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Repeating Ground Track Orbit Design 
 

This document describes four MATLAB scripts that can be used to design and analyze repeating ground 

track orbits.  Scripts are provided for both preliminary and high fidelity orbit design. 

 

These types of orbits are useful for remote sensing and other special applications since they overfly the 

same points on the Earth’s surface every repeat cycle.  Repeating ground track orbits are usually 

specified by an integer number of days N and integer number of orbits K in the repeat cycle. 

 

The repeating ground track design equation is 

 

 
1

0
e

N

K

M 

 
 
   
 

 

 
  where 

integer number of orbits in repeat cycle

integer number of days in repeat cycle

inertial rotation rate of the Earth

RAAN perturbation

argument of perigee perturbation

mean anomaly perturbati

e

K

N

M











 



 on

 

 

The perturbations of the mean argument of perigee and mean anomaly due to J2  are given by the next 

two equations: 
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repeat1.m – time to repeat ground track – Kozai orbit propagation 

 

This MATLAB script estimates the time required for an Earth satellite to repeat its ground track.  The 

mean orbital elements are propagated using Kozai’s algorithm and the user can select a closure tolerance 

for the ground track. 

 

The algorithm begins by initializing the Earth-relative longitude of the ascending node and the total 

number of days according to 

 0        0an ndays    

 

The nodal period is computed using the expression 
 
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 where ~n  is the “perturbed” mean 

motion and   is the perturbation of the argument of perigee due to Earth oblateness. 

 

The delta-longitude at the ascending node per nodal period is given by 

 

  n e      

 

where  e  is the inertial rotation rate of the Earth and   is the perturbation of the right ascension of the 

ascending node due to Earth oblateness. 

 

The current Earth relative longitude and number of orbits are incremented according to 
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After each increment, convergence is checked.  If 2     or    the method has satisfied the 

user-defined closure tolerance  .  The total number of solar days to repeat the ground track is 

determined from / 86400nndays norbits . 

 

The following is a typical user interaction with this script.  Please note that the semimajor axis, orbital 

eccentricity and inclination are Kozai mean orbital elements.  User input is in bold font. 

 
           program repeat1  

 

 < time to repeat ground track - analytic solution >  

 

 

please input the semimajor axis (kilometers) 

(semimajor axis > 0) 

? 8000 

 

please input the orbital eccentricity (non-dimensional) 

(0 <= eccentricity < 1) 

? 0 

 

please input the orbital inclination (degrees) 

(0 <= inclination <= 180) 

? 28.5 
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please input the closure tolerance (degrees) 

(a value between 0.1 and 0.5 degrees is recommended) 

? 0.1 

 

The following is the output screen generated with this application. 

 
                    program repeat1  

 

  < time to repeat ground track - analytic solution >  

 

mean semimajor axis                 8000.000000  kilometers  

mean eccentricity (nd)                 0.000000  

mean inclination                      28.500000  degrees  

mean argument of perigee               0.000000  degrees  

mean raan                              0.000000  degrees  

 

number of orbits to repeat          2075.000000  

number of solar days to repeat       170.653126  

 

Keplerian period                     118.684684  minutes  

nodal period                         118.429158  minutes  

 

length of nodal day                 1420.466169  minutes  

fundamental interval                  30.014440  degrees  

 

closure tolerance                      0.100000  degrees  

actual closure                         0.036832  degrees 

 

repeat2.m – time to repeat ground track - numerical integration 

 

This application estimates the time required for a satellite to repeat its ground track.  The satellite’s orbit 

is propagated using numerical integration and the user can select a closure tolerance. 

 

The main nonlinear equation solved by this script is given by 

 

   0 0p

an anf t      

 

where 
0

an  is the initial east longitude of the ascending nodal crossing and 
p

an  is the ascending node east 

longitude predicted by the software.  By solving the f(t) equation, we are trying to minimize the 

difference between the initial east longitude of the ascending node and the ascending node east longitude 

predicted by the software for the user-defined number of integer orbits in the repeat cycle. 

 

The solution of this nonlinear equation uses a Runge-Kutta-Fehlberg 7(8) algorithm imbedded within 

Brent’s one dimensional root-finding method. 

 

The east longitude of the ascending node can be determined from the x and y components of the Earth-

centered-fixed (ECF) unit position vector at the ascending node as follows: 

 

  1tan ,
ecf ecfy xr r   
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These two position components can be determined from the x and y components of the Earth-centered-

inertial (ECI) position vector and the Greenwich apparent sidereal time g  , both evaluated at the 

ascending node, according to 
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The Greenwich sidereal time is given by 
0g g e t     where 

0g  is the Greenwich sidereal time of the 

initial ascending node crossing, 
e  is the inertial rotation rate of the Earth, and t is the time of the 

(future) ascending node crossing. 

 

While solving for the root of f(t), the algorithm also propagates the orbit to each ascending node crossing 

by solving the following nonlinear equation 

 

   0zg t r   

 

subject to the mission constraint 0zv   which ensures that the orbit is ascending as it crosses the node.  

The solution of this nonlinear equation also uses a Runge-Kutta-Fehlberg 7(8) algorithm imbedded 

within Brent’s one dimensional root-finding method. 

 

The following is a typical user interaction with this script.  The initial epoch and osculating orbital 

elements correspond to the first ascending node crossing.  User input is in bold font. 

 
                    program repeat2  

 

 < time to repeat ground track - integrated solution >  

 

please input the calendar date 

(1 <= month <= 12, 1 <= day <= 31, year = all digits!) 

? 9,5,2013 

 

please input the Universal Coordinated Time (UTC) 

(0 <= hours <= 24, 0 <= minutes <= 60, 0 <= seconds <= 60) 

? 10,20,30 

 

please input the semimajor axis (kilometers) 

(semimajor axis > 0) 

? 7200.439089 

 

please input the orbital eccentricity (non-dimensional) 

(0 <= eccentricity < 1) 

? 0 

 

please input the orbital inclination (degrees) 

(0 <= inclination <= 180) 

? 108 

 

please input the right ascension of the ascending node (degrees) 

(0 <= raan <= 360) 

? 200 
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please input the degree of the Earth gravity model (zonals) 

(2 <= zonals <= 18) 

? 8 

 

please input the order of the Earth gravity model (tesserals) 

(0 <= tesserals <= 18) 

? 8 

 

would you like to include the point-mass gravity of the Sun (y = yes, n = no) 

? y 

 

 

please input the closure tolerance (degrees) 

(a value between 0.1 and 0.5 degrees is recommended) 

? 0.1 

 

The output created by the script for this example is as follows: 

 
              program repeat2  

 

< time to repeat ground track - integrated solution >  

 

semimajor axis              7200.439089  kilometers  

 

eccentricity                 0.00000000   

 

inclination                  108.000000  degrees  

 

argument of perigee            0.000000  degrees  

 

raan                         200.000000  degrees  

 

true anomaly                   0.000000  degrees  

 

Keplerian period             101.344037  minutes  

 

average nodal period         101.250333  minutes  

 

final delta-longitude          0.000001  degrees  

 

solar days to repeat          19.054750  days  

 

number of orbits to repeat      271  

 

degree of gravity model         8  

 

order of gravity model          8  

 

simulation includes the point-mass gravity of the Sun 

 

 

In this screen display, average nodal period is the total simulation time divided by the user-

defined number of orbits to repeat, and solar days to repeat is the total simulation time, 

in seconds, divided by 86400 seconds per solar day.  The entry final delta-longitude is the 

difference between the initial east longitude of the ascending node and the final east longitude of the 

ascending node predicted by the MATLAB script. 
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Modeling the orbital motion 
 

The repeat2 MATLAB script implements a special perturbation technique which solves the vector 

system of second-order, nonlinear differential equations of orbital motion given by 
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Geocentric acceleration due to non-spherical Earth gravity 

 

The sunsync3 MATLAB script implements a spherical harmonic representation of the Earth’s 

geopotential function given by 
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where   is the geocentric latitude,   is the geocentric east longitude and 2 2 2r r x y z     is the 

geocentric distance.  In this expression the S’s and C’s are harmonic coefficients of the geopotential, and 

the P’s are associated Legendre polynomials of degree n and order m with argument sinu  . 

 

The software calculates the acceleration due to the Earth’s gravity field with a vector equation derived 

from the gradient of the potential function expressed as 

 

    , ,g t t a r r  

 

This acceleration vector is a combination of pure two-body or point mass gravity acceleration and the 

gravitational acceleration due to higher order nonspherical terms in the Earth’s geopotential.  In terms of 

the Earth’s geopotential  , the inertial rectangular cartesian components of the acceleration vector are 

as follows: 
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The three partial derivatives of the geopotential with respect to , ,r    are given by 
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The right ascension is measure positive east of the vernal equinox, longitude is measured positive east of 

Greenwich, and declination is positive above the Earth’s equator and negative below. 

 

For 0m   the coefficients are called zonal terms, when m n  the coefficients are sectorial terms, and 

for 0n m   the coefficients are called tesseral terms. 

 

The Legendre polynomials with argument sin  are computed using recursion relationships given by: 
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where the first few associated Legendre functions are given by 
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The trigonometric arguments are determined from expansions given by 
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These gravity model data files are simple space delimited ASCII data files.  The following is a portion 

of a typical gravity model data file.  In this file, column one is the degree index, column two is the 

model order index, and columns three and four are the corresponding un-normalized gravity coefficients 

(zonals and tesserals, respectively). 

 
 2     0    -1.08262668355E-003    0.00000000000E+000 

 3     0     2.53265648533E-006    0.00000000000E+000 

 4     0     1.61962159137E-006    0.00000000000E+000 

 5     0     2.27296082869E-007    0.00000000000E+000 

 6     0    -5.40681239107E-007    0.00000000000E+000 

 7     0     3.52359908418E-007    0.00000000000E+000 

 8     0     2.04799466985E-007    0.00000000000E+000 

 9     0     1.20616967365E-007    0.00000000000E+000 

10     0     2.41145438626E-007    0.00000000000E+000 

11     0    -2.44402148325E-007    0.00000000000E+000 

12     0     1.88626318279E-007    0.00000000000E+000 

 

Gravity model coefficients are often published in normalized form.  The relationship between 

normalized , ,,l m l mC S  and un-normalized gravity coefficients , ,,l m l mC S  is given by the following 

expression: 
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where 0m  is equal to 1 if m is zero and equal to zero if m is greater than zero. 

 

This MATLAB script is “hard-wired” to use an Earth gravity model data file named egm96.dat.  The 

user can use a different data file by editing the following line of the source code. 

 
% read gravity model coefficients 

  

[ccoef, scoef] = readgm('egm96.dat'); 

 

Geocentric acceleration due to the point-mass gravity of the Sun 

 

The acceleration contribution of the Sun represented by a point mass is given by 
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Order reduction 

 

The first-order system of equations required by this computer program can be created from the second-

order system by the method of order reduction.  With the following definitions, 
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where , ,x y zv v v  are the velocity vector components, the first-order system of differential equations is 

given by 
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In these equations, ,  and x e y e z ea a a    are the x, y and z gravitational contributions due to non-spherical 

Earth gravity, and ,  and x s y s z sa a a    are the x, y and z gravitational contributions of the point-mass 

gravity of the Sun. 

 

repeat3.m – required mean semimajor axis - Wagner's algorithm 

 

This MATLAB script calculates the mean semimajor axis required for a repeating ground track orbit 

using an algorithm devised by Carl Wagner.  This iterative numerical method is described in “A 

Prograde Geosat Exact Repeat Mission?”, The Journal of the Astronautical Sciences, Vol. 39, No. 3, 

July-September 1991, pp. 313-326. 

 

This algorithm starts with the following initial guess for the required mean semimajor axis 
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and iteratively improves this guess with the following update: 
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The equation for the length of the nodal day is given by 

 

   
2

N

e

T

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where   is the perturbation of the right ascension of the ascending node.  The relationship between R 

and D is as follows: 
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where n  is the perturbed mean motion and   is the perturbation in argument of perigee.  Both 

perturbation calculations are based on Kozai’s mean orbit theory. 

 

The following is a typical user interaction with this script.  Please note that the semimajor axis, orbital 

eccentricity and inclination are mean orbital elements.  User input is in bold font. 

 
                program repeat3  

 

 < repeating ground track - Wagner's method >  

 

 

please input the orbital eccentricity (non-dimensional) 

(0 <= eccentricity < 1) 

? 0 

 

please input the orbital inclination (degrees) 

(0 <= inclination <= 180) 

? 108 

 

 

please input the number of orbits in the repeat cycle 

? 271 

 

please input the number of nodal days in the repeat cycle 

? 19 

 

The following is the solution calculated by this script. 

 
                 program repeat3  

 

    < repeating ground track - Wagner's method >  

 

mean semimajor axis                 7192.231056  kilometers  

 

mean eccentricity                      0.000000  

mean inclination                     108.000000  degrees  

mean argument of perigee               0.000000  degrees  

mean raan                              0.000000  degrees  

 

number of orbits to repeat           271.000000  

number of solar days to repeat        19.054818  

 

Keplerian period                     101.170791  minutes  

nodal period                         101.250693  minutes  
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length of nodal day                 1444.154622  minutes  

fundamental interval                  25.239852  degrees 

 

repeat4.m – required osculating semimajor axis - numerical integration solution 

 

This MATLAB script calculates the osculating semimajor axis required for a repeating ground track 

orbit.  The script will ask the user for a semimajor axis initial guess and the orbit is propagated using 

numerical integration during the solution process.  This script is similar to repeat2 with the time to 

each ascending node determined by a Runge-Kutta-Fehlberg algorithm imbedded within Brent’s root-

finding method.  The orbital equations of motion are the same as those documented in the repeat2 

technical discussion. 

 

The bracketing interval for Brent’s method, in kilometers, for the required osculating semimajor axis a 

is equal to 

 0 0100 100a a a     

 

where a0 is the initial semimajor axis guess provided by the user.  The script also sets the initial true 

anomaly to the ascending node     . 

 

The main nonlinear equation solved by this script is given by 

 

   0 0p

an anf t      

 

where 0

an  is the initial east longitude of the nodal crossing and p

an  is the ascending node east longitude 

predicted by the software.  By solving the f(t) equation, we are trying to minimize the difference 

between the initial east longitude of the ascending node and the ascending node east longitude predicted 

by the software for the user-defined number of integer orbits in the repeat cycle. 

 

The east longitude of the ascending node can be determined from the x and y components of the Earth-

centered-fixed (ECF) unit position vector at the ascending node as follows: 

 

  1tan ,
ecf ecfy xr r   

 

These two position components can be determined from the x and y components of the Earth-centered-

inertial (ECI) position vector and the Greenwich apparent sidereal time g  , both evaluated at the 

ascending node, according to 

 

cos sin

cos sin

ecf eci eci

ecf eci eci

x x g y g

y y g x g

r r r

r r r

 

 

 

 
 

 

The Greenwich sidereal time is given by 
0g g e t     where 

0g  is the Greenwich sidereal time of the 

initial ascending node crossing, e  is the inertial rotation rate of the Earth, and t is the time of the 

(future) ascending node crossing. 
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While solving for the root of f(t), the algorithm also propagates the orbit to the next ascending node 

crossing by solving the following nonlinear equation 

 

   0zg t r   

 

subject to the mission constraint 0zv   which ensures that the nodal crossing is ascending.  The solution 

of this nonlinear equation also uses a Runge-Kutta-Fehlberg 7(8) algorithm imbedded within Brent’s 

one dimensional root-finding method. 

 

The following is an example user interaction with this script.  The initial epoch and osculating orbital 

elements correspond to the first ascending node crossing.  User input is in bold font. 

 
                      program repeat4 

 

< required osculating semimajor axis - integrated solution > 

 

please input the calendar date 

(1 <= month <= 12, 1 <= day <= 31, year = all digits!) 

? 9,5,2013 

 

please input the Universal Coordinated Time (UTC) 

(0 <= hours <= 24, 0 <= minutes <= 60, 0 <= seconds <= 60) 

? 10,20,30 

 

please input the semimajor axis (kilometers) 

(semimajor axis > 0) 

? 7192 

 

please input the orbital eccentricity (non-dimensional) 

(0 <= eccentricity < 1) 

? 0 

 

please input the orbital inclination (degrees) 

(0 <= inclination <= 180) 

? 108 

 

please input the right ascension of the ascending node (degrees) 

(0 <= raan <= 360) 

? 200 

 

 

please input the number of integer orbits in the repeat cycle 

? 271 

 

 

please input the degree of the Earth gravity model (zonals) 

(2 <= zonals <= 18) 

? 8 

 

please input the order of the Earth gravity model (tesserals) 

(0 <= tesserals <= 18) 

? 8 

 

would you like to include the point-mass gravity of the Sun (y = yes, n = no) 

? y 
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The following is the screen output created by this MATLAB script for this repeating ground track orbit 

design example. 

 
                      program repeat4 

 

< required osculating semimajor axis - integrated solution > 

 

semimajor axis              7200.439089  kilometers  

 

eccentricity                 0.00000000   

 

inclination                  108.000000  degrees  

 

argument of perigee            0.000000  degrees  

 

raan                         200.000000  degrees  

 

true anomaly                   0.000000  degrees  

 

Keplerian period             101.344037  minutes  

 

average nodal period         101.250333  minutes  

 

solar days to repeat          19.054750  days  

 

number of orbits to repeat      271  

 

degree of gravity model         8  

 

order of gravity model          8  

 

simulation includes the point-mass gravity of the Sun 

 

 

In this screen display, average nodal period is the total simulation time divided by the user-

defined number of orbits to repeat, and solar days to repeat is the total simulation time, 

in seconds, divided by 86400 seconds per solar day. 

 

 

IMPORTANT NOTE 

 

The repeat2 and repeat4 MATLAB scripts are based on an Earth orbit repeating its trajectory at the 

appropriate ascending node crossing.  However, non-spherical Earth gravity effects and the point-mass 

gravity of the Sun will eventually change the orbital characteristics.  Therefore, the Earth relative ground 

tracks will eventually drift away from the ground track associated with the user-defined initial orbit 

conditions. 

 

For example, see “Perturbations of Repeating Groundtrack Satellites by Tesseral Harmonics in the 

Gravitational Potential”, by M. P. Francis, G. S. Gedeon and B. C. Douglas, AIAA Journal, Vol. 4, No. 

7, July 1966. 


