
Orbital Mechanics with MATLAB

Page 1

Sun-synchronous Orbit Design

This document describes three MATLAB scripts that can be used to design and analyze sun-

synchronous Earth orbits. Scripts are provided for both preliminary and high fidelity orbit design. A

sun-synchronous orbit has a nodal regression rate that approximately matches the Earth’s heliocentric

orbital rate around the Sun. The orbit plane of a sun-synchronous maintains a fixed geometry with

respect to the Earth-Sun line.

The sun synchronous design equation is

2

2

2
cos 0

3 eq

p
i

r nJ

   
     
    

 where

 

 2

2

orbital rate of the Earth 0.985 degrees/day

semimajor axis

orbital eccentricity

1

orbital inclination

gravitational constant of the Earth

 second zonal gravity harmonic of the Earth

eq

a

e

p a e

i

J

r





 





 









3

equatorial radius of the Earth

/ mean motionn a 

sunsync1.m – required mean orbital inclination – Kozai j2 solution

This MATLAB script calculates the mean orbital inclination required for a sun-synchronous Earth orbit

based on Kozai’s 2J solution.

This algorithm starts with an initial guess for the orbital inclination given by

2

1

0

2

2
cos

3 eq

p
i

r nJ


   

     
    

It then computes the perturbed mean motion based on this value of inclination using the following

expression:

2

2 2

2 0

3 3
1 1 1 sin

2 2

eqrdM
n n J e i

dt p

    
       

    

A new guess for the orbital inclination is

Orbital Mechanics with MATLAB

Page 2

2

1

1

2

2
cos

3
n

eq

p
i

r nJ





   
     

    

This iteration continues until convergence, 1n ni i    where  is a convergence criterion and is equal

to 1.0d-8 in this script or the algorithm exceeds 100 iterations.

The following is a typical user interaction with this program. Inputs are in bold font.

 program sunsync1

 < sun-synchronous orbits - j2 solution >

<1> input mean semimajor axis and eccentricity

<2> input mean perigee and apogee altitudes

selection (1 or 2) ? 2

please input the mean perigee altitude (kilometers)? 350

please input the mean apogee altitude (kilometers)? 1000

The following is the screen display created by this program.

 program sunsync1

 < sun-synchronous orbits - j2 solution >

mean perigee altitude (kilometers) 350.0000

mean apogee altitude (kilometers) 1000.0000

mean semimajor axis (kilometers) 7053.1400

mean orbital eccentricity 0.0460787678

mean orbital inclination (degrees) 98.0571

number of iterations 2.0000

sunsync2.m – required mean orbital inclination – Kozai j2+j4 solution

This application calculates the mean orbital inclination required for a sun-synchronous Earth orbit. It

uses a 2 4J J form of Kozai’s method during the solution process.

This script uses Brent’s method to find a real root of the following nonlinear sun-synchronous constraint

equation:

   0f i   

where  / .  2 3652422 is the orbital rate of the Earth around the Sun and  is the first-order secular

perturbation in the right ascension of the ascending node given by

Orbital Mechanics with MATLAB

Page 3

2 2 2
2 2 2 2

2 2

4 2
2

4

3 3 3 5 5
cos 1 2 1 3 1 sin

2 2 2 6 3 24

35 3 12 21sin
1 cos

8 2 14

eq eq

eq

r rd e
J n i J e e e i

dt p p

r i
J n e i

p

       
                 

        

    
    

    

The perturbed mean motion due to J2 and J4 is given by

 

 

 

 

2

2 2

2

2 2

4

2 2 2 2 2

2

2 2

4

2 2 2 4

4

3 3
1 1 1 sin

2 2

16 1 25 1 15

3
1 30 96 1 90 1 cos

128

105 144 1 25 1

45
1 3 30cos 35cos

128

eq

eq

eq

r
J e i

p

e e

rdM
n n J e e e i

dt p

e e

r
J e e i i

p

    
     

  


 
     


                    
      

   

 
    

 










 
 
 
 
 
 

The bracketing interval for this algorithm is

 0 01 1i i i   

where i0 is an orbital inclination initial guess given by

2

1

0

2

2
cos

3 eq

p
i

r nJ


   

     
    

The following is a typical user interaction with this MATLAB script. Inputs are in bold font.

 program sunsync2

 < sun-synchronous orbits - j2 + j4 solution >

<1> input mean semimajor axis and eccentricity

<2> input mean perigee and apogee altitudes

selection (1 or 2) ? 2

please input the mean perigee altitude (kilometers)? 350

please input the mean apogee altitude (kilometers)? 1000

The following is the screen display created by the script for this example.

Orbital Mechanics with MATLAB

Page 4

 program sunsync2

 < sun-synchronous orbits - j2 + j4 solution >

mean perigee altitude 350.0000 kilometers

mean apogee altitude 1000.0000 kilometers

mean semimajor axis 7053.1400 kilometers

mean orbital eccentricity 0.0460787678

mean orbital inclination 98.0306 degrees

sunsync3.m – required osculating orbital inclination – numerical integration solution

This MATLAB script calculates the osculating orbital inclination required for a sun-synchronous orbit.

The orbit is propagated by numerical integration during the solution process, and the software allows the

user to specify the degree and order of the Earth gravity model to use during the simulation. Optionally,

this script can also include the point mass gravity perturbation of the Sun during the solution process.

This permits high fidelity orbit design of a sun-synchronous orbit and minimizes the number and

magnitude of orbit maintenance maneuvers.

The program begins by setting the initial true anomaly to the ascending node     .

This script uses Brent’s root-finding method to calculate the inclination. The bracketing interval for the

required osculating orbital inclination i is equal to

 0 05 5i i i   

where i0 is the initial inclination guess provided by the user. An initial guess can be determined by

running either the sunsync1 or sunsync2 MATLAB script.

The main nonlinear equation solved by this script is given by

  
   

 
0

0

0
t t

f t
t t


   

   
  

where the quantity in the braces is the “averaged” finite-difference numerical derivative of RAAN. The

denominator is the total simulation duration. By solving this equation, we are trying to match the

required heliocentric orbital rate of the Earth,  , with the perturbed motion of the orbit plane,  .

While solving for the roots of f(t), the algorithm is also propagating the orbit to the times of ascending

node crossings by solving the following equation

   0zg t r 

Orbital Mechanics with MATLAB

Page 5

subject to the mission constraint 0zv  . This constraint ensures that the solution is found at an

ascending node. Here
zr is the z-component of the inertial position vector and

zv is the z-component of

the inertial velocity vector.

The simulation duration of this application is defined by the user in terms of the number of nodal

periods. More nodal periods will provide “better” orbit design at the expense of longer computer run

times.

The following is a typical user interaction with this program. The initial epoch and osculating orbital

elements correspond to the situation at the initial ascending node. Inputs are shown in bold font.

 program sunsync3

< sun-synchronous orbits - integrated solution >

please input the calendar date

(1 <= month <= 12, 1 <= day <= 31, year = all digits!)

? 1,1,1998

please input the Universal Coordinated Time (UTC)

(0 <= hours <= 24, 0 <= minutes <= 60, 0 <= seconds <= 60)

? 0,0,0

please input the simulation duration (nodal periods)

? 10

please input the degree of the Earth gravity model (zonals)

(2 <= zonals <= 18)

? 8

please input the order of the Earth gravity model (tesserals)

(0 <= tesserals <= 18)

? 8

would you like to include the point-mass gravity of the Sun (y = yes, n = no)

? y

please input the semimajor axis (kilometers)

(semimajor axis > 0)

? 7000

please input the orbital eccentricity (non-dimensional)

(0 <= eccentricity < 1)

? 0.015

please input the orbital inclination (degrees)

(0 <= inclination <= 180)

? 98.75

please input the argument of perigee (degrees)

(0 <= argument of perigee <= 360)

? 270

please input the right ascension of the ascending node (degrees)

(0 <= raan <= 360)

? 100

Orbital Mechanics with MATLAB

Page 6

The following is the screen display created by this program for this example.

 program sunsync3

< sun-synchronous orbits - integrated solution >

semimajor axis 7000.000000 kilometers

eccentricity 0.01500000

inclination 97.846179 degrees

argument of perigee 270.000000 degrees

initial raan 100.000000 degrees

average nodal period 97.070006 minutes

desired raan_dot 0.98564733 degrees/day

predicted raan_dot 0.98564737 degrees/day

degree of gravity model 8

order of gravity model 8

number of nodal periods 10

simulation includes the point-mass gravity of the Sun

In this display, average nodal period is the nodal period averaged over the user-defined number

of nodal periods and predicted raan_dot is the time rate-of-change of RAAN predicted by

the numerical integration also averaged over the total duration of all nodal periods. The desired

raan_dot is the nodal regression rate computed from the expression 360 degrees/365.2422.

Modeling the orbital motion

The sunsync3 MATLAB script implements a special perturbation technique which solves the vector

system of second-order, nonlinear differential equations of orbital motion given by

        , , , ,g st t t t  a r r r a r a r

 where

 dynamical time

 inertial position vector

 acceleration due to Earth gravity

 acceleration due to the Sun

g

s

t 







r

a

a

Orbital Mechanics with MATLAB

Page 7

Geocentric acceleration due to non-spherical Earth gravity

The sunsync3 MATLAB script implements a spherical harmonic representation of the Earth’s

geopotential function given by

      0 0

1 1 1

, , sin cos

n nn
m m m

n n n n n

n n m

R R
r C P u P u S m C m

r r r r r

  
   

 

  

   
          

   
 

where  is the geocentric latitude,  is the geocentric east longitude and 2 2 2r r x y z    is the

geocentric distance. In this expression the S’s and C’s are harmonic coefficients of the geopotential, and

the P’s are associated Legendre polynomials of degree n and order m with argument sinu  .

The software calculates the acceleration due to the Earth’s gravity field with a vector equation derived

from the gradient of the potential function expressed as

    , ,g t t a r r

This acceleration vector is a combination of pure two-body or point mass gravity acceleration and the

gravitational acceleration due to higher order nonspherical terms in the Earth’s geopotential. In terms of

the Earth’s geopotential  , the inertial rectangular cartesian components of the acceleration vector are

as follows:

2 22 2 2

2 22 2 2

2 2

2

1 1

1 1

1

z
x x y

r r x yr x y

z
y y x

r r x yr x y

x y
z z

r r r

  

  

  

  

 

 

     
          

     
          

   
         

The three partial derivatives of the geopotential with respect to , ,r   are given by

      
2 0

1
1 cos sin sin

nN n
m m m

n n n

n m

R
n C m S m P

r r r r

 
  

  

    
      

   
 

      1

2 0

cos sin sin tan sin

nN n
m m m m

n n n n

n m

R
C m S m P m P

r r

 
    





 

    
        

   
 

    
2 0

cos sin sin

nN n
m m m

n n n

n m

R
m S m C m P

r r

 
  

  

    
    
   

 

Orbital Mechanics with MATLAB

Page 8

 where

1

1

 radius of the Earth

 geocentric distance

, harmonic coefficients

 geocentric declination sin

 longitude

 right ascension tan

 right ascension of Greenwich

m m

n n

g

g

R

r

S C

z

r

y

x



  















 
   

 

  

 
   

 



The right ascension is measure positive east of the vernal equinox, longitude is measured positive east of

Greenwich, and declination is positive above the Earth’s equator and negative below.

For 0m  the coefficients are called zonal terms, when m n the coefficients are sectorial terms, and

for 0n m  the coefficients are called tesseral terms.

The Legendre polynomials with argument sin are computed using recursion relationships given by:

         

     

       

0 0 0

1 2

1

1

1

2 1

1
sin 2 1 sin sin 1 sin

sin 2 1 cos sin , 0,

sin sin 2 1 cos sin , 0,

n n n

n n

n n

m m m

n n n

P n P n P
n

P n P m m n

P P n P m m n

   

  

   

 







 

     

   

    

where the first few associated Legendre functions are given by

      0 0 1

0 1 1sin 1, sin sin , sin cosP P P      

and 0 for j

iP j i  .

The trigonometric arguments are determined from expansions given by

   

   

 

sin 2cos sin 1 sin 2

cos 2cos cos 1 cos 2

tan 1 tan tan

m m m

m m m

m m

   

   

  

   

   

  

These gravity model data files are simple space delimited ASCII data files. The following is a portion

of a typical gravity model data file. In this file, column one is the degree index, column two is the

model order index, and columns three and four are the corresponding un-normalized gravity coefficients

(zonals and tesserals, respectively).

 2 0 -0.10826300D-02 0.00000000D+00

 3 0 0.25321531D-05 0.00000000D+00

 4 0 0.16109876D-05 0.00000000D+00

 5 0 0.23578565D-06 0.00000000D+00

 6 0 -0.54316985D-06 0.00000000D+00

Orbital Mechanics with MATLAB

Page 9

Gravity model coefficients are often published in normalized form. The relationship between

normalized , ,,l m l mC S and un-normalized gravity coefficients , ,,l m l mC S is given by the following

expression:

   

 

 

1 2

,,

,, 0

!1

2 2 1 !

l ml m

l ml m m

CC l m

SS l l m

     
    

       

where
0m is equal to 1 if m is zero and equal to zero if m is greater than zero.

This MATLAB script is “hard-wired” to use an Earth gravity model data file named egm96.dat. The

user can use a different data file by editing the following line of the source code.

% read gravity model coefficients

[ccoef, scoef] = readgm('egm96.dat');

Geocentric acceleration due to the point-mass gravity of the Sun

The acceleration contribution of the Sun represented by a point mass is given by

   3 3
, s sc e s

s s

s sc e s

t   

 

 
   

 
 

r r
a r

r r

 where

 gravitational constant of the Sun

 position vector from the Sun to the trajectory

 position vector from the Earth to the Sun

s

s sc

e s













r

r

Order reduction

The first-order system of equations required by this computer program can be created from the second-

order system by the method of order reduction. With the following definitions,

1 2 3

4 5 6

 x y z

x y z

y r y r y r

y v y v y v

  

  

where , ,x y zv v v are the velocity vector components, the first-order system of differential equations is

given by

1 2 3

4 5 6

x y z

x e x s y e y s z e z s

y v y v y v

y a a y a a y a a     

  

     

In these equations, , and x e y e z ea a a   are the x, y and z gravitational contributions due to non-spherical

Earth gravity, and , and x s y s z sa a a   are the x, y and z gravitational contributions of the point-mass

gravity of the Sun.

