
1

ELECTRIDE 2.0

A small F77 interpreter with datatypes, for pic32mx

S. Oliver © 2014, 2015, 2016

Document for current version: v2.0, pic32mx170B trial version 1.9x

March 2016

(Draft document)

2

Contents

0. Prefaces, and acknowledgements 5

1. Overview 7

2. Getting started : Hello World 8

3. Summary of operation. 10

The screen options and processing sequence. 10

The Input file 12

4. Variables, datatypes, arrays 13

Integer (INTEGER*4, INTEGER*2,INTEGER*1). 13

Floating point (REAL, DOUBLE). 14

Character (CHARACTER*1, CHARACTER*x) 15

Arrays 16

Variables in quantitative computing. 17

5. Operators, operands and intrinsic functions 19

Standard operators eg (+, -, *, / and **). 19

Intrinsic math functions. 19

SIN, COS, TAN, ASIN, ACOS, ATAN, SQRT, ABS, RAND,

 IFIX, FLOAT, DBLE, SNGL, ALOG, and EXP. 19

6. Subroutines, Functions and Common memory 22

SUBROUTINE 22

FUNCTION 24

COMMON 26

7. Program Control 29

CALL 29

CONTINUE 29

(DIMENSION) 29

DO 29

DO WHILE - END DO 31

END 31

GO TO 31

IF 32

IF THEN - ELSE IF - ELSE - END IF 34

RETURN 36

STOP 37

3

8. Input, Output, Format 38

READ 38

REAX 39

PRINT *, 39

WRITE ... 39

FORMAT 40

9. Port bit level access, LCD (16x2), and Keypad 45

Port I/O Bit access. 45

LCD 47

Keypad (4x4) 49

10. SPI (Serial Peripheral Interface) 58

11. Analog-Digital Converter 62

Analog measurements. 62

ADxx (single measurement) 62

ZADACQ (Fast burst of measurements). 65

12. Utilities 66

A) Non-Volatile Memory. 66

B) Code Integrity Check. 71

13. Bugs, Foibles, Exasperations so far and cop-outs ... 73

A1. Appendix 1 74

Error messages 74

Setting up 79

Configuration 80

Version limits 81

A2. Appendix 2 83

Some archetype examples, etc. 83

1. Keypad/LCD interface. 83

2. Time from DS3234 accurate clock chip using SPI . 83

3. Solar position calculation and display. 83

A3. Appendix 3 86

A) Vector graphic output (Tektronix 4010 / Tera Term). 86

4

[Notes]

5

0. Prefaces, and acknowledgements

Preface Version 2 :

Version 2 has had major additions and enhancements.

-- IF THEN, ELSE IF, ELSE and END IF commands

-- DO WHILE structure

-- IF/WHILE logic clause recursion

-- Character string-type datatypes

-- Input file line structure improvements

-- Fast burst-mode AD conversions

-- Auxiliary input for reading streamed data eg GPS

-- LCD commands for keypad interaction

-- COMMON memory block

-- A Serial Peripheral Interface based channel

-- Non-volatile (eeprom) user memory

-- Code integrity check

-- Tektronix 4010 vector output

At this stage the 28-pin version is running out of pins. A version is running on a pic32mx795

and will be the development direction along with a pic32mx470 and hopefully the MZ.

As before, the example thumbnails and outputs are cut-and-paste from a terminal session

using the interpreter, with the proviso that the longer programs’ contents are from the text

source for better formatting. The examples are included as files. The appendix has some

further working examples, again using the current version, that reflect some of the usual

operations of embedded processing.

6

Preface Version 1

Originally this started as something in assembler, to experiment with writing math routines

for pic microcontrollers. Along the way it was moved to C; as the initial project ended, the

Microchip math libraries were switched in, and the instructions became more and more like

a simple language. So the experiment became, to see how viable a small fortran interpreter

for pic32mx was, and what level microcontroller would be needed.

Of course, an interpreted language offering double precision could be seen as over-done.

And yet, there is a need for small amounts of precise calculation, a wish for grass-roots

development, and concern that education is bypassing quantitative skills...So I hope it is

useful. It is not meant to be a finished work, but is at a reasonable stagepoint at least.

I have cherry-picked quite a few good ideas, and certainly do not claim to be the originator

of them. The problem is, in an extensive and ill-defined industry, knowing where the ideas

came from or where I saw them. Many articles (SC, EPE, Circuit Cellar) with dozens of

authors, on using Microchip pics starting with the 16F84...The Microchip

documentation...The C language and K&R of course...and the excellent books by Lucio di

Jasio. Electride itself is written in C using the Microchip MPLABX / GCC, with helpful

assistance from Microchip support. The core algorithm used is of course van Djykstra's

famous shunting-yard method, explained on Chris Jones’ website.

And from IT history, the visionary MONEC system in the mid seventies...running Fortran

and Basic jobs for hundreds of students. I recently found out, it ran on a PDP11 with 32k

memory. Amazing.

Iconic examples are included as a traditional salute. This document is provisional at this

stage, however the examples and outputs are cut-and-paste mainly from actual sessions

using the actual version (with a few slightly abbreviated).

Bibliography

Programming 16 bit microcontrollers in C (2007)

Di Jasio, L.

Programming 32 bit microcontrollers in C (2008)

Di Jasio, L.

The C Programming Language, (1978, 1988) second edition (ANSI).

Kernighan, BW and Ritchie, DM.

and from time

An Introduction to Computer Programming in Fortran (Monecs Fortran) (1976)

Bellamy, CJ (dec) and Whitehouse, LG.

7

1. Overview

Electride is an embedded interpreter, that runs on PIC32MX chips.

It will load, run and store small programs written in a subset of Fortran 77 very similar to

Basic. The programs can easily use high level math and access the chip hardware, for

example, to run A/D measurements and display results. Integer (32, 16 and 8 bit), single and

double precision (32 and 64) floating point, and character based datatypes can be used as

required.

It can be connected to a serial terminal or run standalone. Typically a PC with something

like Tera Term and a serial-usb pathway can be used, and/or hardware with a LCD display,

button switches and so on. The Tektronix 4010 emulator in Tera Term can be used for simple

vector graphics.

At startup a simple menu allows interaction with the user. If a program is already present

and there is no serial connection during startup, the stored program will be run

automatically.

The trial version is intended for entry-level use and has constraints. It runs on a

PIC32MX170B 28-pin sdip IC. Other versions scale over the pic 32MX range. The appendix

has more details.

8

2. Getting started : Hello World

As a starting exercise, it is usual to load and run the (iconic) "helloworld" program.

Initially connect the Electride/pic32 board, switch it on, and run the PC terminal software.

Hitting <enter> on the keyboard will show the banner and simple menu list, something like :

 ELECTRIDE 2.0 © S. Oliver 2014, 2015, 2016

 with content ©Microchip and ©GCC

 Trial PIC32MX170B version 1.9X

 (G) Get (L) List

 (S) Save (A) Analyse

 (R) Run (C) Comp (res)

>

You are now interacting with the board, the ‘>’ prompt is the sign that the system is ready

for you to select an option.

The R option will run a user program that is already in place. A new chip will not have any

user program already loaded. So for this exercise, your first step will be to load the example

“hello world” program.

To load a program, use the option “G” ie “Get”. This sets the board to expect the new

program. You will see a "Waiting.." prompt as the board then waits for the program to be

sent.

>G

Waiting..

Using the PC windows environment now, send the program file, using the Tera Term menu

item. It is the "Send File..." (not Transfer) item in Tera Term. A file picker will let you

navigate to and select the file.

"OK" is then displayed as feedback that the sending is complete.

>G

Waiting..

OK

9

The menu list then returns. It is a good idea to select S and save the program.

A "save.." confirmation will be displayed and the menu list returns.

>S

save..

Now select R to run the program. The program is displayed first, followed by its output as

it runs. After it finishes the pic32mx is reset and memory refreshed, and the menu and

prompt return.

>R

 PROGRAM helloworld

C

 PRINT *, "Hello, world"

 END

\

Hello, world

rrefresh..

The first "r" is displayed as the reset starts, and the "refresh" displayed as the user program

is reloaded from saved memory.

The example is mainly a PRINT statement, which simply prints strings and variables in their

default format. So, as an exercise you can easily alter the text string and see the result. Open

the file with a text editor, add your initials inside the quotes, and save. On repeating the

above steps you should see your new content printed.

10

3. Summary of operation.

The screen options and processing sequence.

At the top level, the menu and prompt stay in a loop waiting for user input.

The options are G (Get), S (Save), R (Run), L (List), A (Analyse) and C (Comp).

Selecting “G” will set up reception of a user program as described before. The user program

is read into memory (ie volatile memory) where it can be processed.

Selecting “S” will save the contents of the memory – ie the user program – to permanent

memory, where it is non-volatile and is preserved during power switch off.

The option “R” is the main item and runs the user program. It is discussed in detail below.

Selecting “L” will list the program, ie, copy it to the console screen. This keeps the

indentation intact which assists readability.

“A” will display a few program details, useful mainly for a section described later, and “C”

is Compile and not active.

Running a user program.

Selecting “R” in the menu will start the interpreter processing the user program.

As a first stage, the interpreter runs through the program in an initial pass. This does some

compacting and simple input checking, and also sets up some structure, eg the loops and

subprogram entry points. The following main pass then steps through the program,

tokenising and then processing each line in depth.

Lines that are commands or program control statements usually have specific parsing and

are described in the specific sections. In general commands are not recursive.

Lines with a leading assignment ("=") are assumed to be equations. These are processed as

usual by evaluating the right hand side and assigning the result to the variable on the left

hand side.

To process equations, initially the line is scanned for user functions and these are evaluated

to results. The main line processing then starts by arranging the tokens into the appropriate

sequence. The operands that are hard-coded digits, or ascii in single quotes, are converted

on-the-fly to internal form using the most likely datatype. For a group of digits, if no

decimal point is present, the group is provisionally converted to a 32-bit signed integer. If a

decimal point is present, double precision floating point is used instead. If the input group

further contains the characters "e" or "d" it is assumed to be exponential format. For quote-

11

contained ascii characters, a group is assumed to be concatenated characters as in a string,

and a single character treated as a single byte character.

The sequence is then processed and evaluates to a result.

The left hand side of the equation is then used to provide a datatype and memory location.

The result is converted as necessary and the value stored at the memory location.

Eg

 PROGRAM integer4

C

 INTEGER*4 i

 i = 1222333444

 PRINT *, i

 END

\

1222333444

When the end of the program is reached, a software reset is initiated. This sets a clean start

for the next run. The program is then reloaded from eeprom, and the focus returns to the

console and prompt as described before.

12

The Input file

The program file itself is ordinary text, using a subset of ascii characters.

Keywords and commands in statements are in uppercase, with lowercase used for variables.

Lines are in the fortran layout. The first part of a line is set-column, so the first six column

positions are reserved for specific use.

The first is reserved for a comment flag (C), which allows the rest of the line to be used for

comment text. The second and sixth columns are reserved. The third, fourth, and fifth

positions on a line can be used for an optional identifying statement number (numerical

label). The line content then usually starts at the seventh column.

For clarity, (in general) lines can be indented using spaces after the six preset columns. The

List (L) menu option shows lines keeping the indentation in place.

Tabs, control characters etc should not be used. A line can be left blank (with no spaces) for

improved readability.

The main program optionally starts with a PROGRAM statement, and finishes with an END

statement. Any subroutine and function definitions then follow, each starting with the

name declaration and finishing with an END statement.

A backslash (\) is used to signal the end of the file.

It is suggested that a file extension ".f7" be used to differentiate the file from other text files.

The examples used are included as files and are a good starting point.

13

4. Variables, datatypes, arrays

 Integer (INTEGER*4, INTEGER*2,INTEGER*1)

 Floating point (REAL, DOUBLE)

 Character (CHARACTER*1, CHARACTER*x)

Variables must be declared before they can be used. The declaration specifies which

datatype to use, followed by the variable name(s). A variable name is comprised of

lowercase ascii characters, with the first six characters used as the unique identifier.

Variables are not “automatic”, and must be unique.

The datatype associated with a variable determines how that variable's data is

processed and held in memory. Accordingly the datatypes provided allow the use of

integer, floating point, and character variables. A character datatype may consist of a single

byte or alternatively can set a string length.

In general, variables and arrays are local in scope unless specifically cited otherwise..

Note unless the name of a variable is stored as a token, it has to be interpreted every time it

is used, so short names are more efficient.

Integer (INTEGER*4, INTEGER*2,INTEGER*1).

Integer data is processed using the intrinsic 32-bit word size and integer arithmetic, and uses

memory according to the specified byte count, eg an INTEGER*4 uses 4 bytes of memory.

>R

 PROGRAM integer4

C

 INTEGER*4 i

 i = 1222333444

 PRINT *, i

 END

\

1222333444

To conserve memory INTEGER*1 and INTEGER*2 can be used, which require 1 and 2 bytes

respectively and hold smaller values. INTEGER*8 may be added in future.

14

Floating point (REAL, DOUBLE).

Floating point data is processed using either one word (datatype REAL: single precision) or

two words (datatype DOUBLE: double precision). REAL provides precision of six significant

figures and is held in 4 bytes of memory, DOUBLE gives twelve significant figures and uses

8 bytes.

 PROGRAM real

C

 REAL a

 a = 1.123456

 PRINT *, "a = ", a

 END

\

a = 1.123456

 PROGRAM double

C

 DOUBLE a

 a = 1.12345678

 PRINT *, "a = ", a

 END

\

a = 1.12345678

Exponential input format can also be used eg

 PROGRAM doubleexp

C

 DOUBLE a

 a = 1.12d3

 PRINT *, "a = ", a

 END

\

a = 1120.00000000

15

Character (CHARACTER*1, CHARACTER*x)

If the datatype specifies one byte, the data is processed and stored as ascii in a single byte.

If the datatype specifies more than one byte, multiple bytes are used in a contiguous

sequence including an additional null byte “bookend”.

 PROGRAM charact

C

 CHARACTER*1 a

 a = 'G'

 PRINT *, "a is ", a

 END

\

a is G

 PROGRAM charactmult

C

 CHARACTER*16 txtstr(3)

 txtstr(1) = 'Hello, world! '

 txtstr(2) = 'live long '

 txtstr(3) = 'and prosper'

 PRINT *, txtstr(1), txtstr(2), txtstr(3)

 END

\

Hello, world! live long and prosper

The datatype also determines the default reporting format. Integers are reported with as

many digits as required. Six (rounded) decimal places are presented by default for REALs,

and eight for DOUBLEs.

This can present an inconvenient reminder of the precision limits eg

 PROGRAM realish

C

 REAL a

 a = 1000.20

 PRINT *, "a = ", a

 END

\

a = 1000.200012

16

Specific formatting can be used for reporting with suitable definition, for example, a

temperature reading may have resolution of 0.1 at best.

 PROGRAM temperaturereal

C

 REAL celsius, fahr, step

 INTEGER*4 i

 FORMAT (2F6.1,/)

 step = 20.0

 fahr = 0.0

 DO 10 i = 1, 11

 fahr = fahr + step

 celsius = 5.0 * (fahr - 32.0) / 9.0

 WRITE (6,0) fahr, celsius

 10 CONTINUE

 END

\

 20.0 -6.7

 40.0 4.4

 60.0 15.6

 80.0 26.7

 100.0 37.8

 120.0 48.9

 140.0 60.0

 160.0 71.1

 180.0 82.2

 200.0 93.3

 220.0 104.4

For clarity the examples will often use the default reporting until specific formatting is

covered later.

Arrays

Arrays are declared much the same way as single variables, with the declation also

specifying the dimension extents. The total number of elements possible is set by the

available memory. There is a maximum of three dimensions.

An array element is identified by an index of either an integer value or by a simple variable

that has a valid integer value. Index numbering starts at 1. Variables used as an index must

be datatype integer*4. Index values outside the declared extent are trapped as errors at

runtime.

Memory is reserved by each declaration line in four-byte chunks, so an array declaration

is more efficient than multiple lines of variables.

17

 PROGRAM birdlife

C

 INTEGER*4 birds(3)

 birds(1) = 123456

 birds(2) = 314153

 birds(3) = 987654

 PRINT *, "There are ", birds(1), " buzzards"

 PRINT *, "There are ", birds(2), " eagles"

 PRINT *, "There are ", birds(3), " turkeys"

 END

\

There are 123456 buzzards

There are 314153 eagles

There are 987654 turkeys

Note that the array is used as one token , ie without spaces.

Variables in quantitative computing.

The point of a computer being “digital” (as opposed to analogue) – that is, using Boolean

(binary) logic - is that it preserves information integrity across operations and is immune to

noise, small level fluctuations, and so on. The information is processed using the underlying

hardware, which is designed specifically for that purpose.

As integers (within range) can be used and stored efficiently and exactly, it makes sense to

use integer variables where possible. In this case, it is a 32-bit processor, so a 32-bit range for

data and operations is usual. Memory access is routinely 32-bit and can also be accessed

down to the byte level. Subsequently the integer variables provided use 4, 2, or 1 bytes.

Fractional quantities are often required, and in this case floating point techniques are used

instead. These have a much greater flexibility, with the caveat that they are usually are not

exact or as fast.

Incorrect technique can cause problems. An example is when a large value is used as a

baseline, and a much smaller value is added. The summation in floating-point may not have

the available range to utilise many significant figures of the smaller number. A similar

example is subtracting two almost identical numbers. The result will have lost most of the

significant digits, even if integers are being used.

In standard 32 bit IT systems single-precision floating point values are accurate to about one

part in 16 million - ie a little under seven significant figures for the positive values. In many

cases this is not enough or is at least inconvenient. As an illustration it is interesting to try

adding the fraction one ten-thousandth, 10000 times, to a starting point of 2500.0, on a

standard single precision system...the returned answer will almost certainly be 2500.0, not

the correct 2501.0 as might have been expected.

18

Double precision can help in some situations. It is accurate to twelve significant figures, and

takes a little extra time to process. Here is "realish" upgraded :

 PROGRAM doubleish

C

 DOUBLE a

 a = 1000.20000000

 PRINT *, "a = ", a

 END

\

a = 1000.20000000

The following program simulates (not very well) float-charging a battery for three hours.

The cell already has 10 amp-hours stored, and there is a milliamp charging. The summation

fails with single precision but can be rescued with DOUBLE (as a quick fix before a

rethink..).

 PROGRAM battery

C

 INTEGER*4 sec

 DOUBLE start, stored, current, gain

C

C Initial state in amp-seconds

C

 start = 36000.0

 stored = start

C

C Three hours adding at one milliamp

C

 current = 0.001

 DO 10 sec = 1, 10800

 stored = stored + current

 10 CONTINUE

C

 gain = stored - start

 FORMAT (A,F5.3,/)

 WRITE (6,0) "amp-seconds gained : ", gain

 END

\

amp-seconds gained : 10.800

Often, as in this case, a need for double precision can be avoided by a suitable change in

methodology, but sometimes it is vital.

* Do not over charge lithium cells !!

19

5. Operators, operands and intrinsic functions

Standard operators eg (+, -, *, / and **).

The standard operators (+, -, *, / and **) are used as normal. Some popular operators from C

are also included ie >>, <<, &, |, and ~. The relation operators (<, <=, =, !=, >=, > and && or ||

) used for logic are covered later in the program control IF… section.

If required, brackets can be used to enforce evaluation sequence. Concatenated

exponentiation should be made unambiguous with brackets.

Operands can be simple numbers, variable identifiers, array identifiers (with subscripts of

either simple integers or integer variable identifiers), or the resultants of other operations in

the normal math precedence

The underlying routines use double precision math. Inadverdently mixing integer and

floating point arithmetic is an error, unless the datatype is deliberately overridden. Note that

to hard-code a negative number, the negate operator is used, ie (currently) a space is needed

between the “-“ and the number.

Intrinsic math functions.

SIN, COS, TAN, ASIN, ACOS, ATAN, SQRT, ABS, RAND, IFIX, FLOAT, DBLE,

SNGL, ALOG, and EXP.

In general the intrinsic functions SIN, COS, TAN, ASIN, ACOS, ATAN, SQRT, ABS, RAND,

IFIX, FLOAT, DBLE, SNGL, ALOG, and EXP are used as normal, with the proviso that

uppercase is used. They can be used as operators, ie, brackets are optional. Complex

formulae should be broken down into sections to fit.

Math functions and output

SIN Sin of input value (radians)

COS Cos of input value (radians)

TAN Tan of input value (radians)

ASIN Arcsin in radians of input value (double)

ACOS Arccos in radians of input value (double)

ATAN Arctan in radians of input value (double)

20

SQRT Square root of input value

ABS Absolute value

RAND Random integer, 0 - 65565.

ALOG Natural logarithm

EXP e to the power x.

IFIX Integer value of floating point input

FLOAT Floating point (single precision) equivalent of integer

DBLE Double precision equivalent of input

SNGL Single precision equivalent of double

The RAND function requires a dummy integer*4 argument.

Intrinsic functions are also used for reading a digitized analog value via the A-D converter

(ADxx) and reading input pin states (BRxx). They return integer*2 values and are covered in

a later section.

Character-based operations.

Two character strings, or a character string and a single character, can be “added” to form

an output string. The output maximum width is set by the datatype definition. Character

strings can also tested for equivalence or non-equivalence using the standard operators.

To assist reading text input, there are two conversion functions :

ATOI Converts character string to integer

ATODB Converts character string to double precision float

The examples illustrate the use of some operators and intrinsic functions.

The first has some (very) simple math expressions showing precedence.

The appendix has further examples, one using a function and some popular C operators for

bit shifting (LCD clock), and another using fairly complex arithmetic and double precision

to calculate solar position at a known location and time.

21

1) Simple math expressions showing precedence

 PROGRAM mathexp

C

 INTEGER*4 a, b, c

 REAL x, y, z

 FORMAT (A,F4.2,A,/)

 a = 1

 WRITE "a = ", a

 b = 1 + 2

 WRITE "b = ", b

 c = b + b

 PRINT *, "c = ", c

 a = 1 * 2 + 3

 PRINT *, "a = ", a

 a = 1 + 2 * 3

 PRINT *, "a = ", a

 a = 1 + b * 3

 PRINT *, "a = ", a

 a = (1 + b) * 3

 PRINT *, "a = ", a

 x = 0.500

 y = SIN (x) + COS (x)

 PRINT *, "y = ", y

 z = FLOAT (ADX1)

 z = (z * 3.260) / 1024.0

 PRINT *, "z = ", z , " volts"

 WRITE (6,0) "z = ", z , " volts"

 END

\

a = 1

b = 3

c = 6

a = 5

a = 7

a = 10

a = 12

y = 1.357008

z = 0.248320 volts

z = 0.25 volts

22

6. Subroutines, Functions and Common memory

User subroutines and functions can be defined and used as necessary, and act as reusable

code. This is useful for frequently used program segments and promotes a logical structure.

Information is exchanged via variables cited in the call to the subroutine.

Otherwise, variables are local to the subroutine invocation and are declared as normal.

In addition a group of variables in a main program or subroutines can be set to use an area

of memory in common, that is, also used by similar groups of variables in other subroutines.

This expands their scope and can greatly conserve memory.

The definitions are placed after the main program, start with the SUBROUTINE or

FUNCTION statement, and finish with an END statement. A RETURN statement must be

present. They are initially read by the interpreter in a pre-emptive pass and subsequently

used when the subroutine/function is active.

Functions must return a value, and consequently the definition of a function must specify

the return value datatype.

SUBROUTINE

A subroutine is instigated by a CALL statement in the main program.

Control returns to the calling program with the RETURN statement.

 PROGRAM startup

C

 INTEGER*1 j

 j = 9

 PRINT *, "OK to start"

 CALL righto ()

 PRINT *, "j = " , j

 END

C

 SUBROUTINE righto ()

 INTEGER*1 j

 j = 42

 PRINT *, "Righto"

 PRINT *, "sub j = " , j

 RETURN

 END

\

OK to start

Righto

sub j = 42

j = 9

23

The subroutine definition can also include formal arguments, that is, parameters that are

variables used to pass data. Calls to invoke the subroutine must then also include the

matching actual arguments, to a maximum of eight.

The parameters are variable identifiers that are passed as call-by-reference, that is, the

memory locations used by the actual variables in the call are then also used by the

correlating formal arguments set in the subroutine definition. So any changes made by the

subroutine will automatically persist after the subroutine finishes. This also means scarce

memory is conserved.

 PROGRAM subaddten
C

 PRINT *, "Start"

 INTEGER*2 x

 x = 7

 PRINT *, "x = ", x

 CALL addten (x)

 PRINT *, "x now = ", x

 END

C

 SUBROUTINE addten (a)

 PRINT *, "start subroutine"

 a = a + 10

 PRINT *, "end subroutine"

 RETURN

 END

\

Start

x = 7

start subroutine

end subroutine

x now = 17

In many systems, when a variable or array name is cited in a call to a subroutine, critical

properties are not necessarily known and so a further definition of some sort (eg a

DIMENSION statement) is then required. Sometimes the variable is simply redeclared in the

subroutine. Electride uses the pre-existing attributes of the variable or array and so the

additional definition is not required. To maintain compatibility, such variables can be

redeclared as usual but any changed details will be ignored.

 If required, array index ranges can be passed to the subroutine at call time using simple

integer variables in the argument list. This is useful as the subroutine can then be used

again in other programs without having to edit it each time.

Subroutines can be nested four deep and called recursively. They must not have the same

name as a variable or array.

24

Note that as the parameters in the call are expected to be variables, using a numerical value

instead is often not the best practice.

FUNCTION

User-defined Functions are a specialised form of subroutine and defined much the same

way, with the addition of specifying the datatype.

When executing, the function automatically has the use of a variable of the same name and

datatype, with the contents being returned to the calling statement.

Note that functions have been implemented with some concessions and simplifications.

They are evaluated left-to-right in the statement sequence before the rest of the statement is

processed, and a total of four can be called in one statement. To simplify the parsing a little,

a single token is used to handle a user function call and the cited variables, which means the

function call may not include spaces before/inside the parentheses. Functions are available

in equations, ie not in commands and IF clauses.

Note that it used to be considered a programming error for a call to cite a numerical value

instead of a variable. As a safeguard in Electride the value is passed as call-by-value. That is,

the value will be passed to the function as the value of the corresponding formal variable,

and the data discarded when the function finishes.

In the following example the subroutine above is implemented as a function.

The examples section has further examples using subroutines and functions extensively.

25

 PROGRAM funcaddten

C

 WRITE "Start"

 INTEGER*2 x, y

 x = 7

 y = 0

 PRINT *, "x = ", x, " y = ", y

 y = addten(x)

 PRINT *, "x = ", x, " y = ", y

 END

C

 INTEGER*2 FUNCTION addten (a)

 PRINT *, "start function"

 addten = a + 10

 PRINT *, "end function"

 RETURN

 END

\

Start

x = 7 y = 0

start function

end function

x = 7 y = 17

26

COMMON

As well as passing variables using the call arguments, selected groups of variables can be

set to use a block of memory that is common to the main program and some subroutines.

The values in the memory are then global to the main program and the relevant subroutines.

The groups of variables using this block must each have exactly the same datatypes and

sequence and must be declared at the start ie before other variables are defined.

The basic COMMON command that is available for compiled programs is used. However

for efficiency in an interpreter the command works a little differently. Instead of acting on

the variables cited individually in turn, COMMON will act on all the variables declared up

to that point in the subroutine as a set.

In general it can be seen how the command frees up the argument list, but at the expense of

readability. It is recommended that the variables are cited in the command lines, as usual, as

documentation. The null keyword COMBLK can be used to include multiple lines.

The example is the program from before, now changed to use a variable in COMMON.

The further example shows a program and two subroutines, with three variables using

common memory access, and also using a local and a passed variable.

 PROGRAM subaddtencommn

C

 PRINT *, "Start"

 INTEGER*2 x

 COMMON x

 x = 7

 PRINT *, "x = ", x

 CALL addten ()

 PRINT *, "x now = ", x

 END

C

 SUBROUTINE addten ()

 INTEGER*2 a

 COMMON a

 PRINT *, "start subroutine"

 a = a + 10

 PRINT *, "end subroutine"

 RETURN

 END

\

Start

x = 7

start subroutine

end subroutine

x now = 17

27

 PROGRAM demcommon

 INTEGER*4 a, b, c

 COMMON a, b, c

 INTEGER*4 d, z

C

 PRINT "Start .."

 a = 17

 b = 3

 c = 44

 d = 71

 z = 93

 PRINT " common ", " local ", " passed "

 PRINT " eg a b c ", " d ", " z "

 PRINT "starting values:"

 PRINT " ",a," ", b," ", c," ", d," ", z

 CALL subwun ()

 PRINT "values main level now:"

 PRINT " ",a," ", b," ", c," ", d," ", z

 CALL subtoo (z)

 PRINT "values main level now:"

 PRINT " ",a," ", b," ", c," ", d," ", z

 PRINT "Ok finish "

 END

C

C

 SUBROUTINE subwun ()

 INTEGER*4 s, t, u

 COMMON s, t, u

 PRINT "call.."

 s = 31

 t = 1

 u = 48

 PRINT "values in sub"

 PRINT " ",s," ", t," ", u

 PRINT "return.."

 RETURN

 END

C

 SUBROUTINE subtoo (x)

 INTEGER*4 g, j, k

 COMMON g, j, k

 INTEGER*4 m, x

 PRINT "call.."

 g = 12

 j = 9

 k = 25

 m = 67

 x = 55

 PRINT "values in sub"

 PRINT " ",g," ", j," ", k," ", m," ", x

 PRINT "return.."

 RETURN

 END

\

28

Start ..

 common local passed

 eg a b c d z

starting values:

 17 3 44 71 93

call..

values in sub

 31 1 48

return..

values main level now:

 31 1 48 71 93

call..

values in sub

 12 9 25 67 55

return..

values main level now:

 12 9 25 71 55

Ok finish

29

7. Program Control

 CALL

 CONTINUE

 (DIMENSION)

 DO

 DO WHILE - END DO

 END

 GO TO

 IF

 IF THEN - ELSE IF - ELSE - END IF

 RETURN

 STOP

CALL

Calls a subroutine.

This is covered in the subroutine section.

CONTINUE

Continues program processing.

(DIMENSION)

Array datatype and dimensions are automatically carried through to subroutines and

functions so a DIMENSION statement is not required.

Furthermore redimensioning arrays in memory is not in the project scope. So, for source

compatability, programs can include a DIMENSION statement, but it is not active.

DO

A DO statement initiates a repeated loop. The standard form has parameters detailing the

loop iteration, and the alternative DO WHILE form repeats while a logical test evaluates to

true.

The standard DO statement specifies the loop end statement, the variable to use as a

counter, the start count, the end point count, and optionally the increment value. The loop

end statement is identified by a numerical label and must be within the program or

30

subroutine. The count parameters can be numbers or integer variables (four byte), and the

increment value defaults to 1 if not set.

 PROGRAM doloop

C

 INTEGER*4 count, start, finish

 PRINT *, "do loop"

 start = 4

 finish = 8

 DO 10 count = start, finish

 PRINT *, "count = ", count

 10 CONTINUE

 END

\

do loop

count = 4

count = 5

count = 6

count = 7

count = 8

Loops can be nested in multiple levels, with a limit set by the software version.

The same loop terminal statement can be used by multiple standard-form loop levels. The

loop end must not be a branching statement or a do-while end and it is strongly

recommended, at least for this format, that a CONTINUE is used as a convention.

 PROGRAM doloops

C

 INTEGER*4 i, j, k

 PRINT *, "Yo! Loops! "

 DO 10 i = 1, 2

 DO 10 j = 1, 2

 DO 10 k = 1, 2

 PRINT *, "Like.. i=", i," j=", j," k=", k

 10 CONTINUE

 END

\

Yo! Loops!

Like.. i=1 j=1 k=1

Like.. i=1 j=1 k=2

Like.. i=1 j=2 k=1

Like.. i=1 j=2 k=2

Like.. i=2 j=1 k=1

Like.. i=2 j=1 k=2

Like.. i=2 j=2 k=1

Like.. i=2 j=2 k=2

31

DO WHILE - END DO

A DO WHILE loop is similar to the standard DO form, however the statement includes a

logical test. If the test returns true the loop is instigated, and then is repeated while the test

remains true. The loop range is to the associated END DO statement.

 PROGRAM dowhile

C

 INTEGER*4 count

 PRINT *, "Start.."

 count = 1

 DO WHILE (count < 4)

 PRINT *, "count ", count

 count = count + 1

 END DO

 PRINT *, "Finito"

 END

\

Start..

count 1

count 2

count 3

Finito

DO-WHILE loops can be nested in multiple levels, with a limit set by the software version.

Each DO -WHILE loop must have a separate END-DO terminal statement.

To prevent ambiguity, END DO statements may not have numerical labels and so cannot be

used to terminate standard-form loops.

It can be a good idea to indent lines with spaces for clarity. Do not use tabs. The “L” (List)

option in the menu will show the lines in the indented format.

END

Marks the end of the main program section or following subroutine or function.

GO TO

A GO TO command unconditionally transfers program flow to the destination statement,

which must have a numerical label id. The destination must be within the local program /

subroutine / function.

32

Note that, the original standard requires that a GO TO statement within a loop can transfer

to a statement that is apparently outside the loop, (past the loop end point) and then jump

back again with the loop state still remaining active. So, existing loop ranges and states,

tests etc remain in place even if a GO TO apparently exits the loop. It is strongly

recommended that GO TOs be avoided if possible, or at least destinations kept very local

and within any loop or IF block.

 PROGRAM goto

C

 PRINT *, "Right On !"

 GO TO 10

 PRINT *, "What ??"

 10 PRINT *, "Dig it !"

 END

\

Right On !

Dig it !

IF
IF THEN - ELSE IF

IF statements allow conditional branches and processing.

An embedded test clause is evaluated and determines further action. For evaluation, the test

is passed to the equation processor, and the returned value '0' used for false and != 0 for

true. The clause may not start with an operator.

There are two forms, as the original IF single-line statement was extended to add a multiline

IF .. THEN ... END IF form.

Single line IF.

The single-line type has a IF keyword with a test (condition) before the rest of the line. If the

test evaluates to true, the rest of the line is processed. The rest of the line is usually a simple

assignment, a call to a subroutine or a return, a command to set a port pin state, or a GO TO.

The tests are for conditions of

 equal-to (=),

 not-equal-to (!=),

 less-than (<),

 less-than-or-equal-to (<=),

 greater-than (>),

 greater-than-or-equal-to (>=).

33

The older versions were

 equal-to (.EQ.),

 not-equal-to (.NE.),

 less-than (.LT.),

 less-than-or-equal-to (.LE.),

 greater-than (.GT.),

 greater-than-or-equal-to (.GE.).

The clause is evaluated to a result with zero signifying false and not-zero signifying true.

The evaluation can recurse three or seven tokens in a standard sequence and can use logical

operators :

 and (&&)

 or (||).

 PROGRAM liftoff
C

 INTEGER*4 altitude, stage

 PRINT *, "Ignition..."

 PRINT *, "Lift off !"

 stage = 1

 DO 10 altitude = 0, 100, 10

 IF (altitude > 10) stage = 2

 IF (altitude > 70) stage = 3

 PRINT *, "Stage ", stage, " and altitude ", altitude

 10 CONTINUE

 END

\

Ignition...

Lift off !

Stage 1 and altitude 0

Stage 1 and altitude 10

Stage 2 and altitude 20

Stage 2 and altitude 30

Stage 2 and altitude 40

Stage 2 and altitude 50

Stage 2 and altitude 60

Stage 2 and altitude 70

Stage 3 and altitude 80

Stage 3 and altitude 90

Stage 3 and altitude 100

34

 PROGRAM ifeqand

C

 INTEGER*4 i, j

 PRINT *, "start.."

 i = 5

 j = 28

 PRINT *, "j = ", j

 IF (i = 5 && j = 28) PRINT *, "Ok"

 IF (i = 5 && j != 28) PRINT *, "bad"

 j = 24

 PRINT *, "j = ", j

 IF (i = 5 && j = 28) PRINT *, "Ok"

 IF (i = 5 && j != 28) PRINT *, "bad"

 PRINT *, "FINISH "

 END

C

\

start..

j = 28

Ok

j = 24

bad

FINISH

IF THEN - ELSE IF - ELSE - END IF

The multiline form has an initial IF … THEN statement and an associated END IF.

The IF… THEN command includes the test, and conditionally runs through the following

lines until the END IF statement is reached.

>L

 PROGRAM ifthen

C

 INTEGER*4 count

 PRINT *, "Start.."

 DO 10 count = 1, 2

 IF (count = 1) THEN

 PRINT *, "Itsa one.."

 END IF

 10 CONTINUE

 PRINT *, "Finito"

 END

\

Start..

Itsa one..

Finito

35

Specific alternative conditions can optionally be included using ELSE IF's.

>L

 PROGRAM ifthenelseif

C

 INTEGER*4 count

 PRINT *, "Start.."

 DO 10 count = 1, 3

 IF (count = 1) THEN

 PRINT *, "Itsa one.."

 ELSE IF (count = 2) THEN

 PRINT *, "Itsa two.."

 ELSE IF (count = 3) THEN

 PRINT *, "Itsa three.."

 END IF

 10 CONTINUE

 PRINT *, "Finito"

 END

\

Start..

Itsa one..

Itsa two..

Itsa three..

Finito

An ELSE provides a generic alternative.

>L

 PROGRAM ifthenelse

C

 INTEGER*4 count

 PRINT *, "Start.."

 DO 10 count = 1, 2

 IF (count = 1) THEN

 PRINT *, "Itsa one.."

 ELSE

 PRINT *, "whaat.."

 END IF

 10 CONTINUE

 PRINT *, "Finito"

 END

\

Start..

Itsa one..

whaat..

Finito

36

The full combo :

>L

 PROGRAM ifthenelseifelse

C

 INTEGER*4 count

 PRINT *, "Start.."

 DO 10 count = 1, 4

 IF (count = 1) THEN

 PRINT *, "Itsa one.."

 ELSE IF (count = 2) THEN

 PRINT *, "Itsa two.."

 ELSE IF (count = 3) THEN

 PRINT *, "Itsa three.."

 ELSE

 PRINT *, "whaat.."

 END IF

 10 CONTINUE

 PRINT *, "Finito"

 END

\

Start..

Itsa one..

Itsa two..

Itsa three..

whaat..

Finito

RETURN

Returns from a subroutine or function.

This is covered in the subroutine section.

37

STOP

A historical command which prints STOP on the console and stops execution. The main use

was for program development. Here this returns to the reset and menu sequence.

 PROGRAM stop

C

 INTEGER*4 count

 PRINT *, "Start.."

 count = 1

 DO WHILE (count < 4)

 PRINT *, "count ", count

 count = count + 1

 END DO

 STOP

 PRINT *, "Finito"

 END

\

Start..

count 1

count 2

count 3

STOP

38

8. Input, Output, Format

READ (input) and WRITE/PRINT (output) commands are used for higher level I/O. A subset

of f77 is used as a template. Lower level access that uses bit setting and specific peripheral

modules, and the defined commands used are covered in the next section.

At an entry level, the READ and WRITE commands use defaults for details and data

formatting. For more specific control, optional information can be used to set the required

parameters.

The basic commands using the defaults are described first. The I/O is assumed to use the

chip uart, connected to a serial terminal (console).

READ

A READ command reads input eg from the console and ends on a carriage return. Commas

are used to separate multiple items. The text input is then converted to values, using the

datatype of the variables specified. If a negative sign is required it must be the first character

in each field.

eg

 PROGRAM readmult

C

 REAL a, b

 INTEGER*2 c

 PRINT *, "Input for a, b, c ?"

 READ a, b, c

 PRINT *, a, " ", b, " ", c

 END

\

Input for a, b, c ?

3.141,2.3456,789

3.141000 2.345600 789

39

REAX

A similar command reads from an auxiliary serial input. In this case it is designed to fish a

record out of streaming ascii, so will wait for the next end-of-line in the stream and then

read the following line as the input. It will self-complete automatically after a second or so

and the program resumes, if nothing has been found the input will be blank.

Eg

 REAX a, b, c, d, e, f, g, h, p, j

 IF (a = '$GPRMC') THEN

 IF (c = 'A') THEN

 timedb = ATODB b

 …

 date = ATOI j

 …

PRINT *,

WRITE ...

A PRINT or WRITE command sends the values of variables to output. The datatype of each

variable determines the default format used. Quoted text strings can be included.

The shorter versions can be used for convenience,

 PRINT "a = ", a

 WRITE "a = ", a

or asterisks can be included to formally signify default values.

 PRINT *, "a = ", a

 WRITE (*,*) "a = ", a

40

Example with default formats :

 PROGRAM defaultformat

C

 INTEGER*1 a

 INTEGER*2 b

 INTEGER*4 c

 REAL d

 DOUBLE e

 CHARACTER*1 f

 CHARACTER*15 g

 a = 32

 b = 4321

 c = 1222333444

 d = 1.123456

 e = 1.12345678

 f = 'Y'

 g = 'Hello, world'

 PRINT *, "start"

 PRINT *, "a = ", a

 PRINT *, "b = ", b

 PRINT *, "c = ", c

 PRINT *, "d = ", d

 PRINT *, "e = ", e

 PRINT *, "f = ", f

 PRINT *, "g = ", g

 PRINT *, "finish"

 END

\

start

a = 32

b = 4321

c = 1222333444

d = 1.123456

e = 1.12345678

f = Y

g = Hello, world

finish

FORMAT

FORMAT sets the descriptors used for specific formatting.

Formatted I/O requires a format descriptor to use for each variable. The format descriptors

are stored as a sequential list using a FORMAT statement. When the WRITE command is

processed, each variable is examined and output in turn, using the next format descriptor in

the list. If the format list finishes, it is re-used as necessary.

41

Accordingly the WRITE command includes two extra parameters to identify in turn the

output hardware or file type (eg, a user terminal or disk), and the format list, before the

variables to use.

The first WRITE parameter, the number identifying the file/hardware type, can be set as '6'

(user terminal) or left as '*' at this stage.

The second WRITE parameter specifies which format list to use.

In larger systems multiple formats can be active, so an integer is cited which identifies which

format statement to use. In this version the requirements are simpler, so a zero ('0') is cited

instead, which determines that the most recent format statement is to be used.

Format descriptors are short strings citing I (integer), F (floating point), E (exponential) and

A (alphanumeric). The letter is followed by numbers for the number of digits and decimal

places.

Eg

 I6 Integer field of six digits.

 F6.2 Real number with six digits and two decimal places.

 E20.4 Real number with four decimal places and exponent.

 A1 One ASCII character.

 A Cited text string.

A number before the descriptor will repeat it. Other characters in a format descriptor are

passed to the underlying C format command. If necessary the descriptors can be separated

by simple actions to some extent, eg, an X will insert a space, and a forward slash (/)

specifies an end-of-record which will output a carriage return/newline and rewind the list.

The numeric output fields are right-justified with blanked leading zeros, text output fields (

A* format) are left justified and padded with spaces.

Cited text strings (to 32 characters) can be included in the variable list and must have a

matching single A format.

42

Example of specific formatting :

 PROGRAM specformat

C

 INTEGER*4 a

 REAL b

 DOUBLE c

 CHARACTER*1 d, e, f, g

 CHARACTER*7 h

 a = 1222333444

 b = 3.12345678

 c = 45.12345678

 d = 'T'

 e = 'H'

 f = 'E'

 g = ' '

 h = 'Yo!'

 WRITE "start"

C

 WRITE h

C

 FORMAT (I10,/)

 WRITE (6,0) a

C

 a = 1234

 WRITE (6,0) a

 WRITE (6,0) a, a, a

C

 FORMAT (3I10,/)

 WRITE (6,0) a, a, a

C

 FORMAT (F8.6,/)

 WRITE (6,0) b

 FORMAT (F8.2,/)

 WRITE (6,0) b

 FORMAT (F10.8,/)

 WRITE (6,0) c

 FORMAT (A,F5.3,A,/)

 WRITE (6,0) "The value of c is ", c, " degrees. "

C

 FORMAT (E10.8,/)

 WRITE (6,0) c

 FORMAT (E20.4,/)

 WRITE (6,0) c

C

 FORMAT (A7,A7)

 WRITE (6,0) h, h

C

 FORMAT (A1)

 WRITE (6,0) d, e, f, g

 WRITE "finish"

 END

\

43

start

Yo!

1222333444

 1234

 1234

 1234

 1234

 1234 1234 1234

3.123457

 3.12

45.12345678

The value of c is 45.123 degrees.

4.51234568e+01

 4.5123e+01

Yo! Yo! THE finish

Repetition using an implied loop.

A WRITE statement can acess array elements using an implied loop. This is useful with

repeat descriptors.

Eg

 FORMAT (64A1,/)

 WRITE (6,0) (page(x,y), x = 1, 64)

Here the A1 descriptor is used 64 times before the next line, as the index variable x

increments from 1 through 64. So, this will print 64 characters from the array and then start

the next line.

Note that with an implied loop the list must be enclosed in brackets. Currently there is a

limit of one implied loop per write statement. It must follow non-loop variables.

For some 'retro' eighties lineprinter artwork, the example subroutine prints a page of 64x21

characters row by row using an array. In this case it has been prefilled with a simple sine

curve and axes.

…

…
C

 SUBROUTINE plott (page)

 INTEGER*4 x, y

 FORMAT (64A1,/)

 DO 40 y = 1, 21

 WRITE (6,0) (page(x,y), x = 1, 64)

 40 CONTINUE

 RETURN

 END

\

44

start

!--!

! **** !

! *** *** !

! ** ** !

! ** ** !

! * * !

! * ** !

! ** * !

! * * !

!* * !

!--!

! ** *!

! * ** !

! * * !

! * * !

! ** ** !

! * * !

! ** ** !

! **** *** !

! **** !

!--!

finish

45

9. Port bit level access, LCD (16x2), and Keypad

Low-level access and peripherals ie port bits, LCD (16x2), and keypads can be used.

Port I/O Bit access.

Port pins (bits) are set, or read, with the Bxxx commands.

Setting a pin state:

To set a port pin state on or off, the relevant bit is set up or down :

BDXY Bit Down on port X pin Y

BUXY Bit Up on port X pin Y

eg

 BDB5 set port B bit 5 low.

and BUB5 will set it high.

so to blip a pin

 PROGRAM pinblipd

C

 10 BUB5

 BDB5

 GO TO 10

 END

\

The visible effect here is that a led connected to B5 will be apparently partially lit as it is set

on and off rapidly.

Reading a pin state :

Similarly a port pin state can be read using R instead. The command acts as a function

returning an integer value.

eg
 n = BRB5

will read port B pin 5 and return 1 or 0 as appropriate.

46

So to indicate if B8 is high or low using B2 as an indicator :

 PROGRAM pinled

C

 DO WHILE (1)

 IF (BRB8 = 1) BUB2

 IF (BRB8 = 0) BDB2

 END DO

C

 END

\

The traditional flash-led program uses a delay to be visible.

 PROGRAM flashled

C

 DO WHILE (1)

 BUB5

 CALL delay ()

 BDB5

 CALL delay ()

 END DO

 END

C

 SUBROUTINE delay ()

 INTEGER*4 i

 DO 10 i = 1, 2000

 10 CONTINUE

 RETURN

 END

\

In the '170 version the sixteen port B pins (B0 – BF) are accessible. The port 'B' identifier is

automatically set so the B is ignored and a generic X can be used instead.

Bear in mind that although port states persist after a program ends, they will be cleared

when the chip is reset, so you may not see the effects unless the program keeps running in a

loop. Also remember the console output is on B4, so a led on that will usually be lit.

47

LCD

LCD output is set up for the standard Hitachi-compatible 16x2 LCD modules.

LCDSTRT

To use the module, firstly it is started and initialized with the LCDSTRT command.

LCDPRNT

The command LCDPRNT xxx… will then write to the display. The LCDPRNT is very

similar to the PRINT or WRITE using default formats and is used the same way. After

LCDPRNT the cursor returns to the start of the first line.

 PROGRAM lcdhello

C

 LCDSTRT

 LCDPRNT "Hello, world "

 END

\

LCDNWLN

To move to the next line, the command LCDNWLN is used, and the following LCDPRNT

then writes to the next line.

 PROGRAM lcdhello2line

C

 LCDSTRT

 LCDPRNT "Hello, world "

 LCDNWLN

 LCDPRNT "Yeah, baby !! "

 END

\

It is a good idea to pad with extra space characters, to ensure a refresh of the full line.

The modules are fairly slow at processing and refreshing, so if continuous updating is used

a delay may be needed for legibility.

Using LCDPRNN (no T) instead of LCDPRNT will leave the cursor at the current position, ie

the next print will append to the existing text. A backspace command LCDBSPC will

backspace the LCD and delete the last character.

48

As there is limited space, floating point numbers are displayed with a conservative format

with two decimal places (REAL) and three decimal places (DOUBLE) respectively.

 PROGRAM lcdvar
C

 REAL a

 DOUBLE b

 LCDSTRT

 LCDPRNT " "

 LCDNWLN

 LCDPRNT " "

 a = 3.542

 b = 5.876

 LCDPRNT "a = ", a

 LCDNWLN

 LCDPRNT "b = ", b

 END

\

49

Keypad (4x4)

The basic port pin set/read commands can be used to read key presses on a keypad.

To use a keypad, the 4x4 grid lines are connected to eight port B pins. Four are connected to

input port pins on the pic32 and are held low with resistors. The other four are connected

to output port pins on the pic32 and are each in turn set high by the pic32. Any key press

then connects one output to one of four possible inputs and brings it high.

To read the pad, a suitable routine is called which stays in a loop, setting the output pins

high in sequence and polling the possible input pins. When an input pin is high, then the

relevant key is pressed and the routine then returns the key value. A time delay is used for

some simple de-bounce filtering.

The example subroutine sets the ‘*’ (asterisk) as a decimal point, the ‘#’ (hash) as a negative

sign, the ‘A’ as a delete/backspace, and the ‘D’ as the return/enter key. So each keypress

returns an ASCII character.

To input a number, it is assembled from the ASCII keypresses into a multicharacter string

and converted to the numeric value. The further examples illustrates combined keypad

and LCD use.

The pin details, wiring etc, are arbitrary depending on version and so are detailed further

in the appendix.

50

Example – a keypad access subroutine

 SUBROUTINE retkey (r)

 r = '?'

 BDBF

 BDBE

 BDBD

 BDBC

 BDBB

 BDBA

 BDB9

 BDB8

C

 DO WHILE (r = '?')

 BDB8

 BUBB

 IF (BRBF) r = '1'

 IF (BRBE) r = '2'

 IF (BRBD) r = '3'

 IF (BRBC) r = 'A'

 BDBB

 BUBA

 IF (BRBF) r = '4'

 IF (BRBE) r = '5'

 IF (BRBD) r = '6'

 IF (BRBC) r = 'B'

 BDBA

 BUB9

 IF (BRBF) r = '7'

 IF (BRBE) r = '8'

 IF (BRBD) r = '9'

 IF (BRBC) r = 'C'

 BDB9

 BUB8

 IF (BRBF) r = '.'

 IF (BRBE) r = '0'

 IF (BRBD) r = '-'

 IF (BRBC) r = 'D'

 END DO

 CALL delay()

 RETURN

 END

51

Example – a simple choice list using the keypad and LCD.

(With apologies to Dr Suess)

 PROGRAM fishkeylcd

 CHARACTER*1 d

 LCDSTRT

 LCDPRNT " "

 LCDNWLN

 LCDPRNT " "

 d = '?'

 DO WHILE (d != 'D')

 PRINT "Choose 2,3,B,C?"

 LCDPRNT "Choose 2,3,B,C?"

 CALL retkey (d)

 PRINT d

 IF (d = '2') THEN

 CALL twofish()

 ELSE IF (d = '3') THEN

 CALL threefish()

 ELSE IF (d = 'B') THEN

 CALL bluefish()

 ELSE IF (d = 'C') THEN

 CALL seafish()

 END IF

 END DO

 LCDPRNT " "

 LCDNWLN

 LCDPRNT " "

 END

 SUBROUTINE twofish ()

 PRINT "Two fish !!"

 LCDNWLN

 LCDPRNT "Two fish !! "

 RETURN

 END

 SUBROUTINE threefish ()

 PRINT "Three fish !!"

 LCDNWLN

 LCDPRNT "Three fish !! "

 RETURN

 END

 SUBROUTINE bluefish ()

 PRINT "Blue fish !!"

52

 LCDNWLN

 LCDPRNT "Blue fish !! "

 RETURN

 END

 SUBROUTINE seafish ()

 PRINT "Sea fish !!"

 LCDNWLN

 LCDPRNT "Sea fish !! "

 RETURN

 END

 SUBROUTINE retkey (r)

 r = '?'

 BDBF

 BDBE

 BDBD

 BDBC

 BDBB

 BDBA

 BDB9

 BDB8

 DO WHILE (r = '?')

 BDB8

 BUBB

 IF (BRBF) r = '1'

 IF (BRBE) r = '2'

 IF (BRBD) r = '3'

 IF (BRBC) r = 'A'

 BDBB

 BUBA

 IF (BRBF) r = '4'

 IF (BRBE) r = '5'

 IF (BRBD) r = '6'

 IF (BRBC) r = 'B'

 BDBA

 BUB9

 IF (BRBF) r = '7'

 IF (BRBE) r = '8'

 IF (BRBD) r = '9'

 IF (BRBC) r = 'C'

 BDB9

 BUB8

 IF (BRBF) r = '.'

 IF (BRBE) r = '0'

 IF (BRBD) r = '-'

 IF (BRBC) r = 'D'

 END DO

 CALL delay()

 RETURN

53

 END

 SUBROUTINE delay ()

 INTEGER*4 i

 DO 10 i = 1, 3000

 10 CONTINUE

 RETURN

 END

\

Choose 2,3,B,C?

1

Choose 2,3,B,C?

2

Two fish !!

Choose 2,3,B,C?

3

Three fish !!

Choose 2,3,B,C?

A

Choose 2,3,B,C?

B

Blue fish !!

Choose 2,3,B,C?

C

Sea fish !!

Choose 2,3,B,C?

D

54

Example – keypad and LCD with backspace.

Here the user is prompted for a number. The LCD is updated as the keypad keys are

pressed for feedback. The user is entering pi – 3.141 – and makes a mistake, hitting 5 instead

of 4. The backspace key “A” is used to delete the 5, and the 4 is entered. When the user is

finished the “D” is pressed (the OK signal) and the final number string is shown on the

LCD. The console also shows the keypress sequence and also, as a check, the actual

numerical value that is stored in the variable.

CC

C

 PROGRAM getnum

C

C reads 4x4 keypad, shows chars on lcd

C keypad assumes lines are low until scanned

C so pull-down resistors are used

C

CC

 CHARACTER*16 val

 INTEGER*4 i, j

 DOUBLE flo

 CHARACTER*1 d, res(16)

 FORMAT (A1,/)

 d = ' '

 res(1) = ' '

 i = 1

C Init lcd, prompt user

 LCDSTRT

 LCDPRNT " "

 LCDNWLN

 LCDPRNT " "

 LCDPRNT "Input number ? "

 LCDNWLN

C Build numeric string from keypresses

C Display each key press as it occurs

C Loop until OK key then display full string

C Echo to console

C

C Key A is backspace/delete

C Key * is decimal point

C Key hash is negative sign

C Key D is end-of-input ie OK

55

 CALL retkey (d)

 res(i) = d

 DO WHILE (res(i) != 'D')

 WRITE (6,0) res(i)

 IF (res(i) = 'A') THEN

 LCDBSPC

 i = i - 1

 res(i) = ' '

 ELSE

 LCDPRNN res(i)

 i = i + 1

 END IF

 CALL retkey (d)

 res(i) = d

 END DO

 FORMAT (10A1,/)

 res(i) = ' '

 WRITE (6,0) (res(j), j = 1, 10)

C check full result

 LCDPRNT " "

 LCDPRNT "Number str is.. "

 LCDNWLN

 DO 10 j = 1, i

 LCDPRNN res(j)

 val = val + res(j)

 10 CONTINUE

 flo = ATODB val

 PRINT val

 PRINT flo

 PRINT "finish"

 END

 SUBROUTINE retkey (r)

 r = ' '

 BDBF

 BDBE

 BDBD

 BDBC

 BDBB

 BDBA

 BDB9

 BDB8

C

 DO WHILE (r = ' ')

 BDB8

 BUBB

 IF (BRBF) r = '1'

56

 IF (BRBE) r = '2'

 IF (BRBD) r = '3'

 IF (BRBC) r = 'A'

 BDBB

 BUBA

 IF (BRBF) r = '4'

 IF (BRBE) r = '5'

 IF (BRBD) r = '6'

 IF (BRBC) r = 'B'

 BDBA

 BUB9

 IF (BRBF) r = '7'

 IF (BRBE) r = '8'

 IF (BRBD) r = '9'

 IF (BRBC) r = 'C'

 BDB9

 BUB8

 IF (BRBF) r = '.'

 IF (BRBE) r = '0'

 IF (BRBD) r = '-'

 IF (BRBC) r = 'D'

 END DO

 CALL delay()

 RETURN

 END

 SUBROUTINE delay ()

 INTEGER*4 i

 DO 10 i = 1, 3000

 10 CONTINUE

 RETURN

 END

\

3

.

1

5

A

4

1

3.141

3.141

3.14100000

finish

57

58

10. SPI (Serial Peripheral Interface)

A SPI module is in place for the purpose of connecting to sensors or peripherals. At this

stage the intent is to keep the hardware SPI(s) free for fast transfer, so the SPI is

implemented as an addition using software. An example is set up to read the time from a

DS3234 precision timekeeping chip.

In the SPI standard, chip peripherals are connected in a master-slave configuration using

chip-select, clock, and two data lines in a bus arrangement. Each peripheral has a separate

select line. One data line is used for the data flow from master to slave (MOSI), and the other

for the reverse. After a chip is selected, data is clocked in and out concurrently using the

clock and data lines.

Typically a sensor holds numeric values in specific memory locations. To access the data, the

relevant memory address is clocked into the sensor, and the value from that address is then

transmitted from the sensor with the next clock cycles.

A frequent feature is that the memory addresses start from 0 and auto-increment as reading

takes place, ie, the memory address does not have to be input as long as the reading is

sequential. In addition, most SPI peripherals use an inverted select, that is, when the select

signal is low the chip is enabled.

In this implementation an additional pin is used. The additional pin is used as a switched

power supply for the SPI peripherals and allows a clean start-up. Another pin is used to

provide a switched ground.

Currently one peripheral and so one chip-select pin is used, however further devices could

be connected by driving extra pins for as chip-select lines.

Using the SPI.

Startup :

SPSTRT

The command SPSTRT will set up the connections and start the SPI sequence.

Initially all the SPI pins are all set low or as input. The chip-select pin is then brought high

and the SPI power activated.

59

Exchanging data :

SPXWRD sendword, recword

The command SPXWRD will exchange 8, 16 or 32 bits on the bus. The contents of the first

variable are clocked out, at the same time the incoming data is placed in the second variable.

The variables must have been declared previously. The datatype determines the number of

bits exchanged.

SPGBITS xxx

This is an older version and will read 8, 16 or 32 bits from the bus. The data is put into xxx,

an array of integers, one bit in each element. The array xxx(n) must be have been declared

previously.

Example – reading a DS3234 clock chip.

A loop accesses the “seconds” information on the chip. When it changes, the time and date

registers are read and the information converted to displayable form, and printed on the

console.

To read a register, the address of the register first has to fed to the chip, and the contained

information is then clocked back to the pic. The “seconds” register is in the second (ie not the

first) register. As it happens, the register addresses start at 0, and will auto increment while

reading continues, so reading the second register can be achieved by feeding the chip a

starting zero address and reading twice.

When a change is detected, the set of time and date registers is read, with unused registers at

the start and middle. The register content is binary coded decimal so that is converted using

the function (and some recent bitwise operators from C). The information is then written to

the console in a suitable format.

This example is the base for the further LCD and solar position displays as in the appendix.

Console output (late February - a leap year) :

29:02:16 23:34:28

29:02:16 23:34:29

29:02:16 23:34:30

29:02:16 23:34:31

29:02:16 23:34:32

29:02:16 23:34:33

29:02:16 23:34:34

60

CC

C

 PROGRAM spbytercsl

C

C Reads spi RTC and displays on console

C

C Input :

C RTC time

C

C

CC

 INTEGER*1 secbyte, oldrec, outbyte, temp

 INTEGER*1 sec, min, hour, day, mnth, year

 outbyte = 0

 secbyte = 0

 oldrec = 0

 DO WHILE (1)

 DO WHILE (secbyte = oldrec)

 SPSTRT

 SPXWRD outbyte, temp

 SPXWRD outbyte, secbyte

 END DO

 oldrec = secbyte

 CALL gettime (sec, min, hour, day, mnth, year)

 FORMAT (I02,A,I02,A,I2,X)

 WRITE (*,0) day, ":", mnth, ":", year

 FORMAT (I02,A,I02,A,I02,/)

 WRITE (*,0) hour, ":", min, ":", sec

 END DO

 END

CC

 SUBROUTINE gettime (sec, min, hour, day, mnth, year)

C

C Read rtc time registers via spi

C

 INTEGER*1 recbyte, outbyte, temp

 outbyte = 0

 SPSTRT

 SPXWRD outbyte, temp

 SPXWRD outbyte, recbyte

 sec = cdbcd(recbyte)

 SPXWRD outbyte, recbyte

 min = cdbcd(recbyte)

61

 SPXWRD outbyte, recbyte

 hour = cdbcd(recbyte)

 SPXWRD outbyte, temp

 SPXWRD outbyte, recbyte

 day = cdbcd(recbyte)

 SPXWRD outbyte, recbyte

 mnth = cdbcd(recbyte)

 SPXWRD outbyte, recbyte

 year = cdbcd(recbyte)

 RETURN

 END

CC

 INTEGER*1 FUNCTION cdbcd (dbcd)

C

C Convert twin bcd to binary

C

 cdbcd = 10 * (dbcd >> 4) + (dbcd & 15)

 RETURN

 END

CC

\

62

11. Analog-Digital Converter

Analog measurements.

The chip 10-bit A-D converter can be used to take analog-digital readings. In this version it

runs continuously in the background, and measures the potential on two pins in alternation.

The results are available as standard two-byte integers in the range 0 - 1023. Results can be

accessed either as single values or as an array from a fast burst.

The ADC has a range of 1024 points so for a 3.2 volt ceiling the step size (quantum) will be a

little over 3 millivolts. The ADC minimum and maximum reference levels are set to the ADC

power supply, which should be filtered to prevent noise. If nothing is connected to the input

pin, it is normal to see noise and the potential float around a bit. It is important to safeguard

the analog inputs with overvoltage and noise filters.

If filtering resistors are used on the AD power supply, the current drawn by the ADC (a

milliamp or so) and consequent voltage drop will cause a small voltage offset from the main

power levels.

ADxx (single measurement)

A single result is accessed using the ADxx command which refers to the analog input #,

eg
 a = ADX4

 b = ADX5

reads the results of AN4 and AN5. The third character for larger analog input id's with more

channels and is redundant here, so a generic C or X can be used.

It is worth re-iterating, that in the absence of noise filters, over-voltage limiters and so on it

is normal to see a lot of noise, especially 50 or 60 Hz hum, spikes, etc. The ADX0 and ADX1

inputs share the pins with some other circuitry so have a low impedance and some cross-

talk - so as always it is best to drive the pins with an op amp voltage follower/filter/level

protection and so on. A filtered A/D power supply is also important to get realistic results.

63

Example

Here the voltage rises as a fresh AA cell is connected to ADX1, complete with a little noise as

the wires are handled.

 PROGRAM voltz

C

 INTEGER*4 i

 REAL x, y

 FORMAT (A,F5.3,A,/)

 DO 10 i = 1, 100

 CALL delay()

 x = FLOAT (ADX1)

 x = (x * 3.260) / 1024.0

 WRITE (6,0) "Cell is at ", x, " volts"

 10 CONTINUE

 END

C

C

 SUBROUTINE delay ()

 INTEGER*4 i

 DO 10 i = 1, 8000

 10 CONTINUE

 RETURN

 END

\

Cell is at 0.000 volts

Cell is at 0.000 volts

Cell is at 0.000 volts

Cell is at 0.000 volts

Cell is at 0.000 volts

Cell is at 0.000 volts

Cell is at 0.745 volts

Cell is at 0.334 volts

Cell is at 2.015 volts

Cell is at 0.541 volts

Cell is at 1.461 volts

Cell is at 0.977 volts

Cell is at 1.601 volts

Cell is at 1.601 volts

Cell is at 1.601 volts

Cell is at 1.601 volts

Cell is at 1.601 volts

Cell is at 1.601 volts

Cell is at 1.601 volts

Cell is at 1.601 volts

Cell is at 1.601 volts

...

...

64

It can be used as the basis of a simple screen display eg as shown in the appendix:

 PROGRAM sdisto

 INTEGER*2 dat(256)

 CALL tekinit ()

 CALL tekrect ()

 CALL acquiredat (dat)

 CALL tekplot (dat)

 PRINT *,

 END

 SUBROUTINE acquiredat (acdat)

 INTEGER*4 i

 DO 20 i = 1, 256

 20 acdat(i) = ADX1

 RETURN

 END

 SUBROUTINE tekinit ()

 TXINIT

 RETURN

 END

 SUBROUTINE tekrect ()

 TXMOVE 32, 250

 TXDRAW 544, 250

 TXDRAW 544, 762

 TXDRAW 32, 762

 TXDRAW 32, 250

 RETURN

 END

 SUBROUTINE tekplot (dat)

 INTEGER*4 i, j

 INTEGER*2 nn, mm

 nn = 32

 mm = dat(1) / 2 + 250

 IF (mm > 762) mm = 762

 TXMOVE nn, mm

 DO 40 i = 2, 256

 nn = nn + 2

 mm = dat(i) / 2 + 250

 IF (mm > 762) mm = 762

 TXDRAW nn, mm

 40 CONTINUE

 TXMOVE 32, 250

 RETURN

 END

\

65

ZADACQ (Fast burst of measurements).

Measurements can also be taken as a fast burst and then accessed as an array. The command

populates the array with 256 pairs of sequential ADX0 and ADX1 results. The array is a

standard array of 16 bit integers and must be declared as normal.

eg
 INTEGER*2 acdat(256,2)

 ...

 ZADACQ acdat

 ...

This is much faster than the line-by-line approach. An example (sdistoburst2.f7) with the

output used for simple screen graphics are shown in the appendix.

Shared IC pins may be in analog or digital mode. In this version/ic the analog pins have

initial precedence until used for digital I/O.

Note that using a digital port command (eg BDB2) on a pin used for analog input will then

set that pin configuration to be digital, which is not useful for analog sampling.

66

12. Utilities

A) Non-Volatile Memory.

A small amount (2k) of non-volatile memory is available, to enable user programs to store

and retrieve values. The content is retained when the chip is powered down. The intent is to

store constants and so on, so setup data does not have to re-entered every run.

It is organised as a sequential list in chunks of four bytes.

Reading from eeprom.

A read marker holds the current read position. A value is read from the eeprom position

into the specified variable, using four or eight bytes as per datatype. The marker is

incremented automatically.

Eg

 NVMREAD p

This will read four or eight bytes from eeprom and set the value of variable ‘p’ accordingly.

Writing to eeprom.

The eeprom requires a full block of data to be saved at once. To enable this, values to be

preserved are not committed individually, but instead are saved to a mirroring buffer. The

entire buffer is then written to the eeprom block as a single action when required.

A value is stored, by reading the value of a variable and saving the value in the buffer using

four or eight bytes as appropriate. A write marker holds the current buffer write position,

which increments automatically.

Eg

 NVMWRITE p, e

This will write the values of the variables p and e to the buffer, starting at the current marker

position.

67

To actually update the eeprom the eeprom block is firstly erased (cleared), and a check made

to ensure the content is cleared. Then the entire buffer contents are written to the eeprom,

as a block. This also resets the read and write markers.

So the full write sequence required is

 NVMCLEAR

 …

 NVMWRITE p, e

 …

 NVMFLASH

The initial NVMCLEAR clears the existing eeprom block contents, and finally NVMFLASH

sets the values into the eeprom.

It is a good idea to use NVMCLEAR before writing any values , as it also zeros the write

marker.

After storing values it is good practice to backtrack and confirm that the new stored values

are valid. This may seem overcautious, but clearing and flashing the eeprom are the times of

maximum chip power use, and subsequently any power supply deficiency will show up

here.

The eeprom has a limited life, and so should not be updated in say, a repeated loop default

action for no change. If required, the two markers can be reset to their start points without

updating the eeprom .

 NVMZEROP

Data from datatypes INTEGER*4 , REAL, DOUBLE and CHARACTER can be stored so far.

68

Example NVM.

This creates 256 values in an array, and clears the NVM. The values in the array are then

stored in the NVM buffer and the lot saved. The original array elements are then set to zeros

and the contents displayed as a check. The stored contents in the NVM are then retrieved

back into the array and displayed.

 PROGRAM nvmsave

 DOUBLE val(256), j

 INTEGER*4 i, ik

 PRINT "Start"

 FORMAT (I5,F15.8,/)

 PRINT "Create values in array"

 DO 10 i = 1, 256

 10 val(i) = DBLE i

 DO 20 i = 1, 256

 20 PRINT i, " ", val(i)

 PRINT "Clear nvm"

 NVMCLEAR

 PRINT "Store values in eeprom buffer"

 DO 30 i = 1, 256

 30 NVMWRITE val(i)

 PRINT "Save eeprom"

 NVMFLASH

 PRINT "Set array to zeros"

 DO 40 i = 1, 256

 40 val(i) = 0.0

 PRINT "Check zeros"

 DO 50 i = 1, 256

 50 PRINT i, " ", val(i)

 PRINT "Read values back into array"

 DO 60 i = 1, 256

 60 NVMREAD val(i)

 PRINT "Print retrieved values"

 DO 70 i = 1, 256

 70 PRINT i, " ", val(i)

 PRINT "Finish"

 END

\

69

So a simple console program to prompt the user to set up, and check/save two variables,

looks like :

C

 PROGRAM savpi

C

 DOUBLE p, e

 CHARACTER*1 u, a

 p = 0.0

 e = 0.0

 u = 'N'

 PRINT "Setup .. Y/N?"

 READ a

 IF (a = 'Y') THEN

C

 NVMREAD p

 DO WHILE (u = 'N')

 PRINT "Pi = ",p," Y/N?"

 READ u

 IF (u = 'N') THEN

 PRINT "Input new pi value"

 READ p

 END IF

 END DO

C

 u = 'N'

 NVMREAD e

 DO WHILE (u = 'N')

 PRINT "e = ",e," Y/N?"

 READ u

 IF (u = 'N') THEN

 PRINT "Input new e value"

 READ e

 END IF

 END DO

C

 NVMCLEAR

 NVMWRITE p, e

 NVMFLASH

 END IF

 NVMREAD p, e

 PRINT "Ok...Pi = ", p

 PRINT "Ok...e = ", e

 END

\

70

The first time it is run, the returned values are zero and the user puts the values in.

Setup .. Y/N?

Y

Pi = 0.00000000 Y/N?

N

Input new pi value

3.14159265

Pi = 3.14159265 Y/N?

Y

e = 0.00000000 Y/N?

N

Input new e value

2.71828182

e = 2.71828182 Y/N?

Y

Ok...Pi = 3.14159265

Ok...e = 2.71828182

After that, the values have been retained and can be retrieved even though the system was

switched off in the meantime.

<>

Setup .. Y/N?

N

Ok...Pi = 3.14159265

Ok...e = 2.71828182

71

B) Code Integrity Check.

To check that the user program has not been corrupted, a simple code integrity safeguard is

available. It uses a checksum-type approach and is instigated by the QCNTRL command. It

is not meant to prevent deliberate tampering, but more as a check against trying to run a

program that has had unnoticed transmission glitches and so on.

The command has two number groups as parameters. The first number represents the

summed ascii values of the relevant program text. When activated, the command sums the

ascii values of the user program and compares the sum total to the number cited. If there is a

mismatch, it means the ascii has been changed from the original, and the program is stopped

from proceeding any further.

There is a slight chance that the last digit in the number itself may change by one ascii value,

which would not be detected. To prevent this, only values ending in 0 (zero) are accepted. In

turn this usually requires the text to be altered a little so that the sum ends on a decade. So

as a convenience a second number is provided, simply as a string of ascii, which can be

altered to tune the ascii total sum without other affect.

During development and testing the command is not required and can be left out, or

alternatively the first number can be left as zeros which bypasses the check.

>R

 PROGRAM qcntrl

 PRINT "Start .."

 QCNTRL 0000 9999

 PRINT "Ok finish "

 END

\

Start ..

Ok finish

When ready, the first number is to be set to the ascii sum as required. Using the “Analyse”

menu option at the prompt will report a sum. [BTW the number of lines and characters

should match those reported in, eg, Word.]

>A

Lines : 7

No. chars : 99

Char sum : 6403

72

The first idea might be to set the sum to 6400 and alter the 9999 to 9996 for synchronisation.

However altering the 0000 to say 6400 will in turn add an increment to the ascii sum, eg,

6+4+0+0 or another 10. So instead 6410 is used as the next nearest decade :

Start ..

Char sum : 6414

Inconsistent with sum - exit

 QCNTRL 6410 9999

Error #91 - code sum error

Using 6410 has added 11, so the char sum is now 6414. To bring the sum total to the 6410,

that is, less 4, the 9999 is altered down to 9995. The program now proceeds without being

stopped.

>R

 PROGRAM qcntrl

C

 PRINT "Start .."

 QCNTRL 6410 9995

 PRINT "Ok finish "

 END

\

Start ..

Ok finish

73

13. Bugs, Foibles, Exasperations so far and cop-outs ...

[See the Readme(s) for updates.]

Bugs :

A01) "Variable not found"

Particularly in Print statements with quoted spaces, the parser can get confused and not see

the last character on a line, which means the last variable name in a sequence can be missed.

It can easily be prevented by including an additional space at the line end.

A02) Multi dimensional arrays

The third dimension index is not active in some I/O commands.

A03) Negative numbers

To hard-code a negative number, a space must be used between the minus symbol and the

number, ie it is used as the “negate” operator, not the sign. In an older IF clause the

workaround is to use a variable that is the negative value

eg, set b to be -10, then use IF (a < b) … .

Other issues so far:

END IF / END DO

The parsing is a bit picky. There must be one space exactly between the END and the IF or

DO.

Some new user error codes are not in the prior manual and now have been included.

74

A1. Appendix 1

Error messages

Error #1 - incorrect datatype

 The variable type was not consistent with the action. Use FLOAT/DBLE/IFIX etc if

needed.

Error #2 - array bounds error

 An array index value was zero or larger than the declared array range.

Error #3 - variable max exceeded

 Tha value was larger than the datatype maximum.

Error #4 - invalid hardware unit

 A formatted I/O has tried to use an illegal hardware type.

Error #5 - variable not found

 An expression has used a variable that has not been declared.

Error #%d - variable already specified

 A variable has been declared already.

Error #6 - statement not found

 An identified statement has been cited by id, but no statement with that id

 exists.

Error #8 - variable datatype unknown

 A variable's datatype was not found.

Error #9 - variable not defined

 The variable is unknown.

75

Error #10 - expected array

 A variable that is not an array has been used instead of an array.

Error #11 - invalid option

 The option used is not available.

Error #12 - mismatched datatype

 An accidental attempt was made to mix integer and floating point math.

Error #13 - divide by zero

 A division by zero was attempted.

Error #14 - memory limit exceeded

 The variables declared use too much memory.

Error #15 - expected INTEGER*4

 Variables used as loop counters and array indexes must be INTEGER*4.

Error #16 - subroutine level exceeded

 Too many subroutines called.

Error #17 - subroutine definitions exceeded

 Too many subroutines defined.

Error #18 - loop nesting level exceeded

 Too many loops called.

Error #19 - loop range past integer*4

 A loop variable will exceed the integer*4 limit.

Error #20 - illegal character detected near ...

 The input file has an illegal character eg tab.

76

Error #21 - syntax error

 A misformed command.

Error #22 - line length exceeded

 The input line has too many characters.

Error #23 - file length exceeded

 The input file (program) is too long.

Error #24 - dimension error

 An array has been referenced with incorrect number of dimensions.

Error #26 - last line end/start space

 A space character was detected after the end of a line.

Error #27 - check input line

 The input line has a misformed sequence or typo.

Error #28 - negative root

 Attempt to find the square root of a negative number.

Error #29 - numbr of variables exceeded

 A program/subroutine has tried to define too many variables.

Error #30 - subroutine not found

 The subroutine called does not exist.

Error #34 - id'd lines exceeded

 A program/subroutine has tried to set too many lines with id number (labels).

Error #36 - missing quote

 A closing quotation mark was not found within range.

77

Error #37 - space expected

 A space was expected, eg 'WRITE (...)' not 'WRITE(...)' .

Error #38 - not implemented in this version

 Feature is not available.

Error #40 - eeprom not erased

 The eeprom was not cleared so a save is not possible. It usually means a power

supply problem (likely), or that the eeprom is worn out (unlikely).

Error #44 - variable already in use

 The variable has already been defined.

Error #45 - brackets needed

 Repeated ** (exponentiation) needs appropriate bracketing.

Error #50 - input overrun

 Expected shorter record/data.

Error #53 - IFs limit exceeded

 Too many IFs.

Error #54 - ELSE IFs limit exceeded

 Too many ELSE IF's.

Error #55 - IF nest limit exceeded

 IF nesting too deep.

Error #56 - Bad IF or WHILE structure

 Found an IF .. THEN or DO WHILE but not the corresponding END IF / END DO.

78

Error #59 - Line token limit

 The line has too many tokens.

Error #80 –NVM Error

Catch-all NVM error, the usual cause is an attempt to go past the 2k limit.

Error - unspecified

 Generic error message.

79

Setting up

The IC containing Electride will probably be on a circuit board or hardware

with the required power supply and a serial/usb connection.

Pin 11 RB4 Serial (TTL) output from pic to usb chip and usb

Pin 12 RA4 Serial (TTL) input to pic from usb chip and usb

As well, a remote serial terminal will be needed, probably a PC running something like Tera

Term. The PC usb/serial bridge may require setting up with the .inf file.

The serial connection then uses a PC COMx serial port, eg COM5, and the parameters

should be set to 115 kbps, 8 bits, no parity, 1 stop bit, and no flow control/handshake.

The output line from the pic32 IC to the USB chip may require a weak pull-up resistor to

keep the USB connection active during reset, although that has not been required so far.

If an independently-powered peripheral eg LCD is connected, it may continue powering the

pic through leakage even though the pic power is not active. This can keep it from resetting

and cause USB connection problems. So it can be necessary to power the peripherals off as

well.

Connections for data to/from sensors etc should have current-limiting resistors as a

safeguard, particularly when 5v is used. A 5v peripheral connection should have a resistor-

divider to ground, eg a 4.3 k and 6.2 k to ground. The pic pin can then be connected to the

midpoint which will sit at about 3 volts when driven by the peripheral as an output, and

when reading, the peripheral will see the full pic output assuming it does not draw

significant current. If there is a sink the current will be limited.

A reasonable DIY 28pin pic32mx board is the mu-2b which is available as a shared pcb on

OSH Park.

80

Configuration

Trial pic32mx170b SDIP version, configuration C :

IC pin Used as Connected to

01 /MCLR Reset

02 nc

03 nc

04 RB0 Digital 0 / LCD D7

05 RB1 Digital 1 / LCD D6

06 RB2/AN4 Digital 2 / LCD D5

07 RB3/AN5 Digital 3 / LCD D4

08 Vss Ground

09 nc Reserved for crystal

10 nc Reserved for crystal

11 RB4 Serial out to terminal / Digital 4

12 RA4 Serial in from terminal / Run mode

13 Vdd Power 3.3v Tank+bypass capacitors

14 RB5 Digital 5 / LCD Enable

15 RB6 Digital 6 / LCD RegSelect

16 RB7 Digital 7 / LCD ReadWrite

17 RB8 Digital 8 / keypad 1 – A row

18 RB9 Digital 9 / keypad 4 – B row / or aux read in

19 Vss Ground

20 Vcap Capacitor 10uF low esr

21 RB10 Digital A / keypad 7 – C row

22 RB11 Digital B / keypad * - D row

23 RB12 Digital C / keypad A – D col 1k to ground

24 RB13 Digital D / keypad 3 - # col 1k to ground

25 RB14 Digital E / keypad 2 – 0 col 1k to ground

26 RB15 Digital F / keypad 1 - * col 1k to ground

27 AVss ADC ground -

28 AVdd ADC power +, filter+bypass capacitors

Auxiliary serial input is on B9 (9600/8/N/1).

The SPI connections :

/CS B15

MOSI B14

MISO B13

Clock B12

3.3v to sensors B10

0.0v to sensors B9

81

Version limits

Trial version :

program length 16k

memory for variables 16k

subroutine definitions 8

subroutine nest limit 4

variables / sub 32

array dimensions 3

id'd lines / sub 20

loop nest depth 7

These are arbitrary values designed to allow small archetype programs to run. The scale-

enabling algorithms are removed.

The main version runs on a larger PIC32MX795/695 IC at nearly double the speed and has

much larger limits. The software should also port to a PIC32MZ easily.

Differences from mainstream.

The scope is very much smaller than the traditional areas of fortran. So Electride is not

meant to be “Big Iron” ie fast number cruncher, run economic or weather modelling, run a

spreadsheet, pilot a UAV or run audio and video codecs!. The memory limits are small, and

in particular it is an interpreted system which means the execution speed is much slower

than compiled code. Only a minor subset of the language is intended.

Inevitably, for an interpreter to be shoehorned into a microcontroller there are some

tradeoffs. As the scope is small several capabilities of larger systems are not particularly

needed and so are not present or still pending.

There are also arbitrary limits set for the intended use and version. On the positive side,

several features of later software are included to replace deprecated or obsolete habits. There

are also cosmetic differences left in place for differentiation.

The following are not present.

EQUIVALENCE

Multiple (continuation) records

Complex numbers

Hollerith strings

82

To be included :

DATA

FILE I/O

The following are features changed or updated from standard.

IMPLICIT NONE is permanently set.

Default-format reporting is included.

Quoted (double quotes) text string literals can be used in output.

Lower case is used for variable names.

Variable names can be longer than six characters (the first

six still form the unique id).

Standard comparison operators eg "<" instead of ".LT."

Format statements are used on a most-recent basis.

DIMENSION is not active as variable/array properties are automatically passed.

Cosmetic differences.

A WRITE command has a space separator before the first content (as in F90).

83

A2. Appendix 2

Some archetype examples, etc.

These are included here as they are based on some of the usual capabilities found in

embedded systems and appliances.

1. Keypad/LCD interface.

The first is a simple interface, a keypad and 16x2 LCD. Although not as glamorous as the

graphic LCD’s, it uses very little memory and is cost effective. It can also be used in adverse

environments and gloves etc. (fishkeylcd.f7)

2. Time from DS3234 accurate clock chip using SPI .

The second uses a SPI based interface to an accurate real-time chip, and displays the time.

This is largely the example from the text, but has been changed to use common memory for

the time data. This provides time information and frees up the subroutine call(s) for further

use. It should be easy to connect further SPI devices for similar sensors etc. (rtccccomm.f7)

3. Solar position calculation and display.

The third includes a mainstream computational task. In this case it uses double precision

math to calculate solar position (ie local solar azimuth and elevation) from the time and

latitude/longitude, with update and display on the LCD once a second. (sunposspilcd.f7)

[The calculation is essentially that of the “sunae” program and NOAA refraction (Michalski,

J./Harrison, L./mod Wiscombe, W), public domain via NOAA, which is gratefully

acknowledged.]

As a check the calculation is also included as of an older separate program which calculates

a 24-hour list of data for a particular day and location. In this case it shows the results for a

Sydney location in December, along with those calculated by the NOAA spreadsheet, and

can be seen to be in good agreement.

84

Checking

This was a check of implementing double precision calculation. It calculates the elevation

and azimuth of the sun over 24 hours for a given date and latitude/longitude. Example

output for a location in Sydney Australia in December is pasted afterward, together with the

corresponding NOAA results as a check.

Output of program solpositiondblfunc

Latitude and longitude ?

-31.5,151.0

Day, month, year ?

1,12,2015

What is the time zone offset ?

10.0

Day of year is 335

Hr El Az

 1.0 -33.8523 158.7965

 2.0 -27.7178 144.2080

 3.0 -19.1659 132.1936

 4.0 -8.9594 122.3798

 5.0 2.5379 114.1601

 6.0 14.3061 106.9515

 7.0 26.7012 100.2136

 8.0 39.3799 93.3362

 9.0 52.1510 85.3228

10.0 64.7196 73.6578

11.0 76.0331 48.2817

12.0 79.6541 339.8968

13.0 70.6044 295.6404

14.0 58.4000 279.6097

15.0 45.6787 270.3106

16.0 32.9352 263.0431

17.0 20.3844 256.3204

18.0 8.2372 249.4054

19.0 -3.4129 241.7459

20.0 -14.2411 232.7881

21.0 -23.6652 221.9274

22.0 -31.0708 208.6292

23.0 -35.6184 192.8551

24.0 -36.5662 175.6464

Finish

[NOAA results]

 1.0 -33.85490726 158.7992583

 2.0 -27.72088766 144.2098802

 3.0 -19.1692475 132.1947499

 4.0 -8.96293936 122.3803809

 5.0 2.534538286 114.1603091

 6.0 14.30254649 106.9514729

 7.0 26.69759425 100.2134148

 8.0 39.37634931 93.33582068

85

 9.0 52.14739528 85.32227727

10.0 64.71595081 73.65778102

11.0 76.02961127 48.28651229

12.0 79.65345181 339.9169479

13.0 70.60612865 295.6502146

14.0 58.4022171 279.6154067

15.0 45.68100213 270.314752

16.0 32.9375546 263.046596

17.0 20.38657276 256.3236183

18.0 8.239184913 249.4086276

19.0 -3.411166545 241.7493252

20.0 -14.23983879 232.7918372

21.0 -23.66443581 221.9314953

22.0 -31.07090207 208.6337047

23.0 -35.61935875 192.859699

24.0 -36.5681754 175.6505146

86

A3. Appendix 3

A) Vector graphic output (Tektronix 4010 / Tera Term).

The Tera Term terminal program also provides a Tektronix 4010 based vector graphics

emulator. A Tektronix 4010 was the ancestor of graphic displays, using a monochrome

stored-image tube, on which vector graphics were written …slowly…and the capabilities

were a long way from todays technology. However it is free, does not require extra

hardware, and for a bit of fun or for a restricted display with modest expectations it is a

reasonable experiment.

To display simple graphics the Tek window is opened in Tera Term and thereafter it

interprets graphics commands sent in the ascii serial stream. The window can opened

manually, or a Tera Term option can be set to open the window when the graphics screen

sequence is detected.

An initialisation sequence is sent first, then the move and draw commands as required. The

MOVE and DRAW commands are supplied with x and y parameters, ie two-byte integers

either as values or variables. The first vector after initialisation is always invisible, ie taken to

be a MOVE.

The visible screen is 1024 points wide and 512 points high, with another 256 addressable

points off screen at the top.

TXINIT

Sends the Tektronix 4010 initialisation string to terminal.

TXMOVE x, y

Moves graphic cursor to new position x, y.

TXDRAW x, y

Draws a vector from current position to new position x, y.

The example here loops through AD measurements and plots a minimalist chart.

The first image is a resulting screen shot of 100 Hz ripple. (plugpak 100Hz : plugpak.jpg)

No attempt has been made to plot axes etc but there were commercial libraries etc for that.

87

PROGRAM sdisto

C

 INTEGER*2 dat(256)

 CALL tekinit ()

 CALL tekrect ()

 CALL acquiredat (dat)

 CALL tekplot (dat)

 PRINT *,

C

 END

C

 SUBROUTINE acquiredat (acdat)

 INTEGER*4 i

 DO 20 i = 1, 256

 20 acdat(i) = ADX5

 RETURN

 END

C

C

 SUBROUTINE tekinit ()

 TXINIT

 RETURN

 END

C

C

 SUBROUTINE tekrect ()

 TXMOVE 32, 250

 TXDRAW 544, 250

 TXDRAW 544, 762

 TXDRAW 32, 762

 TXDRAW 32, 250

 RETURN

 END

C

88

 SUBROUTINE tekplot (dat)

 INTEGER*4 i, j

 INTEGER*2 nn, mm

 nn = 32

 mm = dat(1) / 2 + 250

 IF (mm > 762) mm = 762

 TXMOVE nn, mm

 DO 40 i = 2, 256

 nn = nn + 2

 mm = dat(i) / 2 + 250

 IF (mm > 762) mm = 762

 TXDRAW nn, mm

 40 CONTINUE

 TXMOVE 32, 250

 RETURN

 END

\

And a very similar program using the A-D burst mode instead, the output showing

 9600 bps TTL ascii as per rs232. (Code is in the appendix examples) (rs2329600.jpg)

