MMBASIC-STM32F746		Uwe Becker / Fabrice Muller
[bookmark: _GoBack]Contents
1)MMBasic	2
2)F746-Port	2
3)STM32F746-Discovery	2
4)Differences Maximite <> F746-Port 	3
4.1)Display and Colors	3
4.2)Fonts	3
4.3)Touch	4
4.4)Keyboard	4
4.5)Console connection	4
4.6)External Drives	5
4.7)Sprites / Maps	5
4.8)3D-Objects	5
4.9)UART	6
4.10)SPI	6
4.11)I2C	7
4.12)Sound	7
4.13)GPIO-Pins	8
4.14)FLASH	8
4.15)Autorun	8
4.16)External Devices	8
5)GPIO-Ports	9
5.1)Pinout	10
6)Actual software state	11
7)Operators	11
8)Predefined read only variables	12
9)Commands	13
10)Functions	18
11)Other MMBasic commands	20
12)New commands for the F746-MMBasic	21
13)Syntax of the new commands in F746-MMBasic	23
13.1)aCos	23
13.2)aSin	23
13.3)CalcCos	23
13.4)CalcSin	23
13.5)Circle	23
13.6)Ellipse	24
13.7)Triangle	24
13.8)Sprites	25
13.9)Maps	25
13.10)Pixel	26
13.11)Layer	26
13.12)Quad	27
13.13)3D-Objects	28
13.14)Polygons	29
13.15)Joystick	33

MMBasic
MMBasic is a powerfull BASIC-Interpreter written by Geoff Graham
for a PIC32 Microcontroller from Microchip.

Link to MMBasic : http://mmbasic.com/
Link to Geoff's Maximite-Project : http://geoffg.net/maximite.html
F746-Port
The „MMBasic-STM32F746“ is a port from the original Version to
a STM32F746 Microcontroller from ST.
The starting point of the Firmware is MMBasic for the Maximite in Version 4.5.
The Hardware base is a STM32F746-Discovery Board from ST.
The authors are : Uwe Becker and Fabrice Muller
Link to the German webblog : http://mikrocontroller.bplaced.net/wordpress/?page_id=5487
(here you can find the binary from the newest version)
Link to an English forum : http://www.thebackshed.com/Forum/forum_posts.asp?TID=7969&PN=1
STM32F746-Discovery
The Discovery Boards includes all necessary parts for a stand alone system.

INPUT :	USB-Connector (to plug in a standard USB-Keyboard)
OUTPUT : 	4,3 inch Display (480x272 Pixel @ 65k Color)
DRIVES :	uSD-Slot (Drive b:) and USB-Connector for a USB-Drive (Drive c:)
COM :		UART connection (@ USB and VCP) to a terminal program
GPIO :		22 User defined IO-Signals (IO, UART, SPI, I2C etc)
and has additional parts like :
RAM :		8Mbyte (to store Graphics, Sounds etc)
TOUCH :	4,3 inch Multitouch (to realize a GUI)
FLASH :	16MByte (to store user settings, programs, files)
SOUND :	Stereo Audio-DAC (for Music)
ETHERNET :	for LAN connection

Differences Maximite <> F746-Port
There are some differences in the implementation of MMBasic between
the Maximite and the F746 Version.
Display and Colors
A big difference between Maximite and F746-Port is the Video system.
Maximite :		480 x 432 Pixel (monochrome)
Color-Maximite :	480 x 432 Pixel (8 colors)
F746-Port :		480 x 272 Pixel (65535 colors)
All Graphic commands are changed to handle 65535 colors.
There are no need for different color modes so the „MODE“ command is deleted.
Also the „SCANLINE“ command is deleted.
8 default colors are :
"BLACK","WHITE","RED","GREEN","BLUE","CYAN","PURPLE","YELLOW"
8 new default colors are defined :
"ORANGE","BROWN","LRED","DGREY","GREY","LGREY","LGREEN","LBLUE"
and you can use any RGB656 color code between 0x0000 and 0xFFFF
You can disable/enable the output for the "PRINT" command in a basic program with :
OPTION VIDEO OFF	(disable output)
OPTION VIDEO ON		(enable output)
You can store the default color for background and text in Flash with :
CONFIG BGCOLOR #color
CONFIG FGCOLOR #color
Fonts
At the Moment 6 different Fonts are installed in Flash.
#1 to #3 are the same as in the Maximite Version :
#1 = 6x12 Pixel (standard Font for Editor)
#2 = 13x20 Pixel
#3 = 24x23 Pixel (only Chars : '+,-.',Space,'0...9')
#4 to #6 are generated from UB :
#4 = 8x8 Pixel (C64-Font)
#5 = 8x13 Pixel
#6 = 10x15 Pixel
All Fonts can be used in Basic Programs with the "FONT #nr" command.
All Fonts (except #3) can be stored in Flash as default Font with :
CONFIG FONT #nr
Touch
The Multi-Touch can handle up to 5 touch positions at a time.
The standard BASIC command „TOUCHED()“ works like the TFT-Maximite Version
and readout only the first touch position.
With the new „MTOUCHED()“ command all 5 positions can be used without loosing speed.
Keyboard
You can connect a standard USB Keyboard at CN13 (USB_FS).
3 Keyboard Layouts are implemented, use command :
CONFIG KEYBOARD US	(for US QWERY Layout)
CONFIG KEYBOARD GR	(for German QWERZ Layout)
CONFIG KEYBOARD FR	(for France AZERTY Layout)
There are two Keyboard shortcuts with :
ALT+F11 = switch Keyboard-Layout (QWERTZ, QWERTY, AZERTY)
ALT+F12 = send display screenshot (as BMP-File) to console output
You can setup the function keys F1 to F12 with a short string like :
example : OPTION F1 "Run" + CHR$(13)
Console connection
The USB/ST-Link-Port (CN14) is used as UART connection to a terminal
(TeraTerm recommended). Setting is : 115200 Baud, 8N1
You can disable/enable the output in a basic program with :
OPTION USB OFF	(disable output)
OPTION USB ON	(enable output)
To change baudrate use :
CONFIG BAUDRATE #baudrate
External Drives
You can connect a Micro-SD card at CN3 and a USB-Drive at CN12 (USB_HS).
Both drives must be formatted with FAT filesystem.
To change the active drive :
DRIVE A:		(a = internal Flash, not supported)
DRIVE B:		(b = uSD)
DRIVE C:		(c = USB)
To list the directory of the active drive :
FILES			(list all files and directorys)
FILES "*.bas"		(list all BAS-Files)
FILES "H*.*"		(list all files with first char "H")
FILES "?H*.*"	(list all files with second char "H")
To change the directory :
CHDIR <name>	(change into <name>)
CHDIR ..		(change in parent directory)
Other commands :
KILL <filename>	(delete file <filename>)
MKDIR <name>	(create directory <name>)
RMDIR <name>	(delete direcotry <name>)
To setup the default drive use :
CONFIG DRIVE [A/B/C]
Sprites / Maps
Because of the better graphic capabilities of the F746-Port there are many
differences in the sprite and maps handling.
So many BASIC commands are different in function and/or syntax
and the files are not compatible with the Maximite Version.
A spritefile can now handle different sprite sizes up to 32x32 pixel
and supports ARGB1555 color format.
Maps for Background also supports the ARGB1555 Format
and can have a size up to 1.000.000 Pixel.
The CPU fit the map in every window size like 480x272 or 300x150 or whatever.
3D-Objects
These Graphic-Objects are a new feature and made by Fabrice.
Please read the command description for details.

UART
COM1 and COM2 can be used with these Baudrates :
115200, 57600, 38400, 19200, 9600, 4800	[9600 = default]
Stopbits one or two
FlowControl only works at COM2
BufferSize is fixed at 256 Bytes
RS485 is not supported
OpenCollector Output is not supported
Interrupt functions not supported
Com1 or COM2 can used as console in/out.
GPIO-Pins automatically configured by the basic-command "open"
so there is no need to set input,output with the "setpin" command.
Before the basic program is started, all com-ports are closed.
(Except the port is defined as console)
SPI
SPI1 and SPI2 can be used as "Master" with these settings :
Frame : 8bit
Speed : 0...7 (default=3)
Mode : 0,1,2,3 (default=3)
Bitorder : MSB, LSB
SlaveSelect-Pin : can be automatically handelt
GPIO-Pins automatically configured by the basic-command "spi open"
so there is no need to set input,output with the "setpin" command.
Before the basic program is started, all spi-ports are closed.
	Speed
	0
	1
	2
	3
	4
	5
	6
	7

	SPI-1
	195kHz
	390kHz
	781kHz
	1,56MHz
	3,12MHz
	6,25MHz
	12,5MHz
	25MHz

	SPI-2
	390kHz
	781kHz
	1,56MHz
	3,12MHz
	6,25MHz
	12,5MHz
	25MHz
	50MHz

I2C
I2C1 can be used as "Master" with these settings :
Slave-Adress : 8bit
Speed : 10...400 (kHz)
Timeout : 100...n (ms)
Option : 0
GPIO-Pins automatically configured by the basic-command "i2c open"
so there is no need to set input,output with the "setpin" command.
Before the basic program is started, i2c-port is closed.
I2C-Frq : 10,20,30,40,50,60,70,80,90,100,200,300,400 [kHz]
Sound
At the moment you can load WAV-Files from SD- or USB-Drive and play them in background.
Output is the Headphone Mini-Jack (CN10).
There is space to hold 20 Files (or max 1MByte).
WAVE-Format must be : PCM, 16bit, Mono or Stereo, 8kHz - 48kHz
To load a wave use : "WAVE LOAD"
There are two commands to play the sound "WAVE PLAY" and "WAVE LOOP"
and one command to stop the sound "WAVE STOP"
You can play up to 4 WAV-Files simultaneously (wav formates must be equal).
To unload all WAV-Files use "WAVE CLEAR" (only if no wave is playing).

GPIO-Pins
Not all GPIO-Modes are implemented yet.
At the moment only OFF, INTL, INTH, INTB, DIN, DOU, AIN are working.
Before the basic program is started, all GPIO-Pins are set to "OFF"
(except the LED-Pin and the Console-Pins if opened)
Digital-Inputs (DIN) can have 3 internal resistor Modes : "NONE", "UP", "DOWN"
(default is "NONE") e.g. "setpin 1,DIN,DOWN"
Interrupt-Inputs (INTL,INTH,INTB) can have 3 internal resistor Modes : "NONE", "UP", "DOWN"
(default is "NONE") e.g. "setpin 1,INTL,UP,1000"
FLASH
Some settings are stored in the external Flash
If the Flash is not initialized (at the very first start) the default settings are stored.
After that, every time the basic-command "config" is used to store new settings.
The Flash can be erased up to 100.000 times.
Autorun
After PowerOn the default drive is checked for a file with the name "Autorun.bas".
If this file is found then it will be automatically loaded and started.
To configure this option :
CONFIG AUTORUN OFF	(disable autorun)
CONFIG AUTORUN ON	(enable autorun)
External Devices
You can connect some external Devices to the STM32F7 IO-Ports.
We have build in a few Basic-Commands to have easy access to these devices :
	Device
	Function
	IO-Connection
	Basic-Command

	PCF8563 or
PCF8586
	RealTimeClock
	I2C-Bus
	RTC

	MPU6050
	3 axis Gyro and
Acceleration-Sensor
	I2C-Bus
	MPU6050

	Joystick
	4 direction Joystick
with 2 Firebuttons
	6x Digital-IO
	JoyInit
JoyGet

GPIO-Ports
	Pin-Nr / Name
	CPU
	Pinhead
	Function-1
	Function-2
	Supported Modes

	0
	nc
	nc
	Not used
	
	nc

	1 / D0
	PC7
	CN4/1
	COM1_RX
	
	INTL,INTH,INTB,DIN,DOUT

	2 / D1
	PC6
	CN4/2
	COM1_TX
	
	INTL,INTH,INTB,DIN,DOUT

	3 / D2
	PG6
	CN4/3
	
	
	INTL,INTH,INTB,DIN,DOUT

	4 / D3
	PB4
	CN4/4
	
	
	INTL,INTH,INTB,DIN,DOUT

	5 / D4
	PG7
	CN4/5
	
	
	INTL,INTH,INTB,DIN,DOUT

	6 / D5
	PI0
	CN4/6
	
	
	INTL,INTH,INTB,DIN,DOUT

	7 / D6
	PH6
	CN4/7
	
	
	INTL,INTH,INTB,DIN,DOUT

	8 / D7
	PI3
	CN4/8
	
	
	INTL,INTH,INTB,DIN,DOUT

	9 / D8
	PI2
	CN7/1
	
	
	INTL,INTH,INTB,DIN,DOUT

	10 / D9
	PA15
	CN7/2
	
	
	INTL,INTH,INTB,DIN,DOUT

	11 / D10
	PA8
	CN7/3
	SPI1_SS
	
	INTL,INTH,INTB,DIN,DOUT

	12 / D11
	PB15
	CN7/4
	SPI1_MOSI
	
	INTL,INTH,INTB,DIN,DOUT

	13 / D12
	PB14
	CN7/5
	SPI1_MISO
	
	INTL,INTH,INTB,DIN,DOUT

	14 / D13
	PI1
	CN7/6
	SPI1_SCK
	User-LED
	INTL,INTH,INTB,DIN,DOUT

	15 / D14
	PB9
	CN7/9
	I2C_SDA
	
	INTL,INTH,INTB,DIN,DOUT

	16 / D15
	PB8
	CN7/10
	I2C_SCL
	
	INTL,INTH,INTB,DIN,DOUT

	17 / A0
	PA0
	CN5/1
	
	
	INTL,INTH,INTB,DIN,DOUT,AIN

	18 / A1
	PF10
	CN5/2
	
	
	INTL,INTH,INTB,DIN,DOUT,AIN

	19 / A2
	PF9
	CN5/3
	COM2_CTS
	SPI2_MOSI
	INTL,INTH,INTB,DIN,DOUT,AIN

	20 / A3
	PF8
	CN5/4
	COM2_RTS
	SPI2_MISO
	INTL,INTH,INTB,DIN,DOUT,AIN

	21 / A4
	PF7
	CN5/5
	COM2_TX
	SPI2_SCK
	INTL,INTH,INTB,DIN,DOUT,AIN

	22 / A5
	PF6
	CN5/6
	COM2_RX
	SPI2_SS
	INTL,INTH,INTB,DIN,DOUT,AIN

	23
	PI11
	nc
	
	User-Button
	INTL,INTH,INTB,DIN

Pinout
[image:]
Actual software state
In the following table i tried to comment all implemented features.
Should work :			the command should work like the original one
Not implemented yet :	the command is not implemented in the current version
Changed syntax :		the command has a different syntax to the original one
Not necessary :		the command is not used in F746-Version

Please use the MMBasic Language Manual from Geoff for a detailed description
of all the functions, commands and the syntax.

If you found errors in the list or bugs in the software,
please write a comment and send it back to me so i can correct it in the next version.
Operators
Here the arithmetic and logic operators
	^
	exponentiation
	a = b ^ c

	*
	multiplication
	a = b * c

	/
	division
	a = b / c

	\
	integer division
	a = b \ c

	Mod
	modulus
	a = b MOD c

	+
	addition
	a = b + c ; a$ = b$ + c$

	-
	subtraction
	a = b - c

	NOT
	logical NOT
	a = NOT b

	AND
	logical AND
	a = b AND c

	OR
	logical OR
	a = b OR c

	XOR
	logical XOR
	a = b XOR c

	<<
	logical shift left
	a = b << c

	>>
	logical shift right
	a = b >> c

	
	
	

	"=", "<", ">", "<=", ">=", "< >"
	comparison
	if(a=3) then print "a=3"
if(a>=3) then print "a>=3"

	
	
	

Predefined read only variables
	MM.HRES
	Should work

	MM.VRES
	Should work

	MM.HPOS
	Should work

	MM.VPOS
	Should work

	MM.VER
	Should work

	MM.DEVICE$
	Should work

	MM.DRIVE$
	Should work

	MM.FNAME$
	Should work

	MM.CMDLINE$
	?

	MM.ERRNO
	?

	BLACK
	Should work

	BLUE
	Should work

	GREEN
	Should work

	CYAN
	Should work

	RED
	Should work

	PURPLE
	Should work

	YELLOW
	Should work

	WHITE
	Should work

	MM.I2C
	Should work

	MM.ONEWIRE
	Not implemented yet

	
	

	
	

Commands
	program command-line
	Not implemented yet

	' (single quotation mark)
	Should work

	? (question mark)
	Should work

	AUTO
	Should work

	BLIT
	Changed syntax :
BLIT x,y,w,h,xd,yd,roll
x,y = source position
w,h = size
xd,yd = destination offset
roll = 0:no, 1=yes

	CHAIN
	Not implemented yet

	CHDIR
	Should work

	old : CIRCLE (x,y),r [,c [,aspect [,F]]]
	Changed syntax :
CIRCLE (x,y),r [,c1 [,c2 [,F]]]
c1=outcolor, c2=incolor

if aspect <> 1 use the new command ELLIPSE

	CLEAR
	Should work

	CLOSE #nbr
	Should work
(Files not implemented yet)

	CLOSE CONSOLE
	Should work

	CLS
	Should work

	COLOR
	Should work

	CONFIG
	Should work
Implemented settings :
VIDEO [ON / OFF]
FONT [1...6]
CASE [LOWER / UPPER / TITLE]
KEYBOARD [US / FR / GR]
TAB [2 / 4 / 8]
DRIVE [A / B / C]
BGCOLOR [0...65535]
FGCOLOR [0...65535]
AUTORUN [ON / OFF]
BAUDRATE [2400...115200] --> restart

	CONTINUE
	Should work

	COPY
	Not implemented yet

	COPYRIGHT
	Should work

	DATA
	Should work

	DATE$
	Should work

	DELETE
	Should work

	DIM
	Should work

	DO / LOOP
	Should work

	DRIVE
	Should work
a: = Flash (not implemented yet)
b: = uSD
c: = USB-Drive

	DS18B20
	Not implemented yet

	EDIT
	Should work

	ELSE / ELSEIF
	Should work

	END
	Should work

	END FUNCTION / END SUB
	Should work

	ERASE
	Should work

	ERROROK
	Should work

	EXIT
	Should work

	FILES
	Should work
(wildcards '*' or '?')

	FONT
	Should work

	FONT LOAD / FONT UNLOAD
	Not implemented yet

	FOR
	Should work

	FUNCTION
	Should work

	GOSUB
	Should work

	GOTO
	Should work

	IF / THEN / ELSE
	Should work

	INPUT
	Should work

	INPUT #nbr
	Should work
(Files not implemented yet)

	IR
	Not implemented yet

	IRETURN
	Should work

	KILL
	Should work

	KEYPAD
	Not implemented yet

	LET
	Should work

	LCD
	Not implemented yet

	LIBRARY
	Not implemented yet

	LINE
	Should work

	LINE INPUT
	Should work

	LINE INPUT #nbr
	Not implemented yet

	LIST
	Should work

	LOAD
	Should work

	LOADBMP "File.bmp" [,x[,y]]
	Changed syntax :
LOADBMP "File.bmp" [,x[,y[,layer]]]

	LOCAL
	Should work

	LOOP
	Should work

	MEMORY
	Should work

	MERGE
	Not implemented yet

	MKDIR
	Should work

	MODE
	Not necessary in F746-Version

	NAME
	Not implemented yet

	NEW
	Should work

	NEXT
	Should work

	ON
	Should work

	ON KEY
	Should work

	OPEN „fnam“
	Not implemented yet

	OPEN „comspec“ as #nbr
or
OPEN „comspec“ as console

comspec :
COMn:bd,buf,int,intlevel,FC,DE,OC,S2

e.g. : open "COM1:" as 1
	Opens a seriell port „COM1“ or „COM2“
bd = 115200, 57600, 38400, 19200, 9600, 4800
fixed buf size
interrupt not implemented yet
FC only at COM2
DE not implemented yet
OC not implemented yet
S2 = two stopbits

	OPTION
	Should work
Implemented settings :
BASE, ERROR, PROMT, USB,
BREAK, VIDEO, Fnn

	PAUSE
	Should work

	PIN
	Should work

	PIXEL
	Should work

	PLAYMOD
	Not implemented yet

	POKE
	Not implemented yet

	PORT
	Should work

	PRINT
	Should work

	PRINT @
	Should work

	PRINT #nbr
	Should work
(Files not implemented yet)

	PULSE
	Not implemented yet

	PWM
	Not implemented yet

	QUIT
	Not necessary in F746-Version

	RANDOMIZE
	Should work

	READ
	Should work

	REM
	Should work

	RESTORE
	Should work

	RETURN
	Should work

	RMDIR
	Should work

	RTC
RTC GETTTIME [typ]
RTC SETTIME y,m,d,h,m,s [,typ]
	Changed syntax :
[typ] can be :
PCF8563 (default)
PCF8583 (in this case year must be 2015-2018)

	RUN
	Should work

	SAVE
	Should work

	SAVEBMP
	Should work

	SCANLINE
	Not necessary in F746-Version

	SEEK #fnbr
	Not implemented yet

	SETPIN pin,mode [,resistor]
	Should work
Implemented Modes :
OFF, DIN, DOUT,AIN
(DIN can have a 3rd parameter for resistor)
NONE,UP,DOWN (default is "none")

	SETPIN pin,mode [,resistor], target
	Should work
Implemented Modes :
OFF, INTL, INTH, INTB
can have a 3rd parameter for resistor
NONE,UP,DOWN (default is "none")

	SETTICK
	Should work

	SPRITE
	Should work

	SUB
	Should work

	SYSTEM
	Not necessary in F746-Version

	TIME$
	Should work

	TIMER
	Should work

	TONE
	Not implemented yet

	TROFF
	Should work

	TRON
	Should work

	WATCHDOG
	Not implemented yet

	XMODEM
	Not implemented yet

	
	

	
	

	
	

Functions
	ABS
	Should work

	ASC
	Should work

	ATN
	Should work

	BIN$
	Should work

	CHR$
	Should work

	CINT
	Should work

	CLR$
	Should work

	COLLISION
	Not implemented yet

	COS
	Should work

	CWD$
	Should work

	DATE$
	Should work

	DEG
	Should work

	DIR$
	Not implemented yet

	DISTANCE
	Not implemented yet

	DS18B20
	Not implemented yet

	EOF(#nbr)
	Should work
(Files not implemented yet)

	EXP
	Should work

	FIX
	Should work

	FORMAT$
	Should work

	HEX$
	Should work

	INKEY$
	Should work

	INPUT$(nbr, [#]fnbr)
	Should work
(Files not implemented yet)

	INSTR
	Should work

	INT
	Should work

	KEYDOWN
	Should work

	LEFT$
	Should work

	LEN
	Should work

	LOC([#]fnbr)
	Should work
(Files not implemented yet)

	LOF([#]fnbr)
	Should work
(Files not implemented yet)

	LOG
	Should work

	LCASE$
	Should work

	MID$
	Should work

	OCT$
	Should work

	PEEK
	Not implemented yet

	PI
	Should work

	PIN
	Should work

	PORT
	Should work

	POS
	Should work

	PIXEL
	Should work

	RAD
	Should work

	RIGHT$
	Should work

	RND
	Should work

	SGN
	Should work

	SIN
	Should work

	SPACE$
	Should work

	old : SPI(rx,tx,clk[,dat[,speed]])
	Changed syntax :
SPI(port_nr,dat)
port_nr is 1 or 2 for SPI-1 or SPI-2
dat is the data byte to be send

	SQR
	Should work

	STR$
	Should work

	STRING$
	Should work

	TAB
	Should work

	TAN
	Should work

	TIME$
	Should work

	TIMER
	Should work

	UCASE$
	Should work

	VAL
	Should work

	
	

	
	

	
	

Other MMBasic commands
	CAN
	Not implemented yet

	I2C
	Should work
Only in Master-Mode
Speed = 10kHz to 400 kHz
Option must be 0

	ONEWIRE
	Not implemented yet

	TOUCHVAL
	Should work

	TOUCH

	Should work with TouchObj nr [0...31]
Implemented Modes :
CREATE (B,P,S,C,R,L,H,V)
SIZE (default = 80 x 25)
DISABLE
ENABLE
REMOVE

hint : RadioButtons (R) with the same color are
in the same group
hint : Push-Buttons (B) must be cleared by user with TouchVal(nr)=0
hint : Obj S,H,V don't use the Text-Field
hint : size of Vertical-Sliders (V) must be
defined first e.g. with "Touch Size 25,80"

	TOUCHED(#S)
or
TOUCHED(#X)
or
TOUCHED(#Y)
or
TOUCHED(nr)
	Should work
Implemented Modes :
#S = reads the status (0=released, 1=pressed)
#X = reads the x-position
#Y = reads the y-position
nr = check the touch status of TouchObj nr
(0=untouched, 1=touched)

	
	

	
	

	
	

	
	

	
	

New commands for the F746-MMBasic
	MTOUCHED(#S)
or
MTOUCHED(#X,nbr)
or
MTOUCHED(#Y,nbr)
	#S:
must be done before #X and #Y
reads the number of touch contacts (0 to 5)
#X:
reads the x-position from contact (nbr=1 to 5)
#Y:
reads the y-position from contact (nbr=1 to 5)

	MM.FONTHEIGHT
MM.FONTWIDTH
	current font height in pixel
current font width in pixel

	ACOS, ASIN, CALCCOS, CALCSIN
	trigonometric functions

	<<, >>
	logic functions (shift left, shift right)

	INTRND
	random integer (0...65535)

	ORANGE, BROWN, LRED, DGREY,
GREY, LGREY, LGREEN, LBLUE
	default colors

	SPI OPEN port_nr [,speed [,mode [,first [,SS]]]
or
SPI CLOSE port_nr
	opens or close a SPI-Port
port_nr is 1 or 2 for SPI-1 or SPI-2
speed is optional and can be 0 to 7
mode is optional and can be 0 to 3
first is optional : 'L' or 'M' for LSB/MSB
'SS' is optional and activates the SlaveSelect-Pin

	TRIANGLE
ELLIPSE
QUAD
RECT x,y,width,height,c1[,c2,F]
ROUNDRECT x,y,width,height,r,c1[,c2,F]
	draws a triangle
draws a ellipse
draws a rectangle (with a given angle)
draws a rectangle (F=filled)
draws a rounded recrangle (r=radius, F=filled)

	SETLAYER #nr
a = GETLAYER
SHOWLAYER #nr
COPYLAYER #source,#destination
	set the active layer to draw into
get the active layer number
show the layer at the lcd
copy one layer to another
(#nr = layer number 0..2)

	MAP
	draws a map

	LOADJPG "File.jpg" [,x[,y[,layer]]]
	loads a JPG and draw at x,y on a layer

	WAVE LOAD "File.wav",ID
WAVE PLAY ID,Volume
WAVE LOOP ID,Volume
WAVE STOP ID
WAVE CLEAR
	load one WAVE File (ID = 0 to 20)
play one WAVE File (once)
play one WAVE File (in a loop)
Stop playing
Clear all WAVE Files in RAM

	OBJ3D
	draws a 3d object

	POLYPOINT
POLYCENTER
POLYGON
POLYMOVE
ROTATEPOLY
LOADPOLY
	defines a polygon point
defines a center point from a polygon
draws a polygon
moves a polygon
rotates a polygon
load a polygon (use Polygon.exe to create)

	MPU6050 INIT
MPU6050(#S)
or
MPU6050(#GyroX)
MPU6050(#GyroY)
MPU6050(#GyroZ)
or
MPU6050(#AccX)
MPU6050(#AccY)
MPU6050(#AccZ)
or
MPU6050(#Temp)
	Inits a MPU6050 on I2C-Port
#S
must be done before #Gyro and #Acc
reads all Data from the MPU (-1=err, 0=ok)
#Gyro
reads the Gyro-Data
#Acc
reads the Accelerometer-Data
#Temp
reads the Temperature

	JoyInit
JoyGet
	Inits a Joystick at Digital-IOs
Read one Joystick direction

Syntax of the new commands in F746-MMBasic
aCos
aCos(x)		
Give back the inverse Cosine of x
aSin
aSin(x) 		
Give back the inverse Sine of x
CalcCos
CalcCos(angle)	
Give back the pre computed Cosine from Angle , the angle is rounded to integer.
CalcSin
CalcSin(angle)	
Give back the pre computed Sine from Angle , the angle is rounded to integer.
Circle
Circle(x,y),radius,outcolor[,incolor[,F]]
x,y		: Coordinate from the Circle center
radius		: Radius from the Circle
outcolor	: Circle border color
incolor		: Circle Fill color
F		: Circle is filled
[image:]
Ellipse
Ellispse(x, y), radiusx, radiusy, outcolor, incolor, F
[image:]x, y		: Coordinate from the Ellipse center
radiusx		: Radius in the x direction (left/right)
radiusy		: Radius in the y direction (up/down)
outcolor	: Border color
incolor		: Fill color
F		: Ellipse is filled
Triangle
Triangle(x1, y1, x2, y2, x3, y3), outcolor, incolor, F
x1, y1 to x3, y3	: The 3 coordinate that represent your triangle
outcolor		: The border color
incolor			: The fill color
F			: The triangle is filled
[image:]
Sprites
Sprite are no more compatible with the PIC32 Maximite version.
The Sprite Editor can Load the 2 colors and 8 colors Sprite from Maximite and convert them to the
new Binary format.
You can load up to 500 Sprites, each of them can be up to 32 x 32 pixels.
Syntax:
Sprite Load “spritefile.bin”
	The command will Load all sprites from the file and put them in memory.
	The first Sprite loaded will be the Sprite 0.
Sprite Set source,destination
	Information from the Sprite Source will be copied into the destination array to be able to use
	this Sprite. For example, if you want to animate Sprites you just have to copy another source
	sprite number into the same destination one.
Sprite ON Sprite_number, x, y
	The Sprite will be shown at coordinate x, y on screen.
	Note that the Sprite number have to be set with Sprite Set command in first case.
	The x, y coordinate represent the upper left corner from the sprite.
Maps
With map you can load Games map for use with your game, you can also use it to store another picture. This map is saved into the SDRAM and can be up to 1Million pixels.
The Height and Width from the map is not limited so long the (Height * Width) is less than 1
Million Pixels. For be able to load a Map file you have to convert your picture with the Map converter.
Syntax:
Map Load “mapfile.map”
	The command will Load the Map from the file and put it in Map memory.
Map ON startx, starty, width, height, destx, desty, transparent, transparent color.
	The command will get a part from the map graphics and show it on screen.
	If you get a part of the Map that is bigger than the screen (480*272), the result will be
	clipped on screen.

Pixel
The pixel function is still compatible with the original Maximite, but, I added the ability to get the pixel color from Any of the Layer.
Syntax:
Color = Pixel(x, y)
	The function return the actual color from the pixel at x,y from the current used graphics
	layer.
Color = Pixel(x, y, layer)
	This one return the pixel color at x, y from the defined layer.
	Layer number can be 0, 1, 2 or 10 for Map buffer. (See Layer command)
Layer
The STM32F7 can use 2 layer for build picture on screen.
You can set a layer, draw on this layer, then show the layer.
This method prevent flickering on screen
I added one working layer that can be copied to one of the other layer.
It’s good for put in GUI graphics that never change or other graphics element we want often copy to
other layer.
Syntax :
SetLayer number
	Set the layer where we want draw
	Number can be 0, 1, 2
ShowLayer number
	Show the layer set with number
	Number can be 0 or 1
CopyLayer source, destination
	Copy from one layer to another one
	Source and destination can be 0, 1, or 2
	You cannot copy one layer to itself!

Quad
Quad(x, y, width, height, angle), outcolor, incolor, F
The Quad is a rectangle like polygon that can be rotated
x, y		: Middle coordinate from the Quad
width, height	: Size of the Quad
angle		: Rotation angle from the Quad
outcolor	: border color
incolor		: Fill color
F		: The Quad is filled
[image:]
3D-Objects
You have the ability to show 3D Object on this version of MMBasic.
The actual limitation are:
	You can load a maximum of 25 object (0 to 24)
	Each object can have a maximum of 600 Vertex and 600 Faces
The 3D Object converter take 3D Studio ASC file format and save it in a form that can be read with
MMBasic. (make sure to deactivate "UV")
For convert OBJ, DAE etc. … to 3DS ASC, I use AcuTrans3D.
The not registered version can save in ASC and its easy to use!
Syntax:
Obj3D Load “obj.b3d”, Objnumber, incolor, outcolor
	Here we Load the file “obj.b3d”
	Objnumber can be 0 to 24
	Incolor is the border color from vertices
	Outcolor is the fill color
Obj3D Set Objnumber, x, y, z, ax, ay, az, zoom, active
	We give parameter to a loaded 3D Object for specify where we want it to draw, the angle
	and the size.
	Objnumber	: Number from the object from 0 to 24
	x, y, z		: Coordinate from the object in 3D Space
	ax, ay, az	: Angle to apply on each axis from the object
	Zoom		: For resize the object, zoom of 1 will show the original size
	Active		: 1 will set this object active, 0 will set the object inactive and it will not be 			shown
Object3D ON filled
	We show all loaded and active object to screen.
	Filled		: If filled is set to 1, all 3D Objects will be filled

Polygons
The easy way to draw little more complex form is to use the Polygon command (or Polygon.exe).
A polygon is defined from a list of points.
Actually a polygon can have up to 100 points (0 to 99)
You can define 100 different Polygons, Polygon number must be between 0 and 99
They are several easy to use commands for set , move, rotate Polygons (and load from file).
Syntax:
PolyPoint Poly_number, Point_number, x, y
	We have to use this command to set all points from a polygon.
	Poly_number	: Number from the Polygon (0 to 99)
	Point number	: Number from the point we set the coordinate (0 to 99)
	x, y		: Coordinate from this point
PolyCenter Poly_number, x,y
	We set the center point from the Polygon
	This point will be used if you want rotate the Polygon
	This point can be set everywhere, you don’t have to place it into the Polygon itself.
	Poly_number	: Number from the Polygon (0 to 99)
	x, y		: Coordinate from the Polygon center point
Polygon Poly_number, Point_count, outcolor [, incolor[, F]]
	Draw a Polygon on screen.
	Poly_number	: Number from the Polygon (0 to 99)
	Point_count	: Number of point defining this polygon, if you have defined point 0 to 23 			then this polygon have 24 points.
	Outcolor	: border color
	Incolor		: fill color
	F		: The polygon is filled ‘optional’
PolyMove Poly_number, x,y
	Use this command for move the Polygon somewhere on the screen.
	It is like you move the center point and the rest of the Polygon follow it.
	Poly_number	: Number from the Polygon (0 to 99)
	x, y		: New Coordinate from the Polygon center point (All other points follow)
RotatePoly Poly_number, Point_count, angle, outcolor [, incolor[, F]]
	Draw a Polygon rotated to the given angle.
	The Polygon will rotate around his Center point defined with the PolyCenter command.
	Poly_number	: Number from the Polygon (0 to 99)
	Point_count	: Number of point defining this polygon, if you have defined point 0 to 23
			then this polygon have 24 points.
	Angle		: angle we rotate the polygon
	Outcolor	: border color
	Incolor		: fill color
	F		: The polygon is filled ‘optional’

PolyPoint example :

Point 0 to 11 define this Polygon , it’s a 12 points Polygon

PolyPoint 0,0,100,20 	set the point 0 from polygon 0 to coordinate 100 , 20
PolyPoint 0,1,200,20		set the point 1 from polygon 0 to coordinate 200 , 20
……
PolyPoint 0,11,100,30	set the point 11 from polygon 0 to coordinate 100 , 30

You will get a polygon with this form :

[image:]
PolyCenter example :

Now we are going to set the Center from the Polygon ,
or if you prefer the coordinate from where the Polygon can be rotated

PolyCenter 0,140,60	set the Center point to coordinate 140 , 60

[image:]
Polygon example :

The polygon is now complete and can be drawn on screen with :
Polygon 0,12,Red		draw the 12 points polygon 0 with Red outer line
Polygon 0,12,Red,Blue,F	draw the 12 points polygon 0 with Red outer line and Filled with Blue color.

PolyRotate example :

You can also Rotate the polygon like this :

PolyRotate 0,12,45,Red	It will show the polygon rotated to 45 degrees around the center point.

[image:]

Note that the center point is invisible and just drawn here for information.

Polymove example :

Now we are going to move the Polygon somewhere else on the screen.

PolyMove 0,340,150	Move the polygon from the original 140,60 coordinate to 340,150 coordinate.
			This will move the Center point with the Polygon
			For move the Center point alone use the PolyCenter command.

[image:]
LoadPoly example :

Instead of creating a polygon at runtime with the "polypoint" command you can also use
the external program "Polygon.exe". Here you can create polygons and save it to a file.

To load a polygon you have to know the number of points (see "Nb Point")

[image:]
Syntax : LoadPoly "Filename.pol" , Poly_number	Loads a polygon from file
Joystick
You can connect a Joystick with 4 directions and two firebuttons at the GPIO-Pins :
[image:]
JoyInit(up, down, left, right, button1, button2)
	Use this command to init a Joystick at the GPIO-Pins.
	Each of the parameter correspond to a pin number on the Arduino connector.
	For example , if you use : JoyInit(3,4,5,6,7,8)
	Pin 3 is UP
	Pin 4 is DOWN
	Pin 5 is LEFT
	Pin 6 is RIGHT
	Pin 7 is Fire button 1
	Pin 8 is Fire button 2
	The JoyInit command setup the needed pin and activate the internal pull-up resistor.
	It means that the status from a non-used direction or button will be 1.
JoyGet(#UP) 		: Give back the UP direction
JoyGet(#DOWN)	: Give back the DOWN direction
JoyGet(#LEFT)	: Give back the LEFT direction
JoyGet(#RIGHT)	: Give back the RIGHT direction
JoyGet(#B1)		: Give back the Button1 status
JoyGet(#B2)		: Give back the Button2 status

V:1.00 / 02.02.2016		1 / 27
image1.jpg
CN4

CN7

Do
D1
D2
D3
D4
D5
D6
D7

D8
D9
D10
D11
D12
D13
GND
AVDD
D14
D15

O

A4
A3
A2
Al
A0

vin
GND
GND
5v
3v3
NRST
loref
nc

CN5

CN6

image2.png

image3.png

image4.png
2,2

image5.png

image6.png
10

image7.png

image8.png

image9.png

image10.jpg
Show Grid

Add new point
Move point

Nb Point

Fill Polygon

image11.png
U
=Y

LEFT,
e

RIGHT
=

Doy
)

FIRET

FIRE2
sy

