Orbital Mechanics with MATLAB
Sun-synchronous Orbit Design

This document describes three MATLAB scripts that can be used to design and analyze sun-
synchronous Earth orbits. Scripts are provided for both preliminary and high fidelity orbit design. A
sun-synchronous orbit has a nodal regression rate that approximately matches the Earth’s heliocentric
orbital rate around the Sun. The orbit plane of a sun-synchronous maintains a fixed geometry with
respect to the Earth-Sun line.

The sun synchronous design equation is
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where

A = orbital rate of the Earth (~0.985 degrees/day)
a =semimajor axis
e = orbital eccentricity
p=a(l-e’)
I = orbital inclination

4 = gravitational constant of the Earth

J, = second zonal gravity harmonic of the Earth

I, = equatorial radius of the Earth

n= w/,u/a3 = mean motion

sunsyncl.m — required mean orbital inclination — Kozai j2 solution

This MATLAB script calculates the mean orbital inclination required for a sun-synchronous Earth orbit
based on Kozai’s J, solution.

This algorithm starts with an initial guess for the orbital inclination given by

2 .
i, =cos™ B
3 nJ,

I

It then computes the perturbed mean motion based on this value of inclination using the following

expression:
2
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dt
A new guess for the orbital inclination is
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This iteration continues until convergence, |i,,, —i,| <& where & is a convergence criterion and is equal

to 1.0d-8 in this script or the algorithm exceeds 100 iterations.

The following is a typical user interaction with this program. Inputs are in bold font.

program sunsyncl
< sun-synchronous orbits - j2 solution >
<1> input mean semimajor axis and eccentricity
<2> input mean perigee and apogee altitudes
selection (1 or 2) ? 2
please input the mean perigee altitude (kilometers)? 350

please input the mean apogee altitude (kilometers)? 1000

The following is the screen display created by this program.

program sunsyncl

< sun-synchronous orbits - j2 solution >
mean perigee altitude (kilometers) 350.0000
mean apogee altitude (kilometers) 1000.0000
mean semimajor axis (kilometers) 7053.1400
mean orbital eccentricity 0.0460787678
mean orbital inclination (degrees) 98.0571
numpber of iterations 2.0000

sunsync2.m — required mean orbital inclination — Kozai j2+j4 solution

This application calculates the mean orbital inclination required for a sun-synchronous Earth orbit. It
uses a J, +J, form of Kozai’s method during the solution process.

This script uses Brent’s method to find a real root of the following nonlinear sun-synchronous constraint
equation:

f(i)=4-Q=0

where A =27 /3652422 is the orbital rate of the Earth around the Sun and Q is the first-order secular
perturbation in the right ascension of the ascending node given by
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The perturbed mean motion due to J, and J, is given by

2

I

1+§J2 A x/l—e2(1—§sin2ij
2 p 2
16 1—e2+25(1—e2)—15
4

;
M _ . +1J5(ﬂj 1—¢? +[30—96\/1— 2—90(1—e2)}coszi

dt 128 p
+ [105 +1441—€? + 25(1-¢? )}

4
;

5 J, (ﬂJ V1-e’e?(3-30cos’i +35c0s' i)
p

=
I
I

128

The bracketing interval for this algorithm is
b+l <i<iy+1

where i, is an orbital inclination initial guess given by

2 .
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The following is a typical user interaction with this MATLAB script. Inputs are in bold font.

program sunsync?2
< sun-synchronous orbits - j2 + j4 solution >
<1> input mean semimajor axis and eccentricity
<2> input mean perigee and apogee altitudes
selection (1 or 2) ? 2

please input the mean perigee altitude (kilometers)? 350

please input the mean apogee altitude (kilometers)? 1000

The following is the screen display created by the script for this example.
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program sunsync?2

< sun-synchronous orbits - j2 + 34 solution >
mean perigee altitude 350.0000 kilometers
mean apogee altitude 1000.0000 kilometers
mean semimajor axis 7053.1400 kilometers

mean orbital eccentricity 0.0460787678

mean orbital inclination 98.0306 degrees
sunsync3.m — required osculating orbital inclination — numerical integration solution
This MATLAB script calculates the osculating orbital inclination required for a sun-synchronous orbit.
The orbit is propagated by numerical integration during the solution process, and the software allows the
user to specify the degree and order of the Earth gravity model to use during the simulation. Optionally,
this script can also include the point mass gravity perturbation of the Sun during the solution process.

This permits high fidelity orbit design of a sun-synchronous orbit and minimizes the number and
magnitude of orbit maintenance maneuvers.

The program begins by setting the initial true anomaly to the ascending node (0 = -w).

This script uses Brent’s root-finding method to calculate the inclination. The bracketing interval for the
required osculating orbital inclination i is equal to

lhb—5 <i<I,+5

where i, is the initial inclination guess provided by the user. An initial guess can be determined by
running either the sunsync1 or sunsync2 MATLAB script.

The main nonlinear equation solved by this script is given by

where the quantity in the braces is the “averaged” finite-difference numerical derivative of RAAN. The
denominator is the total simulation duration. By solving this equation, we are trying to match the
required heliocentric orbital rate of the Earth, A, with the perturbed motion of the orbit plane, Q.

While solving for the roots of f(t), the algorithm is also propagating the orbit to the times of ascending
node crossings by solving the following equation

g(t)=r,=0
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subject to the mission constraint v, > 0. This constraint ensures that the solution is found at an
ascending node. Here r, is the z-component of the inertial position vector and v, is the z-component of
the inertial velocity vector.

The simulation duration of this application is defined by the user in terms of the number of nodal
periods. More nodal periods will provide “better” orbit design at the expense of longer computer run
times.

The following is a typical user interaction with this program. The initial epoch and osculating orbital
elements correspond to the situation at the initial ascending node. Inputs are shown in bold font.

program sunsync3
< sun-synchronous orbits - integrated solution >

please input the calendar date
(1 <= month <= 12, 1 <= day <= 31, year = all digits!)
2 1,1,1998

please input the Universal Coordinated Time (UTC)
(0 <= hours <= 24, 0 <= minutes <= 60, 0 <= seconds <= 60)
2 0,0,0

please input the simulation duration (nodal periods)
? 10

please input the degree of the Earth gravity model (zonals)
(2 <= zonals <= 18)
? 8

please input the order of the Earth gravity model (tesserals)
(0 <= tesserals <= 18)
? 8

would you like to include the point-mass gravity of the Sun (y = yes, n = no)
?
°y

please input the semimajor axis (kilometers)
(semimajor axis > 0)
? 7000

please input the orbital eccentricity (non-dimensional)
(0 <= eccentricity < 1)
? 0.015

please input the orbital inclination (degrees)
(0 <= inclination <= 180)
? 98.75

please input the argument of perigee (degrees)
(0 <= argument of perigee <= 360)
? 270

please input the right ascension of the ascending node (degrees)

(0 <= raan <= 360)
? 100
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The following is the screen display created by this program for this example.

program sunsync3

< sun-synchronous orbits - integrated solution >
semimajor axis 7000.000000 kilometers
eccentricity 0.01500000

inclination 97.846179 degrees
argument of perigee 270.000000 degrees
initial raan 100.000000 degrees
average nodal period 97.070006 minutes
desired raan dot 0.98564733 degrees/day
predicted raan dot 0.98564737 degrees/day
degree of gravity model 8

order of gravity model 8

number of nodal periods 10

simulation includes the point-mass gravity of the Sun

In this display, average nodal period is the nodal period averaged over the user-defined number
of nodal periodsand predicted raan dot isthe time rate-of-change of RAAN predicted by
the numerical integration also averaged over the total duration of all nodal periods. The desired
raan_dot is the nodal regression rate computed from the expression 360 degrees/365.2422.

Modeling the orbital motion

The sunsync3 MATLAB script implements a special perturbation technique which solves the vector
system of second-order, nonlinear differential equations of orbital motion given by

a(r,t)=r(r,t)=a,(r,t)+a,(r,t)

where
t = dynamical time

r = inertial position vector

a, = acceleration due to Earth gravity

9
a

S

acceleration due to the Sun
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Geocentric acceleration due to non-spherical Earth gravity

The sunsync3 MATLAB script implements a spherical harmonic representation of the Earth’s
geopotential function given by

n
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where ¢ is the geocentric latitude, A4 is the geocentric east longitude and r = |f|= JE+y?P+77 isthe

geocentric distance. In this expression the S’s and C’s are harmonic coefficients of the geopotential, and
the P’s are associated Legendre polynomials of degree n and order m with argument u =sing.

The software calculates the acceleration due to the Earth’s gravity field with a vector equation derived
from the gradient of the potential function expressed as

a, (r,t)=vo(rt)

This acceleration vector is a combination of pure two-body or point mass gravity acceleration and the
gravitational acceleration due to higher order nonspherical terms in the Earth’s geopotential. In terms of
the Earth’s geopotential @, the inertial rectangular cartesian components of the acceleration vector are
as follows:
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The three partial derivatives of the geopotential with respect to r,¢#, A are given by
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where
R = radius of the Earth

r = geocentric distance
S,,C" = harmonic coefficients

. I . (z
¢ = geocentric declination =sin™ (—J
r

A = longitude = o — o

a = right ascension = tan‘l(lj

X

a, = right ascension of Greenwich

The right ascension is measure positive east of the vernal equinox, longitude is measured positive east of
Greenwich, and declination is positive above the Earth’s equator and negative below.

For m =0 the coefficients are called zonal terms, when m =n the coefficients are sectorial terms, and
for n>m =0 the coefficients are called tesseral terms.

The Legendre polynomials with argument sin¢g are computed using recursion relationships given by:

P (sing) = %[(Zn ~1)sing R, (sing)—(n—-1) P, (sing) |
P'(sing)=(2n—-1)cosg P, ! (sing), m=0, m<n
P"(sing) =P, (sing)+(2n-1)cosg P (sing), m=0, m=n

where the first few associated Legendre functions are given by

P’ (sing)=1 P’(sing)=sing, P (sing)=cos¢
and P’ =0 forj>i.

The trigonometric arguments are determined from expansions given by

sinmA=2cosAsin(m-1)A—-sin(m-2) 4
cosmA =2cosAcos(m—1)1—cos(m—2)4
mtang =(m—1)tang + tan ¢

These gravity model data files are simple space delimited ASCII data files. The following is a portion
of a typical gravity model data file. In this file, column one is the degree index, column two is the
model order index, and columns three and four are the corresponding un-normalized gravity coefficients
(zonals and tesserals, respectively).

2 0 -0.10826300D-02 0.00000000D+00
3 0 0.25321531D-05 0.00000000D+00
4 0 0.16109876D-05 0.00000000D+00
5 0 0.23578565D-06 0.00000000D+00
6 0 -0.54316985D-06 0.00000000D+00
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Gravity model coefficients are often published in normalized form. The relationship between
normalized C, §|’m and un-normalized gravity coefficients C, .S, . is given by the following

expression:

I,m? I,m?

et ()

where S, is equal to 1 if m is zero and equal to zero if m is greater than zero.

This MATLAB script is “hard-wired” to use an Earth gravity model data file named egm96.dat. The
user can use a different data file by editing the following line of the source code.

[

% read gravity model coefficients

[ccoef, scoef] = readgm('egm96.dat');
Geocentric acceleration due to the point-mass gravity of the Sun

The acceleration contribution of the Sun represented by a point mass is given by

r r
a, (r’t) =M (|rs—sc|3 + |re—s|3}

S$—SC e-s

where

U, = gravitational constant of the Sun
r,_ . = position vector from the Sun to the trajectory

§—SC

r, . = position vector from the Earth to the Sun

Order reduction

The first-order system of equations required by this computer program can be created from the second-
order system by the method of order reduction. With the following definitions,

ylzrx y2:ry y3:rz
y4 :Vx y5 = Vy y6 :VZ

where v,,v,,v, are the velocity vector components, the first-order system of differential equations is
given by
Y1:Vx yZ :Vy Y3:Vz

y4 = ax—e + ax—s y5 = a‘y—e + ay—s yG = az—e + az—s

In these equations, a,_,, a, . and a,_, are the X, y and z gravitational contributions due to non-spherical

X—e?

Earth gravity, and a
gravity of the Sun.

a, and a, ¢ are the x, y and z gravitational contributions of the point-mass

X—s?
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