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Sun-synchronous Orbit Design 
 

This document describes three MATLAB scripts that can be used to design and analyze sun-

synchronous Earth orbits.  Scripts are provided for both preliminary and high fidelity orbit design.  A 

sun-synchronous orbit has a nodal regression rate that approximately matches the Earth’s heliocentric 

orbital rate around the Sun.  The orbit plane of a sun-synchronous maintains a fixed geometry with 

respect to the Earth-Sun line. 

 

The sun synchronous design equation is 
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sunsync1.m – required mean orbital inclination – Kozai j2 solution 

 

This MATLAB script calculates the mean orbital inclination required for a sun-synchronous Earth orbit 

based on Kozai’s 2J  solution. 

 

This algorithm starts with an initial guess for the orbital inclination given by 
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It then computes the perturbed mean motion based on this value of inclination using the following 

expression: 
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A new guess for the orbital inclination is 
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This iteration continues until convergence, 1n ni i     where   is a convergence criterion and is equal 

to 1.0d-8 in this script or the algorithm exceeds 100 iterations. 

 

The following is a typical user interaction with this program.  Inputs are in bold font. 

 
              program sunsync1  

 

   < sun-synchronous orbits - j2 solution >  

 

<1> input mean semimajor axis and eccentricity  

 

<2> input mean perigee and apogee altitudes  

 

selection (1 or 2) ? 2 

 

please input the mean perigee altitude (kilometers)? 350 

 

please input the mean apogee altitude (kilometers)? 1000 

 

The following is the screen display created by this program. 

 
              program sunsync1  

 

   < sun-synchronous orbits - j2 solution >  

 

mean perigee altitude (kilometers)        350.0000  

 

mean apogee altitude  (kilometers)       1000.0000  

 

mean semimajor axis   (kilometers)       7053.1400  

 

mean orbital eccentricity             0.0460787678  

 

mean orbital inclination (degrees)         98.0571  

 

number of iterations                        2.0000 

 

sunsync2.m – required mean orbital inclination – Kozai j2+j4 solution 

 

This application calculates the mean orbital inclination required for a sun-synchronous Earth orbit.  It 

uses a 2 4J J  form of Kozai’s method during the solution process. 

 

This script uses Brent’s method to find a real root of the following nonlinear sun-synchronous constraint 

equation: 

   0f i     

 

where  / .  2 3652422 is the orbital rate of the Earth around the Sun and   is the first-order secular 

perturbation in the right ascension of the ascending node given by 
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The perturbed mean motion due to J2  and J4  is given by 
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The bracketing interval for this algorithm is 

 

 0 01 1i i i     

 

where i0  is an orbital inclination initial guess given by 
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The following is a typical user interaction with this MATLAB script.  Inputs are in bold font. 

 
         program sunsync2  

 

 < sun-synchronous orbits - j2 + j4 solution >  

 

<1> input mean semimajor axis and eccentricity  

 

<2> input mean perigee and apogee altitudes  

 

selection (1 or 2) ? 2 

 

please input the mean perigee altitude (kilometers)? 350 

 

 

please input the mean apogee altitude (kilometers)?  1000 

 

The following is the screen display created by the script for this example. 
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                program sunsync2  

 

   < sun-synchronous orbits - j2 + j4 solution >  

 

mean perigee altitude          350.0000  kilometers  

 

mean apogee altitude          1000.0000  kilometers  

 

mean semimajor axis           7053.1400  kilometers  

 

mean orbital eccentricity  0.0460787678  

 

mean orbital inclination        98.0306  degrees 

 

sunsync3.m – required osculating orbital inclination – numerical integration solution 

 

This MATLAB script calculates the osculating orbital inclination required for a sun-synchronous orbit. 

The orbit is propagated by numerical integration during the solution process, and the software allows the 

user to specify the degree and order of the Earth gravity model to use during the simulation.  Optionally, 

this script can also include the point mass gravity perturbation of the Sun during the solution process.  

This permits high fidelity orbit design of a sun-synchronous orbit and minimizes the number and 

magnitude of orbit maintenance maneuvers. 

 

The program begins by setting the initial true anomaly to the ascending node     . 

 

This script uses Brent’s root-finding method to calculate the inclination.  The bracketing interval for the 

required osculating orbital inclination i is equal to 

 

 0 05 5i i i     

 

where i0  is the initial inclination guess provided by the user.  An initial guess can be determined by 

running either the sunsync1 or sunsync2 MATLAB script. 

 

The main nonlinear equation solved by this script is given by 
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where the quantity in the braces is the “averaged” finite-difference numerical derivative of RAAN.  The 

denominator is the total simulation duration.  By solving this equation, we are trying to match the 

required heliocentric orbital rate of the Earth,  , with the perturbed motion of the orbit plane,  . 

 

While solving for the roots of f(t), the algorithm is also propagating the orbit to the times of ascending 

node crossings by solving the following equation 

 

   0zg t r   
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subject to the mission constraint 0zv  .  This constraint ensures that the solution is found at an 

ascending node.  Here 
zr  is the z-component of the inertial position vector and 

zv  is the z-component of 

the inertial velocity vector. 

 

The simulation duration of this application is defined by the user in terms of the number of nodal 

periods.  More nodal periods will provide “better” orbit design at the expense of longer computer run 

times. 

 

The following is a typical user interaction with this program.  The initial epoch and osculating orbital 

elements correspond to the situation at the initial ascending node.  Inputs are shown in bold font. 

 
                program sunsync3 

 

< sun-synchronous orbits - integrated solution > 

 

please input the calendar date 

(1 <= month <= 12, 1 <= day <= 31, year = all digits!) 

? 1,1,1998 

 

please input the Universal Coordinated Time (UTC) 

(0 <= hours <= 24, 0 <= minutes <= 60, 0 <= seconds <= 60) 

? 0,0,0 

 

please input the simulation duration (nodal periods) 

? 10 

 

please input the degree of the Earth gravity model (zonals) 

(2 <= zonals <= 18) 

? 8 

 

please input the order of the Earth gravity model (tesserals) 

(0 <= tesserals <= 18) 

? 8 

 

would you like to include the point-mass gravity of the Sun (y = yes, n = no) 

? y 

 

please input the semimajor axis (kilometers) 

(semimajor axis > 0) 

? 7000 

 

please input the orbital eccentricity (non-dimensional) 

(0 <= eccentricity < 1) 

? 0.015 

 

please input the orbital inclination (degrees) 

(0 <= inclination <= 180) 

? 98.75 

 

please input the argument of perigee (degrees) 

(0 <= argument of perigee <= 360) 

? 270 

 

please input the right ascension of the ascending node (degrees) 

(0 <= raan <= 360) 

? 100 
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The following is the screen display created by this program for this example. 

 
                program sunsync3 

 

< sun-synchronous orbits - integrated solution > 

 

semimajor axis              7000.000000  kilometers  

 

eccentricity                 0.01500000   

 

inclination                   97.846179  degrees  

 

argument of perigee          270.000000  degrees  

 

initial raan                 100.000000  degrees  

 

average nodal period          97.070006  minutes  

 

desired raan_dot             0.98564733  degrees/day  

 

predicted raan_dot           0.98564737  degrees/day  

 

degree of gravity model         8  

 

order of gravity model          8  

 

number of nodal periods         10  

 

simulation includes the point-mass gravity of the Sun 

 

In this display, average nodal period is the nodal period averaged over the user-defined number 

of nodal periods and predicted raan_dot is the time rate-of-change of RAAN predicted by 

the numerical integration also averaged over the total duration of all nodal periods.  The desired 

raan_dot is the nodal regression rate computed from the expression 360 degrees/365.2422. 

 

 

Modeling the orbital motion 
 

The sunsync3 MATLAB script implements a special perturbation technique which solves the vector 

system of second-order, nonlinear differential equations of orbital motion given by 
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Geocentric acceleration due to non-spherical Earth gravity 

 

The sunsync3 MATLAB script implements a spherical harmonic representation of the Earth’s 

geopotential function given by 
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where   is the geocentric latitude,   is the geocentric east longitude and 2 2 2r r x y z     is the 

geocentric distance.  In this expression the S’s and C’s are harmonic coefficients of the geopotential, and 

the P’s are associated Legendre polynomials of degree n and order m with argument sinu  . 

 

The software calculates the acceleration due to the Earth’s gravity field with a vector equation derived 

from the gradient of the potential function expressed as 

 

    , ,g t t a r r  

 

This acceleration vector is a combination of pure two-body or point mass gravity acceleration and the 

gravitational acceleration due to higher order nonspherical terms in the Earth’s geopotential.  In terms of 

the Earth’s geopotential  , the inertial rectangular cartesian components of the acceleration vector are 

as follows: 
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The three partial derivatives of the geopotential with respect to , ,r    are given by 
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The right ascension is measure positive east of the vernal equinox, longitude is measured positive east of 

Greenwich, and declination is positive above the Earth’s equator and negative below. 

For 0m   the coefficients are called zonal terms, when m n  the coefficients are sectorial terms, and 

for 0n m   the coefficients are called tesseral terms. 

 

The Legendre polynomials with argument sin  are computed using recursion relationships given by: 
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where the first few associated Legendre functions are given by 
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The trigonometric arguments are determined from expansions given by 
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These gravity model data files are simple space delimited ASCII data files.  The following is a portion 

of a typical gravity model data file.  In this file, column one is the degree index, column two is the 

model order index, and columns three and four are the corresponding un-normalized gravity coefficients 

(zonals and tesserals, respectively). 

 
 2   0  -0.10826300D-02   0.00000000D+00 

 3   0   0.25321531D-05   0.00000000D+00 

 4   0   0.16109876D-05   0.00000000D+00 

 5   0   0.23578565D-06   0.00000000D+00 

 6   0  -0.54316985D-06   0.00000000D+00 
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Gravity model coefficients are often published in normalized form.  The relationship between 

normalized , ,,l m l mC S  and un-normalized gravity coefficients , ,,l m l mC S  is given by the following 

expression: 
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where 
0m  is equal to 1 if m is zero and equal to zero if m is greater than zero. 

 

This MATLAB script is “hard-wired” to use an Earth gravity model data file named egm96.dat.  The 

user can use a different data file by editing the following line of the source code. 

 
% read gravity model coefficients 

  

[ccoef, scoef] = readgm('egm96.dat'); 

 

Geocentric acceleration due to the point-mass gravity of the Sun 

 

The acceleration contribution of the Sun represented by a point mass is given by 
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Order reduction 

 

The first-order system of equations required by this computer program can be created from the second-

order system by the method of order reduction.  With the following definitions, 
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where , ,x y zv v v  are the velocity vector components, the first-order system of differential equations is 

given by 
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In these equations, ,  and x e y e z ea a a    are the x, y and z gravitational contributions due to non-spherical 

Earth gravity, and ,  and x s y s z sa a a    are the x, y and z gravitational contributions of the point-mass 

gravity of the Sun. 

 


