
MMReplace - Addon for MMEdit Version 5
Version 5.01 - 09 Sep 2022

This document details the new MMReplace.exe that supports MMEdit Version 5. MMEdit Version 5
post on TBS.

MMReplace.exe is a utility written in PureBasic which supports the addition of several new Directives
which can be used while developing code in MMEdit Version 5. It is integrated into MMEdit by calling
it from within the MMEdit Action menu. Three options are added.

Action Menu Function
MMReplace  MMCC This calls MMREPLACE.EXE which processes any DIRECTIVES, deletes

comments, blank lines and loads the program via MMCC (Maximite
Control Centre)

MMReplace  MMEDIT This calls MMREPLACE.EXE which processes any DIRECTIVES and
sends the code and comments back to MMEdit as a new file.

Find Line No. This calls FINDLINENO.EXE which prompts for an error line no to be
input, and this line is then located in the original source file, taking
into account comments and directives which were not sent as part of
the loaded code. (This is done via sending keystrokes an does not
expect SUBs/Functions to be folded)

The original MMReplace should be used for MMEdit versions 3 and 4. This version will only work with
MMEdit Version 5. MMReplace for MMEDIT 3 and 4 on TBS

The filename remains as MMReplace.exe, it is up to you to keep them separate if you are using both
versions.

https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=14337
https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=14337
https://www.thebackshed.com/forum/ViewTopic.php?TID=10425&P=2

Installation
The MMReplace files are installed alongside the MMEdit and MMCC executables. The integration is
completed by adding options to the MMEdit Actions menu. This can be done via the MMEdit
File/Preferences menu, but is probably easier done by directly adding them to the MMEdit.inf file
located in the MMEdit’s data directory while MMEdit is closed. The new directives can then be
highlighted as keywords by adding them to the end of the various MMEdit syntax files(*.tkn files)
also in the MMEdit data directory.

The installation consists of a number of files below provided in a zip file mmreplace.zip

./
MMReplace.exe
FindLineNo.exe
MMReplace5.pdf – This help file.

./source
MMReplaceV5.pb - The PureBasic source file for MMReplace.exe
Findline.pb - The PureBasic source file for findlineno.exe

MMEdit Data Folder
Several files of interest are located in the MMEdit Data Folder. Its location is found by selecting
Help/About and then reading the Data folder: location.

The files below are referenced in the installation instructions and are located in this data folder.

 MMEdit.inf - MMEdit configuration file.
 user.tkn -User defined syntax file with new keywords -

 Hot Tip

The data folder may be hidden in windows. In windows explorer, select View/Show/ show
hidden files. While you are there, select show file extensions.

Add MMReplace.EXE and FindLineNo.exe files
Place the two EXE files alongside the MMCC.EXE and MMEDIT5.EXE located in the Program folder
identified via Help/About

Add Action Menu Options
Find the [External programs] section in the MMEdit.inf file located in the relevant MMEdit data
folder and replace it with the data below while MMEdit is shut down.

[External programs]
; %bas% The full path and filename to the current BAS file.
; %basshort% The filename to the current BAS file without any path.
; %baspath% The path to the current BAS file
; %extpath% The path to the external.exe (Default starting folder)
; %mmepath% The path To the MMEdit And MMCC program folder including trailing \
; %q% = quote Chr(34)
External hot link = 0
Ext0 = MMReplace --> MMCC F6|%q%%extpath%%q%|"MMReplace.exe" | %q%%bas%%q% "%mmepath%" "MMCC"
Ext1 = MMReplace --> MMEDIT|%q%%extpath%%q%|"MMReplace.exe" | %q%%bas%%q% "%mmepath%" "MMEDIT"
Ext2 = Find Line No.|%q%%extpath%%q%|"findlineno.exe" | "%mmepath%"
Ext3 = Run in DOS| %q%%baspath%%q%|"MMBasic.exe" | %q%%bas%%q%

Restart MMEdit and check for the new entries under the Action Menu.

Add #ArrayGenerate Directives (Optional)
The next step is only necessary if you want to use the #ARRAYGENERATE directives.

 Read the TBS forum post at
http://www.thebackshed.com/forum/forum_posts.asp?TID=10253&PN=7

 Download the simpleArrayFuncGen.exe file. This should be placed in the same directory as
MMReplace.exe.

Add Directives to MMEdit5 Syntax File user.tkn
The new directives can be highlighted as keywords by adding them to the user.tkn file in the relevant
MMEdit data folder.

Just copy and paste the codes below into user.tkn file or create it if it does not exist.

#DEFINE #ELSE #ENDIF #IFDEF #IFNDEF #REPLACE #ENDCODE #KEEPCOMMENTS #DEBUG #LIBRARYSTART
#LIBRARYSTART1 #LIBRARYSTART2 #LIBRARYEND #LIBRARYLOAD #LIBRARYLOAD1 #LIBRARYLOAD2 #NOLIBRARY
#INCLUDE #PASSINCLUDES #ARRAYSTART #ARRAYEND #ARRAYINCLUDE #ARRAYGENERATE

This will cause the directives to be highlighted in MMEdit5 and offer matching options after three
characters are typed.

Using the Directives
The MMReplace utility implements a number of additional directives that can be applied to code
developed using the MMEdit code editing utility. Each directive is added into the code and all begin
with a # and must be at the start of the line.

Replacing variable names at load time

#REPLACE longname shortname

At load time all occurrences of longname are replaced with shortname.

This can save program memory when the program is loaded/stored and can give small increase in
execution speed when variables are resolved, but still allow the use of descriptive variable names in
the code. e.g.

#REPLACE millivoltstep1 mvst1

#REPLACE millivoltstep2 mvst2

#REPLACE millivoltsperdivision mvpd

#REPLACE indexcalibrationx1probe ic1p

Another use is to decrease the number of discrete variables required by using an array to store
similar variables, while still allowing your code to have meaningful names. e.g.

#REPLACE errortoobig errs(0)

#REPLACE errortoosmall errs(1)

#REPLACE errortoobad errs(2)

...

#REPLACE errorflagoutofrange errs(99)

Another use is to reduce the memory taken by discrete short strings by placing them in an array
which can have the string length set to < 255, while also keeping you code meaningful. e.g.

DIM STRING errmsgs$(99) LENGTH 20

#REPLACE errormsg0$ errmsgs$ (0)

#REPLACE errormsg1$ errmsgs$ (1)

…

#REPLACE errormsg99$ errmsgs$ (99)

Conditional Inclusion of Code
This set of directives allows code to be included in the load conditionally, by branching on the
#DEFINE variables set.

This allows one source to be maintained and the respective #DEFINE directives uncommented to
load the desired code. This can include including the appropriate 'target port\com7:115200
setting for MMCC to send to the matching device. Multiple nested #DEFINE statements can give
good control over what is loaded. The one source can hold multiple test cases and these can be
enabled as required. Alternate commands required by different devices can be conditionally selected
e.g.

' Set the #DEFINE to get the corrected target for MMCC

'#DEFINE F4MICK
'#DEFINE F4IPS
'#DEFINE H7P144
#DEFINE H7P100
'#DEFINE PICO
'#DEFINE WINBASIC
#IFDEF F4MICK
 #DEFINE F4
 'target port\com7:115200 s\armite
#ENDIF
#IFDEF F4IPS
 #DEFINE F4
 'target port\com11:115200 s\armite
#ENDIF
#IFDEF PICO
 'target port\com14:115200 s\picomite settime\
 #NOLIBRARY
#ENDIF
#IFDEF H7P144
 'target port\com8:115200 s\ARmite_H7
 #DEFINE H7
#ENDIF
#IFDEF H7P100
 'target port\com10:115200 s\ARmite_H7
 #DEFINE H7
#ENDIF
#IFDEF WINBASIC
 'target winbasic\ autorun
 #NOLIBRARY
 #PASSINCLUDES
#ENDIF
' No backlight on windows
#IFNDEF WINBASIC
 Backlight bright
#ENDIF

'target winbasic\ autorun is a special case
The winbasic\ option for the MMCC ‘target directive is a special case handled by MMReplace and is
not part of MMCC. It will only work with windows. It will find an open MMBasic for Windows window
and paste the code into it. An error message is issued if the window cannot be found.

Once the MMBasic for Windows window is found:

 The code to be loaded is placed in windows clipboard
 A CNTRL C is sent to stop any running program
 CLS is sent via keystrokes to clear the screen
 AUTOSAVE filename is sent via keystrokes to the window
 CNTRL V is sent to paste the contents of the clipboard
 F1 (or F2 if autorun is included in the ‘target) is sent to save and optionally run the program

This should be considered experimental. Works well on my machine, but there are some timings
between the keystroke up/down events which may not suit all situations. The default is 50
microseconds. The directive below will allow some tuning if keystrokes are missed. delay is the new
value to be used.

#WINDELAY delay

The filename used to save the code is the same as the filename in MMEdit

Managing Library Code Micromite & MicromitePlus

#LIBRARYLOAD #LIBRARYSTART #LIBRARYEND #LIBRARYLOAD1 #LIBRARYSTART1
#LIBRARYEND #LIBRARYLOAD2 #LIBRARYSTART2 #LIBRARYEND #NOLIBRARY

These directives were added to simplify the management of a project by allowing the library code to
be kept with the main code. The #LIBRARYSTART and #LIBRARYEND directives are used to mark the
beginning and end of the code to be kept in the library code. MMBasic (where LIBRARY is
supported) allows incrementally adding to the library so provision is made to allow up to three
library sections, which are loaded by the matching #LIBRARYLOAD directive. #LIBRARYEND will end
the current library for any of the library sections.

When the #LIBRARYLOAD directive is present only the library code is loaded. If the directive is
commented then the library is not loaded with the normal code but can reside in the one source file.
e.g.

'---- Library Stuff -----------------------------
'Uncomment the #LIBRARYLOAD directive below to load only the library code.
'which is bounded by #LIBRARYSTART #LIBRARYEND directives
'#LIBRARYLOAD 'Must start in column 1. Uncomment to enable.
'---some handy library commands ---
'LIBRARY SAVE
'LIBRARY LIST
'LIBRARY DELETE

Placing code that is stable into the library during development has the advantage of reducing the
amount of code reloaded each time during the development cycle. This can be quite a saving if the
program is large. The code transferred to the library is still visible in the MMEdit code window if you
need to inspect it.
The #NOLIBRARY directive causes all #LIBRARY directives to be ignored and all library code is always
loaded. This is useful if the full code is required to be loaded or the target device does not support
the LIBRARY command. e.g. PicoMite

#INCLUDE Directive
The #INCLUDE directive allows the inclusion of code from another file when the code is loaded via
MMEdit5. e.g. #INCLUDE filename.inc, #Include "../list.inc"

Where the target device supports #INCLUDE natively i.e. CMM2 and MMB4W the #PASSINCLUDES
directive can be used to pass any #INCLUDE directives verbatim and allows the target device to
handle the includes natively. e.g.

#PASSINCLUDES

#INCLUDE “../list.inc”

#ENDCODE
This directive also helps support a single source file for the project. This directive is placed at the end
of the valid MMBasic code and marks the end of code to be loaded. This allows other relevant
code/notes to be stored after the directive but in the same source file.
e.g. associated Annex code, Arduino libraries to reference during development, other notes etc.
these do not affect the load time.

#DEBUG
MMReplace writes progress information to a console window, which it automatically closes at the
end of processing. This directive will prevent the MMReplace console automatically closing after
code is sent to MMCC. The information displayed in the console may help in diagnosing any
MMReplace issues. The console window needs to be manually closed.

C Style Comment Blocks
/*

These C style comment blocks can be used in the code to mark a block as comments. The individual
lines are made into comments by MMREPLACE. The MMEdit feature to comment and uncomment
selected blocks is just as effective and also shows clearly as comments in MMEdit.

 */

Loading Arrays with simpleArrayFuncGen
The simpleArrayFuncGen.exe written by @Nathan from The Backshed Forum (TBS) allows the
loading of static arrays into flash to be stored as either CFunctions or CSubs. The details and exe file
are available in the following forum post. (Only relevant for the PIC Micromites.)

http://www.thebackshed.com/forum/forum_posts.asp?TID=10253&PN=7

simpleArrayFuncGen

The following directives allow the MMEdit code window to include the definitions for the
simpleArrayFuncGen config files and the array data and for the CFunction/CSub to be generated at
load time by calling simpleArrayGenerator at that time.

#ARRAYSTART [string|integer|float] [cfunction|csub] functionorsubname

Indicates the start of the array definition and the parameters detail, the type of array, where a
CFunction of a CSub should be reduced and the name of the function or sub. The name is used as the
base name for the name.cfg and name.bas file names passed to simpleArrayFuncGen.

#ARRAYEND

Indicates the end of the array definition.

http://www.thebackshed.com/forum/forum_posts.asp?TID=10253&PN=7

#ARRAYINCLUDE functionorsubname

Place in source where the generated CFunction/CSub is to be included during Load and Run

Placing between #LIBRARYSTART and #LIBRARYEND directives ensures it only included when
loading the library code.

#ARRAYGENERATE

This directive causes the array CFunction/CSub to be generated during Load and Run. If not present
the simpleArrayFuncGen .exe is not called so only any previously generated array CFunction/CSub
functions would be loaded. If the code is to be included in the library, then using both the
#LOADLIBRARY and #ARRAYGENERATE would achieve this. They could then be both commented
during development of the main code.

The array data is entered between the #ARRAYSTART and #ARRAYEND directives. The format of this
is determined by simpleArrayFuncGen as it is passed straight through, but essentially each line
containing data begins with a: followed by a space.

‘Example of string array
#ARRAYSTART
: this is string1
: this is string2
#ARRAYEND

‘Example of string array with comment included so MMEdit syntax highlighting
‘is not applied to the text. The comment is automatically stripped when to array config file is
produced.
#ARRAYSTART
‘: this is string1
‘: this is string2
#ARRAYEND

‘Example of int array
#ARRAYSTART
: 1 2 3 4 5
: 10 20 30 40 50
#ARRAYEND

 Summary of Directives Added by MMReplace
Directive Usage
#REPLACE longname shortname Replaces all occurrences of longname with shortname when

code is loaded. The original directive which gave this program
its name.

#NOLIBRARY Causes all other #LIBRARY directives to be ignored.
#LIBRARYSTART Marks beginning of code to be stored in the library
#LIBRARYSTART1 Marks beginning of code to be stored in the library 1
#LIBRARYSTART2 Marks beginning of code to be stored in the library 2
#LIBRARYEND Marks end of code to be stored in library
#LIBRARYLOAD Indicates only the library code should be loaded
#LIBRARYLOAD1 Indicates only the library1 code should be loaded
#LIBRARYLOAD2 Indicates only the library2 code should be loaded
#ENDCODE All code beyond this directive is not loaded
#DEFINE variable
#IFDEF variable
#IFNDEF variable
#ELSE
#ENDIF

This set of directives allows code to be included in the load
conditionally, based on the #DEFINE variable.

#KEEPCOMMENTS Comments are by default removed when loading code via the
MMReplace  MMCC action. This directive will ensure they are
included. (Note: Comments are always kept for the
MMReplace  MMEdit action.)

#INCLUDE filename.inc The identified filename is included in the code loaded and the
directive commented out.

#PASSINCLUDES Causes any #INCLUDE directives to be passed verbatim to the
target device and the file contents are not included in the
uploaded code. Used if the target device understands
#INCLUDE and handles its own includes. e.g. CMM2 and
MMB4W

/*
*/

Start comment block
End comment block
Allows a block to be treated as comments. This can easily be
done in MMEdit itself, so of limited value.

#DEBUG Add this to the code to keep the console window of
MMReplace.exe open after a program is loaded. The
information in here may help in diagnosing any MMReplace
issues.

#WINDELAY delay Changes the default 50 microseconds delay between
keystrokes when sending keystrokes to MMBasic for Windows
to the specified value. Allows some tuning if keystrokes are
being missed.

#ARRAYSTART
[string|integer|float]
[cfunction|csub]
functionorsubname

Only applicable to Micromites. i.e. Microchip PIC32. No equivalent
for ARM chips.
Indicates the start of the array definition and the parameters
detail, the type of array, where a cfunction of a csub should be

 reduced and the name of the function or sub. The name is used
as the base name for the name.cfg and name.bas file names
passed to simpleArrayGenerator.

#ARRAYEND Indicates the end of the array definition.

#ARRAYINCLUDE
functionorsubname

Place in source where the generated cfunction/csub is to be
included during Load and Run

#ARRAYGENERATE This directive causes the array cfunction/csub to be generated
during Load and Run. If not present the
simpleArrayFuncGen.exe is not called so only any previously
generated array cfunction/csub functions would be loaded.

Connecting TeraTerm via MMCC
The MMEdit help file should be consulted for more details, but below are the basic requirements to
connect Teraterm via MMCC.

Start MMCC and select
 Mode External VT Helper
MMCC will now accept TCP connections on port
50900
This allows both MMEdit and TeraTerm to
access the connected device.

Start a TeraTerm TCP session that connects to
127.0.0.1:50900 or
Localhost:50900

Once MMEdit finishes loading a program,
control of the session is handed to TeraTerm.

TipS
If TeraTerm looks like it is in Block mode, i.e. doesn’t transmit until the enter key is pressed check this
entry in the teraterm.ini file and ensure it is set to off.

; Line at a time mode
EnableLineMode=off

Appendix 1 - MMEdit5, MMCC , TeraTerm and MMReplace Interworking

	MMReplace - Addon for MMEdit Version 5
	Installation
	MMEdit Data Folder
	Add MMReplace.EXE and FindLineNo.exe files
	Add Action Menu Options
	Add #ArrayGenerate Directives (Optional)
	Add Directives to MMEdit5 Syntax File user.tkn

	Using the Directives
	Replacing variable names at load time
	Conditional Inclusion of Code
	'target winbasic\ autorun is a special case
	Managing Library Code Micromite & MicromitePlus
	#INCLUDE Directive
	#ENDCODE
	#DEBUG
	C Style Comment Blocks
	Loading Arrays with simpleArrayFuncGen
	Summary of Directives Added by MMReplace

	Connecting TeraTerm via MMCC
	Appendix 1 - MMEdit5, MMCC , TeraTerm and MMReplace Interworking

