. 

 
please input the integration error tolerance 

(a value of 1.0e-8 is recommended) 

? 1e-8 
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please input the root-finding error tolerance 

(a value between 1.0e-4 and 1.0e-6 is recommended) 

? 1e-4 

 

 

initial calendar date and time 

 

please input the calendar date 

(1 <= month <= 12, 1 <= day <= 31, year = all digits!) 

? 1,1,2003 

 

please input the universal time 

(0 <= hours <= 24, 0 <= minutes <= 60, 0 <= seconds <= 60) 

? 0,0,0 

 

 

initial orbital elements  

 

 

please input the semimajor axis (kilometers) 

(semimajor axis > 0) 

? 42164 

 

please input the orbital eccentricity (non-dimensional) 

(0 <= eccentricity < 1) 

? 0 

 

please input the orbital inclination (degrees) 

(0 <= inclination <= 180) 

? 0 

 

please input the satellite's east longitude (degrees) 

(0 <= east longitude <= 360) 

? 45 

 

please input the final orbital inclination (degrees) 

(0 <= inclination <= +180) 

? .05 

 

The following is the script output for this example. 

 
final calendar date       16-Jan-2003 

 

final universal time        09:56:22 

 

mission elapsed time          15.4141 (days) 

 

delta-v                        2.6834 (mps) 

 

      sma (km)        eccentricity     inclination (deg)    argper (deg) 

 4.2165306913e+004  1.4971447098e-004  5.0000000000e-002  1.6714095246e+002 

 

     raan (deg)     true anomaly (deg)   arglat (deg)       period (min) 

 1.0309105956e+002  3.9520052673e+001  2.0666100513e+002  1.4361262783e+003 

 


