Orbital Mechanics with MATLAB
Repeating Ground Track Orbit Design

This document describes four MATLAB scripts that can be used to design and analyze repeating ground
track orbits. Scripts are provided for both preliminary and high fidelity orbit design.

These types of orbits are useful for remote sensing and other special applications since they overfly the
same points on the Earth’s surface every repeat cycle. Repeating ground track orbits are usually

specified by an integer number of days N and integer number of orbits K in the repeat cycle.

The repeating ground track design equation is

(&)
K __1 _g
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where
K = integer number of orbits in repeat cycle

N = integer number of days in repeat cycle
@, = inertial rotation rate of the Earth

Q = RAAN perturbation
@ = argument of perigee perturbation

M = mean anomaly perturbation

The perturbations of the mean argument of perigee and mean anomaly due to J, are given by the next

two equations:
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n=ul/a® = mean motion

p=a(l-e’) = semiparameter

where

a = semimajor axis

e = orbital eccentricity

i = orbital inclination
‘]2

second gravity harmonic of the Earth
equatorial radius of the Earth

I
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repeatl.m — time to repeat ground track — Kozai orbit propagation

This MATLAB script estimates the time required for an Earth satellite to repeat its ground track. The
mean orbital elements are propagated using Kozai’s algorithm and the user can select a closure tolerance
for the ground track.

The algorithm begins by initializing the Earth-relative longitude of the ascending node and the total
number of days according to

A

an

=0 ndays =0

The nodal period is computed using the expression 7, = where n is the “perturbed” mean

(A+a)
motion and  is the perturbation of the argument of perigee due to Earth oblateness.

The delta-longitude at the ascending node per nodal period is given by
Adl=1, (a)e - Q)

where w, is the inertial rotation rate of the Earth and Q is the perturbation of the right ascension of the
ascending node due to Earth oblateness.

The current Earth relative longitude and number of orbits are incremented according to

Ayn =2+ AA

norbits = norbits +1

After each increment, convergence is checked. If |2 —27|<e& or || <& the method has satisfied the

user-defined closure tolerance ¢. The total number of solar days to repeat the ground track is
determined from ndays = norbits z,, /86400 .

The following is a typical user interaction with this script. Please note that the semimajor axis, orbital
eccentricity and inclination are Kozai mean orbital elements. User input is in bold font.

program repeatl

< time to repeat ground track - analytic solution >

please input the semimajor axis (kilometers)
(semimajor axis > 0)
? 8000

please input the orbital eccentricity (non-dimensional)
(0 <= eccentricity < 1)
20

please input the orbital inclination (degrees)
(0 <= inclination <= 180)
? 28.5
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please input the closure tolerance (degrees)
(a value between 0.1 and 0.5 degrees is recommended)
2 0.1

The following is the output screen generated with this application.

program repeatl

< time to repeat ground track - analytic solution >

mean semimajor axis 8000.000000 kilometers
mean eccentricity (nd) 0.000000

mean inclination 28.500000 degrees
mean argument of perigee 0.000000 degrees
mean raan 0.000000 degrees
number of orbits to repeat 2075.000000

number of solar days to repeat 170.653126
Keplerian period 118.684684 minutes
nodal period 118.429158 minutes
length of nodal day 1420.466169 minutes
fundamental interval 30.014440 degrees
closure tolerance 0.100000 degrees
actual closure 0.036832 degrees

repeat2.m — time to repeat ground track - numerical integration

This application estimates the time required for a satellite to repeat its ground track. The satellite’s orbit
IS propagated using numerical integration and the user can select a closure tolerance.

The main nonlinear equation solved by this script is given by
f(t):@&;-—ﬂ;::O

where 27 is the initial east longitude of the ascending nodal crossing and A is the ascending node east

longitude predicted by the software. By solving the f(t) equation, we are trying to minimize the
difference between the initial east longitude of the ascending node and the ascending node east longitude
predicted by the software for the user-defined number of integer orbits in the repeat cycle.

The solution of this nonlinear equation uses a Runge-Kutta-Fehlberg 7(8) algorithm imbedded within
Brent’s one dimensional root-finding method.

The east longitude of the ascending node can be determined from the x and y components of the Earth-
centered-fixed (ECF) unit position vector at the ascending node as follows:

ﬂztan‘l(r r )

Yecf ! Xect
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These two position components can be determined from the x and y components of the Earth-centered-
inertial (ECI) position vector and the Greenwich apparent sidereal time 6, , both evaluated at the
ascending node, according to

r. =r.cosg,+r sing,

Xec

ryecf = ryeci COS eg o r-)(eci Sln Hg

The Greenwich sidereal time is given by 6, =6, +«,t where ¢, is the Greenwich sidereal time of the

initial ascending node crossing, @, is the inertial rotation rate of the Earth, and t is the time of the
(future) ascending node crossing.

While solving for the root of f(t), the algorithm also propagates the orbit to each ascending node crossing
by solving the following nonlinear equation

subject to the mission constraint v, >0 which ensures that the orbit is ascending as it crosses the node.

The solution of this nonlinear equation also uses a Runge-Kutta-Fehlberg 7(8) algorithm imbedded
within Brent’s one dimensional root-finding method.

The following is a typical user interaction with this script. The initial epoch and osculating orbital
elements correspond to the first ascending node crossing. User input is in bold font.

program repeat?
< time to repeat ground track - integrated solution >

please input the calendar date
(1 <= month <= 12, 1 <= day <= 31, year = all digits!)
2 9,5,2013

please input the Universal Coordinated Time (UTC)
(0 <= hours <= 24, 0 <= minutes <= 60, 0 <= seconds <= 60)
? 10,20,30

please input the semimajor axis (kilometers)
(semimajor axis > 0)
? 7200.439089

please input the orbital eccentricity (non-dimensional)
(0 <= eccentricity < 1)
20

please input the orbital inclination (degrees)
(0 <= inclination <= 180)
? 108

please input the right ascension of the ascending node (degrees)
(0 <= raan <= 360)
? 200
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please input the degree of the Earth gravity model (zonals)
(2 <= zonals <= 18)
? 8
please input the order of the Earth gravity model (tesserals)
(0 <= tesserals <= 18)
? 8
would you like to include the point-mass gravity of the Sun (y = yes, n = no)

?y

please input the closure tolerance (degrees)
(a value between 0.1 and 0.5 degrees is recommended)
2 0.1

The output created by the script for this example is as follows:

program repeat?

< time to repeat ground track - integrated solution >

semimajor axis 7200.439089 kilometers
eccentricity 0.00000000
inclination 108.000000 degrees
argument of perigee 0.000000 degrees
raan 200.000000 degrees
true anomaly 0.000000 degrees
Keplerian period 101.344037 minutes
average nodal period 101.250333 minutes
final delta-longitude 0.000001 degrees
solar days to repeat 19.054750 days
number of orbits to repeat 271

degree of gravity model 8

order of gravity model 8

simulation includes the point-mass gravity of the Sun

In this screen display, average nodal period isthe total simulation time divided by the user-
defined number of orbits to repeat,and solar days to repeat IS the total simulation time,
in seconds, divided by 86400 seconds per solar day. The entry final delta-longitude isthe
difference between the initial east longitude of the ascending node and the final east longitude of the
ascending node predicted by the MATLAB script.
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Modeling the orbital motion

The repeat2 MATLAB script implements a special perturbation technique which solves the vector
system of second-order, nonlinear differential equations of orbital motion given by

a(r,t)=r(r,t)=a,(r,t)+a,(r,t)

where
t = dynamical time
r = inertial position vector
a, = acceleration due to Earth gravity
a, = acceleration due to the Sun

Geocentric acceleration due to non-spherical Earth gravity

The sunsync3 MATLAB script implements a spherical harmonic representation of the Earth’s
geopotential function given by

n

o(rn)-2 4230 rw 43

| —

RY' :
—| P" S” A+C" A
(rj ) (u)[ "sinmA +C" cosm }

where ¢ is the geocentric latitude, A4 is the geocentric east longitude and r = |f|= JE+yP+77 isthe

geocentric distance. In this expression the S’s and C’s are harmonic coefficients of the geopotential, and
the P’s are associated Legendre polynomials of degree n and order m with argument u =sing.

The software calculates the acceleration due to the Earth’s gravity field with a vector equation derived
from the gradient of the potential function expressed as

a, (r,t)=vo(rt)

This acceleration vector is a combination of pure two-body or point mass gravity acceleration and the
gravitational acceleration due to higher order nonspherical terms in the Earth’s geopotential. In terms of
the Earth’s geopotential @, the inertial rectangular cartesian components of the acceleration vector are
as follows:

. 170D z oD 1 Jd
X=|— — X —
r or rz\jx2+y2 ap X>+y®> A
. 10D z oD 1 00
Y=\ - Tl 22 X
r or rZ\/XZ +y2 P X*+y* A

r or rr
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The three partial derivatives of the geopotential with respect to r,#, A are given by

0;,_(? - _l(ﬁji(ﬂ)n (n +1)i(cr‘]“ cosmA +S]"sinmA ) B (sin ¢)

ryr n=2 r m=0

é_j - (%) > (E)n i(cg‘ cosmA +Sy'sin m}t)[Pn””l (sing)—mtang P (sin ¢)]

m=0

0’) ﬂ N R " Q m m q; m H
E:(?jg(_j ) m(Sy cosma—C,'sinmA) Py (sin ¢)

where
R = radius of the Earth

r = geocentric distance
S™",C" = harmonic coefficients
= geocentric declination =sin™(r,/r)
longitude = a — o

A=
a = right ascension = tan™*(r, /r,)
a, = right ascension of Greenwich

The right ascension is measure positive east of the vernal equinox, longitude is measured positive east of
Greenwich, and declination is positive above the Earth’s equator and negative below.

For m =0 the coefficients are called zonal terms, when m =n the coefficients are sectorial terms, and
for n > m =0 the coefficients are called tesseral terms.

The Legendre polynomials with argument sing are computed using recursion relationships given by:

P’ (sing) = %[(Zn —1)singP?, (sing)—(n—-1)P>, (sin ¢)]
P'(sing)=(2n—1)cos¢ P, (sing), m=0, m<n
P"(sing)=P/, (sing)+(2n-1)cosg P ' (sing), m=0, m=n

where the first few associated Legendre functions are given by

P’(sing)=1 PB’(sing)=sing, B!(sing)=cos¢
and P! =0forj>i.

The trigonometric arguments are determined from expansions given by
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sinmA =2cos Asin(m—1)A —sin(m—-2) 4
cosmA =2cosAcos(m—1) A —cos(m—2) 4
mtang =(m—1)tang + tan ¢

These gravity model data files are simple space delimited ASCII data files. The following is a portion
of a typical gravity model data file. In this file, column one is the degree index, column two is the
model order index, and columns three and four are the corresponding un-normalized gravity coefficients
(zonals and tesserals, respectively).

2 0 -1.08262668355E-003 0.00000000000E+000
3 0 2.53265648533E-006 0.00000000000E+000
4 0 1.61962159137E-006 0.00000000000E+000
5 0 2.27296082869E-007 0.00000000000E+000
6 0 -5.40681239107E-007 0.00000000000E+000
7 0 3.52359908418E-007 0.00000000000E+000
8 0 2.04799466985E-007 0.00000000000E+000
9 0 1.20616967365E-007 0.00000000000E+000
10 0 2.41145438626E-007 0.00000000000E+000
11 0 -2.44402148325E-007 0.00000000000E+000
12 0 1.88626318279E-007 0.00000000000E+000

Gravity model coefficients are often published in normalized form. The relationship between
normalized C, §|,m and un-normalized gravity coefficients C, ,S, . is given by the following

expression:

I,m? I,m?

{?,’:H(z—am:)(zm)E:fmm{gf:}

where o, isequal to 1 if m is zero and equal to zero if m is greater than zero.

This MATLARB script is “hard-wired” to use an Earth gravity model data file named egm96.dat. The
user can use a different data file by editing the following line of the source code.

% read gravity model coefficients

[ccoef, scoef] = readgm('egm96.dat');
Geocentric acceleration due to the point-mass gravity of the Sun

The acceleration contribution of the Sun represented by a point mass is given by

r r
as(r’t):_/us 57503 + e—s3
|r;—sc| |ré—s|
where
4, = gravitational constant of the Sun
I, . = position vector from the Sun to the trajectory
r, . = position vector from the Earth to the Sun
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Order reduction

The first-order system of equations required by this computer program can be created from the second-
order system by the method of order reduction. With the following definitions,

ylzrx y2:ry y3:rz
y4 :Vx y5 = Vy y6 :vz

where v,,v,,v, are the velocity vector components, the first-order system of differential equations is
given by
V1=V, Y =V, Y=V,

y4 = ax—e + ax—s y5 = ay—e + ay—s y6 = az—e + az—s

In these equations, a, , a,_, and a, . are the x, y and z gravitational contributions due to non-spherical

X—e?

Earth gravity, and a
gravity of the Sun.

a, , and a, ; are the x, y and z gravitational contributions of the point-mass

X—s?

repeat3.m — required mean semimajor axis - Wagner's algorithm

This MATLAB script calculates the mean semimajor axis required for a repeating ground track orbit
using an algorithm devised by Carl Wagner. This iterative numerical method is described in “A
Prograde Geosat Exact Repeat Mission?”, The Journal of the Astronautical Sciences, Vol. 39, No. 3,
July-September 1991, pp. 313-326.

This algorithm starts with the following initial guess for the required mean semimajor axis

—2/3
ay = /ulls {(%j we}

and iteratively improves this guess with the following update:

sl Tl o] o - snl]

where
R = integer number of orbits
D = integer number of synodic (or nodal) days
J, = second gravity coefficient
w, = inertial rotation rate of the Earth

r., = equatorial radius of the Earth
orbital inclination
gravitational constant of the Earth

| J—
(I
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The equation for the length of the nodal day is given by

where Q is the perturbation of the right ascension of the ascending node. The relationship between R

and D is as follows:
_ h+o
o)

L=

R
D

where A is the perturbed mean motion and w is the perturbation in argument of perigee. Both
perturbation calculations are based on Kozai’s mean orbit theory.

The following is a typical user interaction with this script. Please note that the semimajor axis, orbital
eccentricity and inclination are mean orbital elements. User input is in bold font.

program repeat3
< repeating ground track - Wagner's method >
please input the orbital eccentricity (non-dimensional)
(0 <= eccentricity < 1)
20
please input the orbital inclination (degrees)

(0 <= inclination <= 180)
? 108

please input the number of orbits in the repeat cycle
? 271

please input the number of nodal days in the repeat cycle
? 19

The following is the solution calculated by this script.

program repeat3

< repeating ground track - Wagner's method >

mean semimajor axis 7192.231056 kilometers
mean eccentricity 0.000000

mean inclination 108.000000 degrees
mean argument of perigee 0.000000 degrees
mean raan 0.000000 degrees
number of orbits to repeat 271.000000

number of solar days to repeat 19.054818

Keplerian period 101.170791 minutes
nodal period 101.250693 minutes
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length of nodal day 1444.154622 minutes
fundamental interval 25.239852 degrees

repeat4.m — required osculating semimajor axis - numerical integration solution

This MATLAB script calculates the osculating semimajor axis required for a repeating ground track
orbit. The script will ask the user for a semimajor axis initial guess and the orbit is propagated using
numerical integration during the solution process. This script is similar to repeat2 with the time to
each ascending node determined by a Runge-Kutta-Fehlberg algorithm imbedded within Brent’s root-
finding method. The orbital equations of motion are the same as those documented in the repeat?2
technical discussion.

The bracketing interval for Brent’s method, in kilometers, for the required osculating semimajor axis a
is equal to
a,—100<a<a,+100

where a, is the initial semimajor axis guess provided by the user. The script also sets the initial true
anomaly to the ascending node (6 =-).

The main nonlinear equation solved by this script is given by
f (t) :ﬂ’:n _/1.351 =0

where 2J is the initial east longitude of the nodal crossing and A° is the ascending node east longitude

predicted by the software. By solving the f(t) equation, we are trying to minimize the difference
between the initial east longitude of the ascending node and the ascending node east longitude predicted
by the software for the user-defined number of integer orbits in the repeat cycle.

The east longitude of the ascending node can be determined from the x and y components of the Earth-
centered-fixed (ECF) unit position vector at the ascending node as follows:

Yect ! Xect

A:tanfl(r r )

These two position components can be determined from the x and y components of the Earth-centered-
inertial (ECI) position vector and the Greenwich apparent sidereal time 6, , both evaluated at the

ascending node, according to
r, =T Cosg,+r, sing

Xec

ryecf = ryeci COS eg o rxeci SIn Hg

The Greenwich sidereal time is given by 6, =6, + .t where 6, is the Greenwich sidereal time of the

initial ascending node crossing, a, is the inertial rotation rate of the Earth, and t is the time of the
(future) ascending node crossing.
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While solving for the root of f(t), the algorithm also propagates the orbit to the next ascending node
crossing by solving the following nonlinear equation

subject to the mission constraint v, >0 which ensures that the nodal crossing is ascending. The solution

of this nonlinear equation also uses a Runge-Kutta-Fehlberg 7(8) algorithm imbedded within Brent’s
one dimensional root-finding method.

The following is an example user interaction with this script. The initial epoch and osculating orbital
elements correspond to the first ascending node crossing. User input is in bold font.

program repeatd
< required osculating semimajor axis - integrated solution >

please input the calendar date
(1 <= month <= 12, 1 <= day <= 31, year = all digits!)
? 9,5,2013

please input the Universal Coordinated Time (UTC)
(0 <= hours <= 24, 0 <= minutes <= 60, 0 <= seconds <= 60)
? 10,20,30

please input the semimajor axis (kilometers)
(semimajor axis > 0)
? 7192

please input the orbital eccentricity (non-dimensional)
(0 <= eccentricity < 1)
20

please input the orbital inclination (degrees)
(0 <= inclination <= 180)
? 108

please input the right ascension of the ascending node (degrees)
(0 <= raan <= 360)
? 200

please input the number of integer orbits in the repeat cycle
? 271

please input the degree of the Earth gravity model (zonals)
(2 <= zonals <= 18)
? 8

please input the order of the Earth gravity model (tesserals)

(0 <= tesserals <= 18)

? 8

would you like to include the point-mass gravity of the Sun (y = yes, n = no)

2y
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The following is the screen output created by this MATLAB script for this repeating ground track orbit
design example.

program repeatd

< required osculating semimajor axis - integrated solution >
semimajor axis 7200.439089 kilometers
eccentricity 0.00000000

inclination 108.000000 degrees
argument of perigee 0.000000 degrees
raan 200.000000 degrees
true anomaly 0.000000 degrees
Keplerian period 101.344037 minutes
average nodal period 101.250333 minutes
solar days to repeat 19.054750 days
number of orbits to repeat 271

degree of gravity model 8

order of gravity model 8

simulation includes the point-mass gravity of the Sun

In this screen display, average nodal period is the total simulation time divided by the user-
defined number of orbits to repeat,and solar days to repeat isthe total simulation time,
in seconds, divided by 86400 seconds per solar day.

IMPORTANT NOTE

The repeat2 and repeat4 MATLAB scripts are based on an Earth orbit repeating its trajectory at the
appropriate ascending node crossing. However, non-spherical Earth gravity effects and the point-mass
gravity of the Sun will eventually change the orbital characteristics. Therefore, the Earth relative ground
tracks will eventually drift away from the ground track associated with the user-defined initial orbit
conditions.

For example, see “Perturbations of Repeating Groundtrack Satellites by Tesseral Harmonics in the

Gravitational Potential”, by M. P. Francis, G. S. Gedeon and B. C. Douglas, AIAA Journal, Vol. 4, No.
7, July 1966.
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