Pi-cromite
User
Manual

MMBasic Ver 5.4.11

For updates to this manual and more details on MMBasic
go to http://geoffg.net/micromite.html

or http://mmbasic.com




This manual is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Australia license (CC BY-NC-SA 3.0)

Pi-cromite Manual Page 2



The Pi-cromite is a new addition to the Micromite family using the Raspberry Pi. The Pi-cromite
firmware implements most of the features of the standard Micromite and the Micromite Plus as
described in the Micromite User Manual and the Micromite Plus Manual. 1t has a number of
differences and additional features and they are described in this document.

The focus of this manual is to describe just the features that are unique to the Pi-cromite. For
general Micromite programming you should refer to the Micromite User Manual and the Micromite
Plus Manual in addition to this manual.

Contents
1] (oo (1 T3 1T o PP US 4
Micromite Family SUMMArY ..o e 5
Suitable Raspberry Pi and Installation Requirements..............cccccooooiiiiiiiciiciieee e 7
40-pin Pi-Cromite PINOUL ........ooiiiiiiiiiiiiee e e e e et e et s e e e e e e e e e e eeeeeeanes 8
Unique Pi-Cromite FEAUIES ... .o e e e 9
Commands (Pi-Cromit€ ONlY) .......oooiiiiiii e 10
Functions (Pi-Cromit€ ONIY) ........e oot e e e e e e e e e eeeeeeeeeaanns 16
APPENIX A = SENSOI FUSION ....uuiiiiiiee e e e et e et e e e e e e aaaeeeeeeeaennnnes 17
APPENIX B = SOCKEE USE......ueiiiiiiie ettt e e e e e e e e e e e e e eeaeeannes 18
Appendix C - Code EXAMPIES.......oiiieeieieee e e et s e e e e e e e e e e e eeeaeenneas 22
Appendix A - Using and 12S DAC with MMBaASIC.........ccccccooiiiiiiiiiiiicccceee e, 23

Pi-cromite Manual Page 3



Introduction
This section provides an introduction for users who are familiar with the Micromite and the Micromite
Plus and need a summary of the extra features in the Pi-cromite.

The Pi-cromite is an extension of the standard Micromite and the Micromite Plus; most of the features
of these two versions are also in the Pi-cromite. This includes features of the BASIC language,
input/output, communications, etc. Some commands have changed slightly but for the main part
Micromite programs will run unchanged on the Pi-cromite.

The following summarises features of the Pi-cromite as compared to the standard Micromite and the
Micromite Plus:

Raspberry Pi

The Pi-cromite is based on the Raspberry Pi. The Raspberry Pi is available a number of versions
and has up to fifteen times the program space of the MX series used in the standard Micromite and is
many times faster. The Pi3 is 5x faster than even a 252MHz PIC32MZ.

High Speed Double Precision Floating Point

The Pi-cromite uses the built in hardware floating point capability of the Broadcom processor which is
much faster than floating point on the standard Micromite and uses double precision floating point.

/0 Pins
The Pi-cromite has 26 free I/O pins. The Broadcom chip does not support analogue input.

The Pi-cromite has one 1°C port which can be implemented on any pair of pins, one SPI port, one
high speed PWM channel (low speed PWM and servo control can be implemented on any/all 1/0
pins) and two serial COM ports.

High Speed LCD Panels
The Pi-cromite supports eleven different sized LCD display panels from 1.44" to 8
Socket 1/0

The Pi-cromite can support opening a socket which allows network based applications to be
programmed directly in Basic. The TRANSMIT command will automatically create valid HTTP
headers including file lengths making web programming simple

Pi-cromite Manual Page 4



Micromite Family Summary

The Micromite Family consists of three major types, the standard Micromite, the Micromite Plus and
the Pi-cromite. All use the same BASIC interpreter and have the same basic capabilities however
they differ in the number of I/O pins, the amount of memory, the displays that they support and their

intended use.

Standard Micromite Comes in a 28-pin or 44-pin package and is designed for small embedded
controller applications and supports small LCD display panels. The 28-pin
version is particularly easy to use as it is easy to solder and can be plugged
into a standard 28-pin IC socket.

Micromite Plus

This uses a 64-pin and 100-pin TQFP surface mount package and supports a

wide range of touch sensitive LCD display panels from 1.44" to 8" in addition to

the standard features of the Micromite. It is intended as a sophisticated

controller with easy to create on-screen controls such as buttons, switches,

etc.
This comes in 64, 100-pin and 144-pin TQFP surface mount packages. The

Micromite eXtreme

eXtreme version has all the features of the other two Micromites but is faster
and has a larger memory capacity plus the ability to drive a VGA monitor for a
large screen display. It works as a powerful, self contained computer with its
own BASIC interpreter and instant start-up.

Pi-cromite

Runs on all versions of the Raspberry Pi with a 40-pin 1/0 connector. No

analogue input capability but 5x faster than a Micromite eXtreme when running
on a Pi 3.

Micromite Micromite Plus Micromite eXtreme Pi-cromite
28- . . 100- 100- . _
pin 4S4|;/Iplil)n 684';/?[')” pin pin 1‘;‘&%” 64-pin | Raspberry
DIP SMD | SMD SMD Pi
Maximum CPU Speed 48 48 120 120 | 252MH 252 252 1200MHz
MHz | MHz MHz MHz z MHz MHz
Maximum BASIC 59 59KB | 100KB | 100KB | 540KB | 540KB | 540 KB 1024KB
Program Size KB
RAM Memory Size 52 52KB | 108KB | 108 KB | 460KB | 460KB | 460 KB 1024KB
KB
Clock Speed (MHz) 5to 5to 5 to 5to 200to | 200to | 200to | 700-1200
48 48 120 120 252 252 252
Total Number of 1/0 pins 19 33 45 77 75 115 46 26
Number of Analog 10 13 28 28 40 48 24 0
Inputs
Number of Serial I/O 2 2 3or4 3or4 3or4 3or4 3or4 2
ports
Number of SPI 1 1 2 2 3 3 2 1
Channels
Number of I°’C Channels 1 1 1+ 1+ 2+ |2+RTC| 1+ 1
RTC RTC RTC RTC
Number of 1-Wire I/O 19 33 45 77 75 115 46 26
pins
PWM or Servo Channels 5 5 5 5 6 6 6 26
Serial Console v 4 4 4 4 4 4 Native
Linux

Pi-cromite Manual

Page 5




USB Console v v v v v Native
Linux

PS2 Keyboard and LCD v v v v v Native

Console Linux

SD Card Interface v v v v v Native
Linux

Supports ILI9341 LCD v v v v v v v v

Displays

Supports Ten LCD v v+

Panels from 1.44" to 8" v v v v 1L19481

(diameter)

Supports VGA Displays v v

Sound Output v v v v v Native

(WAV/tones) Linux

Supports PS2 Mouse v v v Native

Input Linux

Floating Point Precision | Singl | Single | Single | Single | Double | Double | Double Double

e
3.3V | 3.3V 3.3V 3.3V 3.3V 3.3V 3.3V 5V
Power Requirements 30 30mA | 80mA | 80mA 160 160mA 160 100mA -
mA mA mA 1.6A

Pi-cromite Manual

Page 6




Suitable Raspberry Pi and Installation Requirements

The Pi-cromite firmware supports any Raspberry Pi with the 40-pin I/O header. The code should work
properly on A+, B+, Pi Zero (W), Pi2B, Pi3B but not currently on Model A, B, or B (revision 2).

It is recommended that Raspbian Lite is installed on single CPU versions of the Pi. Full Raspbian can
be used on multi-CPU versions.

The code has been developed and tested on the Pi 3 Model B version 1.2 (full Raspbian) and the Pi
Zero W V1.1 (Raspbian Lite) using Netbeans IDE V8.2 running on a W10 PC.

In order for the firmware to work pigpio software version 64 must be installed see:
http://abyz.co.uk/rpi/pigpio/download.html for details of how to install this version.

Pins may be reserved for Linux use allowing devices like I12S audio DACs to be accessed. See the
command OPTION PINS for more details.

All system devices and Linux commands can be accessed from MMBasic. See the SYSTEM
command for more details.

The 3.3V rail on a Pi 3 is very noisy when the Pi is powered with the official Pi mains adapter.
Devices such as IR receivers should be powered from the 5V rail using a 3.3V linear regulator to
avoid issues.

There are known timing issues with the Pi 3 that may affect serial communications and Bitstream
output — see the OPTION WAVETIME command for more details.

The Pi-cromite firmware should be copied to a suitable directory on the Pi before use. When first run
the firmware creates a hidden file .options in the same directory. This file should be deleted before
any new version is installed.

The firmware must be set as executable before running using chmod +x mmbasic

The firmware requires privileged access to the Pi hardware and so must be run using the sudo
command

sudo ./mmbasic

NB The Pi-cromite firmware sits in a tight loop polling for input and so will use 100% of one CPU. It
is running at priority zero most of the time so the operating system is able to time-slice processor
access. During time-sensitive 1/0 operations the priority will be raised and other processes locked
out.

Pi-cromite Manual Page 7



40-pin Pi-cromite Pinout

Pin
1 3V3
2 5V
3 DIGITAL_IN DIGITAL_OUT I2C-SDA*
4 5V
5 DIGITAL_IN DIGITAL_OUT I2C-SCL*
6 GND
7 DIGITAL_IN DIGITAL_OUT COM2-TX
8 DIGITAL_IN DIGITAL_OUT COM1-TX
9 GND
10 DIGITAL_IN DIGITAL_OUT COM1-RX
11 DIGITAL_IN DIGITAL_OUT COM2-RX
12 DIGITAL_IN DIGITAL_OUT COUNT PWM-HS
13 DIGITAL_IN DIGITAL_OUT SSD1963-RS ILI9341-CS*
14 GND
15 DIGITAL_IN DIGITAL_OUT SSD1963-DB3
16 DIGITAL_IN DIGITAL_OUT SSD1963-DB4
17 3V3
18 DIGITAL_IN DIGITAL_OUT SSD1963-DB5
19 DIGITAL_IN DIGITAL_OUT SPI-OUT
20 GND
21 DIGITAL_IN DIGITAL_OUT SPI-IN
22 DIGITAL_IN DIGITAL_OUT SSD1963-DB6
23 DIGITAL_IN DIGITAL_OUT SPI-CLK
24 DIGITAL_IN DIGITAL_OUT COUNT TOUCH-IRQ*
25 GND
26 DIGITAL_IN DIGITAL_OUT SSD1963-RS TOUCH-CS*
27 ID_SD
28 ID_SC
29 DIGITAL_IN DIGITAL_OUT COUNT ILI9341-DC*
30 GND
31 DIGITAL_IN DIGITAL_OUT  SSD1963-RESET ILI9341-RESET*
32 DIGITAL_IN DIGITAL_OUT SSD1963-WR
33 DIGITAL_IN DIGITAL_OUT COUNT IR
34 GND
35 DIGITAL_IN DIGITAL_OUT SSD1963-DB0
36 DIGITAL_IN DIGITAL_OUT SSD1963-RD
37 DIGITAL_IN DIGITAL_OUT SSD1963-DB7
38 DIGITAL_IN DIGITAL_OUT SSD1963-DB1
39 GND
40 DIGITAL_IN DIGITAL_OUT SSD1963-DB2

* Recommended usage for compatibility between PCB designs

Pi-cromite Manual

Page 8



Pi-cromite Features

Double Precision Floating Point

The Pi-cromite uses the hardware floating point capability of the Broadcom chip and can therefore
process floating point calculations faster than the Micromite and Micromite Plus. All floating point uses
double precision calculations.

Twenty Six PWM Channels

All pins can be used for PWM output up to 20KHz as well as for driving servos. In addition pin 12
can be used for PWM output up to 25MHz

MM.DEVICE$

On the Pi-cromite the read only variable MM.DEVICES$ will return " Pi-cromite running on H/W version:
hhhhhh ",

CPU command

The Pi-cromite does not support dynamically changing the CPU speed or the sleep function.
Accordingly the commands CPU speed and CPU SLEEP are not available. However the Pi-cromite
does support “CPU SLEEP time” where time is specified in seconds.

OPTION CONTROLS command

The Pi-cromite does not support the OPTION CONTROLS command instead the maximum number of
GUI controls is set to 500.

Longstring handling

The Pi-cromite supports a comprehensive set of commands and functions for handling long strings
stored in integer arrays

Mouse control in editor

While in the editor the left mouse button can be used to position the cursor. Just click on any character

and the edit point will move to just before that character with the cursor on the character. Click just after
the last character in a line to go to the end of that line. Click well past the end of a line to go to the start

of the next line.

The mouse wheel can be used to scroll up and down the file.

Delete and Backspace

Teraterm, Putty, and the Raspian desktop console window generate different codes for backspace
and delete. The Pi-cromite defaults to support the console window and Putty. Use OPTION
TERATERM ON to accept the default codes from Teraterm. Alternatively configure teraterm in the
Keyboard setup window

Auto, Ctrl-C and Ctrl-Z
Use AUTO (and not AUTOSAVE) to enter automatic program entry mode.

Use Ctrl-C to terminate a running program, to exit GUI TEST LCDPANEL, to exit GUIT TEST
TOUCH or to exit from auto input mode.

Use Ctrl-Z at the command prompt to exit MMBasic and return to the Linux command prompt

12C
Before using 12C the pins to be used must be selected with OPTION 12C SDApinno, SCLpinno

Then you can use 12C exactly the same as the Micromite with the following limitations:
The implementation does not support 10-bit addressing (i.e. options 0 and 1 only)
The implementation is Master only.

DATE$ and TIME$

Date$ and Time$ are derived from the Linux system clock. They are returned in standard MMBasic
format when read but cannot be set by MMBasic (except by using the SYSTEM command with the
requisite Linux sysntax)

Pi-cromite Manual Page 9



Commands (Pi-cromite Only)

BITSTREAM pin, nbr, dur%()

Generates a stream of ‘nbr’ Hi/Lo (OR Lo/Hi) transitions on pin
number ‘pin’. The duration of each state after the transition is
determined by the contents of array ‘dur%()’ which is specified in
micro-seconds. The arrays can be INTEGER or FLOAT but the
pulse length must be specified in microseconds.

The minimum pulse length and pulse increment is 1uS
The pin must previously have been set as a digital output.

The direction of the first pulse will be determined by the state of the
pin when BITSTREAM is called. If it is high then the first pulse will be
at zero, if it is low the first pulse will be at 3.3V.

The BITSTREAM command will automatically create an end
transition to the last pulse.

NB There is a known clock issue on the Pi 3. See OPTION
WAVETIME for details

BOX x1, y1, w, h [, W] [,c]
[,fill]

All parameters can now be expressed as arrays and the software will
plot the number of boxes as determined by the dimensions of the
smallest array. x1, y1, w, and h must all be arrays or all be single
variables /constants otherwise an error will be generated. Iw, c, and
fill can be either arrays or single variables/constants. See the
Micromite User manual for full details of parameter usage.

CIRCLE x, y, r[,Iw] [, a] [,
c] [, fill]

All parameters can now be expressed as arrays and the software will
plot the number of boxes as determined by the dimensions of the
smallest array. x, y and r must all be arrays or all be single variables
/constants otherwise an error will be generated. Iw, a, c, and fill can
be either arrays or single variables/constants. See the Micromite
User manual for full details of parameter usage.

CLS CONSOLE

Clears the text console

CURSOR MOVE x,y

CURSOR COLOUR “fg”, “bc”

CURSOR UNDERLINE
mode

CURSOR REVERSE mode

CURSOR BOLD mode

Moves the text console cursor position to the X,Y position specified

Set the foreground and background colours for the text console.
Only valid if OPTION COLOURCODE ON is set. Valid colours must
be in quotes and are the normal 8 primaries RED, BLUE WHITE,
BLACK, GREEN, CYAN, MAGENTA, YELLOW

Sets/removes underline on the subsequent output. Valid modes are
ON and OFF

Sets/removes reverse colours on the subsequent output. Valid
modes are ON and OFF

Sets/removes bold text mode on the subsequent output. Valid
modes are ON and OFF

Pi-cromite Manual

Page 10



FORK unix_command

FORK KILL

Executes the unix_command as a new process. Non-blocking.
Output from the process is directed to the null device. Only one
process may be started at any one time. Returns an error if a second
process is attempted to be started before the first terminates

e.g. FORK aplay sound.wav

The status of the process may be tested with MM.FORK (see below)

Stops execution of any forked process. Returns an error if no forked
process exists.

GUI STARTLINE n

Sets the row in the graphics memory which will appear at the top of
the screen (landscape or reverse landscape) or left of the screen
(portrait or reverse portrait) for a 4.3” SSD1963 display initialised
with OPTION LCDPANEL SSD1963 4P

LINE x1, y1, x2, y2 [, LW [,
Cll

All parameters can now be expressed as arrays and the software will
plot the number of boxes as determined by the dimensions of the
smallest array. x1, y1, x2, and y2 must all be arrays or all be single
variables /constants otherwise an error will be generated. lw and ¢
can be either arrays or single variables/constants. See the Micromite
User manual for full details of parameter usage.

Pi-cromite Manual

Page 11




LONGSTRING APPEND
array%(), string$

LONGSTRING CLEAR
array%()

LONGSTRING COPY
dest%(), src%()

LONGSTRING CONCAT
dest%(), src%()

LONGSTRING LCASE
array%()

LONGSTRING LEFT
dest%(), src%(), nbr

LONGSTRING LOAD
array%(), nbr, string$

LONGSTRING MID dest%(),
src%(), start, nbr

LONGSTRING REPLACE
array%() , string$, start

LONGSTRING RIGHT
dest%(), src%(), nbr

LONGSTRING TRIM
array%(), nbr

LONGSTRING UCASE
array%()

Append a normal MMBasic string to a long string variable. array%()
is a long string variable while string$ is a normal MMBasic string
expression.

Will clear the long string variable array%(). ie, it will be set to an
empty string.

Copy one long string to another. dest%() is the destination variable
and src%() is the source variable. Whatever was in dest%() will be
overwritten.

Concatenate one long string to another. dest%() is the destination
variable and src%() is the source variable. src%() will the added to
the end of dest%() (the destination will not be overwritten).

Will convert any uppercase characters in array%() to lowercase.
array%() must be long string variable.

Will copy the left hand 'nbr' characters from src%() to dest%()
overwriting whatever was in dest%(). ie, copy from the beginning of
src%(). src%() and dest%() must be long string variables. 'nbr' must
be an integer constant or expression.

Will copy 'nbr' characters from string$ to the long string variable
array%() overwriting whatever was in array%!().

Will copy 'nbr' characters from src%() to dest%() starting at character
position 'start' overwriting whatever was in dest%(). ie, copy from
the middle of src%(). 'nbr' is optional and if omitted the characters
from 'start’' to the end of the string will be copied src%() and dest%()
must be long string variables. 'start’ and 'nbr' must be an integer
constants or expressions.

Will substitute characters in the normal MMBasic string string$ into an
existing long string array%|() starting at position ‘start’ in the long
string.

Will copy the right hand 'nbr' characters from src%() to dest%()
overwriting whatever was in dest%(). ie, copy from the end of src%().
src%() and dest%() must be long string variables. 'nbr' must be an
integer constant or expression.

Will trim ‘nbr’ characters from the left of a long string. array%() must
be a long string variables. 'nbr' must be an integer constant or
expression.

Will convert any lowercase characters in array%() to uppercase.
array%() must be long string variable.

NANO

Allows you to edit the current program using the Linux nano editor.
MMBasic will automatically write the current program (if any) to a
temporary file and open it in nano. To return to MMBasic save the file
to the temporary file and exit nano. The edited file will then be
restored into MMBasic memory

Pi-cromite Manual

Page 12



OPTION ADC type, address

Provides support for 2 types of 4-channel 12C ADC. Valid types are
ADS1015 and MCP3424. The address is the 7-bit I2C address of the
device. The ADC must be connected SDA to Pi pin 3, SCL to Pi pin 5.
When the option is specified the 12C port is automatically opened as
soon as MMBasic starts. 12C speed is set to 400KHz. See the ADC
function to read values.

For the Pimoroni Enviro pHAT use OPTION ADC ADS1015, &H49

OPEN “SOCKET [,interrupt]
,[count]” as #n

Opens a socket for use in a MMBasic program. Once the socket is
open then PRINT and INPUT commands and functions can be used
exactly like any other file 1/0.

Print output is buffered until a TRANSMIT command is sent which will
create a valid HTTP header

The optional parameters specify a MMBasic interrupt routine
‘interrupt’ to be called when ‘count’ characters have been received on
the socket.

See Appendix B for an example of socket programming.

OPTION CLOCK type

This command is used to specify which of the two main Pi clocks are
used for MMBasic. The default allows hardware PWM to be used on
pin 12 but will cause external commands using the PCM clock, such
as output on the i2s port, to fail. Valid values are ‘PCM’ (default) and
‘PWM’. See Appendix D for an example of usage.

OPTION I2C SDApin, SCLpin

Specifies which pins are to be used for 12C. Any valid pin may be
selected. They can be changed by using OPTION [2C DISABLE and
then re-defining them. Must be run once before 12C can be used. The
values are permanently stored in the .options file. This option is
automatically set if OPTION ADC is in use

OPTION LCDPANEL
SSD1963_4P

Sets the 4.3 SSD1963 display up in 480 x 864 (landscape or reverse
landscape) or 864x480 (portrait or reverse portrait) pixel mode. The
screen viewport is 480x272 or 272x480 and the position of the
viewport is controlled by GUI STARTLINE n. This mode of operation
allows display updates to be done on a non-visible part of the
graphics memory and then the viewport moved to see the updated
image. The 4P display controller is fully compatible with TOUCH,
MOUSE, CURSOR and GUI controls

OPTION LCDPANEL
spidisplay, orientation, DCpin,
RESETpin, CSpin, SPIspeed

Initialises a SPI TFT. Additional display types include the ILI9481 and
ILI9486. A new parameter SPIspeed can be used to set the transfer
rate. Valid values are 1,000,000 to 30,000,000. The ILI9481 defaults
to 16,000,000 all other displays default to 30,000,000. See the
Micromite User manual, ILI9341 section, for further details of
parameter usage.

OPTION AUTOREFRESH
mode

If OPTION AUTOREFRESH ON is set drawing and GUI commands
will update the screen immediately. If set to OFF then the screen will
only be updated when a REFRESH command is called. Defaults to
ON when MMBasic is first started - not stored.

OPTION AUTORUN mode

If OPTION AUTORUN ON is set the code will try and load and run
the file "autorun.bas" on start up. The file must be in the same
directory as MMBasic. If the file does not exist you will get a "file not
found" error in which case just disable the option using

OPTION AUTORUN OFF

Pi-cromite Manual

Page 13



OPTION PINS pinmask

Specify pins to be excluded from MMBasic e.g. ‘OPTION PINS
&B10100’ will exclude pins 3 and 5 from use by MMBasic
OPTION LIST will report the ‘pinmask’ if non-zero

SETPIN reservedpin,DOUT will report a “reserved on boot” error

See Appendix D for an example of usage.

OPTION SOCKET sockno

Sets the socket number to use when opening a socket. This defaults
to 80 but can be anything between 1 and 65535

OPTION TERATERM mode

Sets the treatment of backspace and delete characters. Default
mode is ‘OFF’. Setting mode to ‘ON’ will allow teraterm to be used
properly in the editor. Default should suit Putty and the Linux console
window

OPTION WAVETIME scale!

Sets a scaling factor to adjust the timing of serial output and
bitstream output.. Values of ‘scale’ > 1.0 will increase the speed of
the output. Defaults to 1.0. This parameter may need to be adjusted
to correct for a kernel issue on the Pi 3. Timings can be affected by
factors like the presence (or not) of a HDMI monitor, the presence
(or not) of a USB mouse and/or keyboard, and the use of Raspbian
Lite or Full.

The best way to determine if you have an issue is to open the serial
port with a baudrate of 100 and transmit the character “U”
repeatedly. Then measure the pulse length of the output which
should be 10msec.

The option is only active when MMBasic determines it is running on
aPki3

PIXEL x, y [,c]

All parameters can now be expressed as arrays and the software will
plot the number of boxes as determined by the dimensions of the
smallest array. x and y must both be arrays or both be single
variables /constants otherwise an error will be generated. ¢ can be
either an arrays or single variable/constant. See the Micromite User
manual for full details of parameter usage.

PWM pin, freq, duty

Sets up a PWM output on ‘pin’ with frequency ‘freq’ Hz and duty
cycle of ‘duty’. There is no limit on the number of pins used in this
way. Frequencies and duty cycles are individually set per pin within
the following restrictions:

SPECIAL CASE PIN 12

This has true hardware PWM and the frequency can be set
anywhere between 1Hz and 25MHz. Duty cycle is expressed as a
percentage (like the Micromite). The underlying clock is 250MHz so
with a 25MHz output the duty cycle will move in steps of 25/250 =
10%. At 250Hz the duty cycle will move in steps of 0.0001%

ALL OTHER PINS

These use a PWM based on a 1uS clock and the valid frequencies
will be exact divisors of 1,000,000. The maximum frequency is
20KHz where the duty cycle will move in steps of 2%. If a frequency
of say 433Hz is input the actual frequency will round to the nearest
of:

1,2,4,5,8,10,16,20,25,32,40,50,80,100,125,160,200,250,400,50
0,625,800,1000,1250,2000,2500,4000,5000,10000,20000

REFRESH

Forces a screen update when OPTION AUTOREFRESH is OFF

Pi-cromite Manual

Page 14



RBOX x1, y1, w, h [, r] [,c]
[fill]

All parameters can now be expressed as arrays and the software will
plot the number of boxes as determined by the dimensions of the
smallest array. x1, y1, w, and h must all be arrays or all be single
variables /constants otherwise an error will be generated. r, ¢, and fill
can be either arrays or single variables/constants. See the Micromite
User manual for full details of parameter usage.

SERVO pin, period

Sets up a PWM output on ‘pin’ with a fixed frequency of 50Hz. Valid
periods are specified in milli-seconds and are in the ‘valid’ range 1.0-
2.0.

There is no limit on the number of pins used in this way. Periods are
individually set per pin.

Of course you can use the PWM command to generate any non-
standard servo output but be aware this can damage a servo.

SENSORFUSION type ax,
ay, az, gx, gy, gz, mx, my,
mz, pitch, roll, yaw [,p1] [,p2]

Calculates pitch, roll and yaw angles from accelerometer and
magnetometer inputs. Valid fusion types are MAHONY and
MADGWICK. Usage is described in Appendix A

SYSTEM string$ [,array%!()]

Executes the Linux operating system command in ‘string$’. If the
optional parameter is specified, the output from the system
command will be directed to the long string ‘array%()’ otherwise
output will appear on the console (stdout). Output can also be
directed to a file using standard Linux notation. See Appendix C for
examples of usage.

TRANSMIT CODE nnn

TRANSMIT FILE filename,
content-type

TRANSMIT PAGE filename
[,content-type]

Constructs and sends a numerical response to the open socket.
Typical use would be “TRANSMIT CODE 404" to indicate page not
found.

This constructs an HTTP 1.1 header with the 'content-type’
specified and the length of the file, sends it and then sends the
contents of the file to the open socket

This constructs an HTTP 1.1 header with the 'content-type’
specified and the length of the file, sends it and then sends the
contents of the file to the open socket.

The content-type will default to text/html if not specified.

MMBasic will substitute current values for any MMBasic variables
defined in the file inside curly brackets e.g. {myvar%}

Variables can be simple or array elements.

An opening curly bracket can be included in the output by using {{.

See Appendix C for examples of usage.

TRIANGLE X1, Y1, X2,
Y2, X3, Y3 [, C [, FILL]]

All parameters can now be expressed as arrays and the software will
plot the number of boxes as determined by the dimensions of the
smallest array. x1, y1, x2, y2, x3,and y3 must all be arrays or all be
single variables /constants otherwise an error will be generated ¢
and fill can be either arrays or single variables/constants. See the
Micromite Plus manual for full details of parameter usage.

Pi-cromite Manual

Page 15



Functions (Pi-cromite Only)

ADC(channel, range Returns the input voltage on the specified ADC channel (0-3). The
[,precision]) range is specified as the full-scale in mV. Valid ranges for the
MCP3424 are 256, 512, 1024, and 2048. Valid ranges for the
ADS1015 also include 4096 and 6144. The MCP3424 must also have
the number of bits of precision specified. Valid values are 12, 14, 16,
and 18. The conversion time on the MCP3424 changes with the
precision — see the manual for details.

In addition the range can be specified as AUTO in this case the code
does a first conversion at the maximum range and then chooses the
lowest safe range for a second more accurate conversion. Care
should be taken in using AUTO with moving signals

LCOMPARE(array1%(), Compare the contents of two long string variables array1%() and
array2%()) array2%(). The returned is an integer and will be -1 if array1%() is
less than array2%(). It will be zero if they are equal in length and
content and +1 if array1%() is greater than array2%(). The
comparison uses the ASCII character set and is case sensitive.

LGETSTRS(array%(), start, Returns part of a long string stored in array%() as a normal MMBasic

length) string. The parameters start and length define the part of the string to be
returned.

LINSTR(array%(), search$ Returns the position of a search string in a long string. The returned

[,start]) value is an integer and will be zero if the substring cannot be found.

array%() is the string to be searched and must be a long string
variable. Search$ is the substring to look for and it must be a normal
MMBEasic string or expression (not a long string). The search is case
sensitive.

Normally the search will start at the first character in 'str' but the
optional third parameter allows the start position of the search to be

specified.

LLEN(array%()) Returns the length of a long string stored in array%()

MM.DEVICE$ Returns "Pi-cromite running on H/W version: hhhhhh" where hhhhhh
is the version ID of the Raspberry Pi

MM.FORK Returns the process id (PID) of a forked process. Returns 0 if the

process has terminated

Pi-cromite Manual Page 16



Appendix A
Sensor Fusion

The Pi-cromite supports the calculation of pitch, roll and yaw angles from accelerometer and
magnetometer inputs.

For information on this technology see https://github.com/kriswiner/MPU-6050/wiki/Affordable-9-
DoF-Sensor-Fusion

The SENSORFUSION command supports both the MADGWICK and MAHONY fusion algorithms.
The format of the command is:

SENSORFUSION type ax, ay, az, gx, gy, gz, mx, my, mz, pitch, roll, yaw [,p1] [,p2]
Type can be MAHONY or MADGWICK

Ax, ay, and az are the accelerations in the three directions and should be specified in units of
standard gravitational acceleration.

Gx, gy, and gz are the instantaneous values of rotational speed which should be specified in radians
per second.

Mx, my, and mz are the magnetic fields in the three directions and should be specified in nano-Tesla
(nT)

Care must be taken to ensure that the x, y and z components are consistent between the three
inputs. So , for example, using the MPU-9250 the correct input will be ax, ay,az, gx, gy, gz, my, mx, -
mz based on the reading from the sensor.

Pitch, roll and yaw should be floating point variables and will contain the outputs from the sensor
fusion.

The SENSORFUSION routine will automatically measure the time between consecutive calls and will
use this in its internal calculations.

The Madwick algorithm takes an optional parameter p1. This is used as beta in the calculation. It
defaults to 0.5 if not specified

The Mahony algorithm takes two optional parameters p1, and p2. These are used as Kp and Ki in the
calculation. If not specified these default to 10.0 and 0.0 respectively.

A fully worked example of using the code is given on the BackShed forum at

http://www.thebackshed.com/forum/forum_posts.asp?TID=9321&PN=1&TPN=1

Pi-cromite Manual Page 17



Appendix B
Socket Use

This Appendix contains a fully worked example of code to implement a simple interactive web site in
MMBasic. The code is for a remote thermostat which requires a security code to be entered before
the thermostat setting can be changed. The code buffers incoming HTTP requests in a long string
and then uses a generic parsing routine to interpret the request. The HTML file shows how to include

MMBasic variables which will have current values substituted into the HTML when the page is

transmitted

See http://www.thebackshed.com/forum/forum posts.asp?TID=9601 for more information and

examples of the use of CSS files and embedded pictures

option explicit

option default none

Const starttemp = 18
Const maxargs = 32
Const relaypin=7

Const off=0

Const on=1

Dim a%(1000),i%

Dim integer sp(11)

Dim s$,pg$

Dim security$="123456"
Dim string cp(11)

Dim float tcurrent,tnew
Dim float tmax=-1000

Dim float tmin=1000

Dim arg$(1,maxargs-1)
Dim integer checked=0
Const check$="checked='checked" 'string to set a readio button pressed
Dim string heating="off"
Const hon$="#ff0000" 'red
Const hoff$="#00ff00" 'green
Dim string hcol=hoff$

SetPin relaypin,dout
Fori%=0 To 10
sp(i%)=i%+starttemp-1 'set up the temperature values
cp(i%)="""set up the radio buttons as not pressed
Next i%
tcurrent=TEMPR(11) 'get the current temperature
cp(checked)=check$
Open "socket,myint,100" As #2
Do
TEMPR START 11
Pause 2000
tnew=TEMPR(11)
If Abs(tnew-tcurrent)<10 Then tcurrent=tnew
updateheater
If tcurrent>tmax Then tmax=tcurrent
If tcurrent<tmin Then tmin=tcurrent
Loop

Sub myint
Local p%=0, t%=0
Local g$
Do While Not Eof(2)
LongString append a%(),Input$(10,2)
Loop

Pi-cromite Manual

Page 18



p%=LInStr(a%(),"GET",1)
t%=LInStr(a%(),"HTTP",1)
If p%<>0 And t%<>0 Then 'full request received
s$=LGetStr$(a%(),p%,t%-p%+4)
LongString trim a%(),t%+4
pg$= parserequest$(s$,i%)
If i% Then
If arg$(0,0)="Security" And arg$(1,0)=security$ Then 'valid update
If arg$(0,1)="R" Or arg$(0,2)="R" Then
cp(checked)=""
If arg$(0,1)="R" Then checked=Asc(arg$(1,1))-Asc("A")
If arg$(0,2)="R" Then checked=Asc(arg$(1,2))-Asc("A")
cp(checked)=check$
updateheater
EndIf
If arg$(0,1)="Check" Or arg$(0,2)="Check" Then
tmin=tcurrent
tmax=tcurrent
EndIf
EndIf
EndIf

If pg$="index.htmlI" Then
Transmit page "index.html"
Else
Transmit code 404
EndIf
EndIf
End Sub

'Function to parse an HTML GET request'
' Assumes that the request starts with "GET /"
"and ends with "HTTP"

Function parserequest$(req$, paramcount As integer)

Local a$,b$
Local integer inpos,startparam,processargs
For inpos=0 To maxargs-1

arg$(0,inpos)=""

arg$(1,inpos)=
Next inpos
paramcount=0
a$=Mid$(req$,6,Len(req$)-10)
inpos=Instr(a$,"?")
If inpos<>0 Then 'parameters found

processargs=1

parserequest$=Left$(a$,inpos-1)

a$=Mid$(a$,inpos+1)

Do

arg$(0,paramcount)=""

arg$(1,paramcount)=""

inpos=Instr(a$,"=")

startparam=1

arg$(0,paramcount)=Mid$(a$,startparam,inpos-startparam)

startparam=inpos+1

inpos=Instr(a$,"&")

If inpos<>0 Then
arg$(1,paramcount)=Mid$(a$,startparam,inpos-startparam)
a$=Mid$(a$,inpos+1)
paramcount=paramcount+1

Else
arg$(1,paramcount)=Mid$(a$,startparam)
paramcount=paramcount+1
processargs=0

EndIf

Loop While processargs

Pi-cromite Manual

Page 19



Else
parserequest$=a$
EndIf
If a$="" Then
parserequest$="index"
EndIf
If Instr(parserequest$,".html")=0 And Instr(parserequest$,".HTML")=0 Then
parserequest$=parserequest$+".html"
End Function

Sub updateheater
Local float hcalc
If checked=11 Then
Pin(relaypin)=1
heating="On"
hcol=hon$
EndIf
If checked=0 Then
Pin(relaypin)=0
heating="Off"
hcol=hoff$
EndIf
If checked>=1 And checked<=10 Then
hcalc=checked+starttemp-1 'setpoint temperature
If tcurrent>hcalc Then 'turn heating off
Pin(relaypin)=0
heating="Off"
hcol=hoff$
EndIf
If tcurrent<hcalc Then 'turn heating on
Pin(relaypin)=1
heating="On"
hcol=hon$
EndIf
EndIf
End Sub

<html>
<head>
<title>Remote Thermostat</title>
</head>
<body>
<form name="f1' method='get' action='index'>
<h2 align="left">Remote Thermostat V4.0</h2>
Update Code: <input type="text' name="'Security' size='6" value='000000">
<br>
<p>
<TABLE BORDER="1' CELLSPACING='0' CELLPADDING='5">
<TR>
<TD>Heating</TD>
<TD BGCOLOR='{HCOL}>{heating}</TD>
</TR>
</TABLE>
</p>
<p>
<TABLE BORDER='1' CELLSPACING='0' CELLPADDING='5">
<TR>
<TD></TD>
<TD>Temperature</TD>
</TR>
<TR>
<TD>Current</TD>
<TD>{TCURRENT}°C</TD>
</TR>
<TR>
<TD>Max</TD>

Pi-cromite Manual Page 20



<TD>{TMAX}°C</TD>
</TR>
<TR>
<TD>Min</TD>
<TD>{TMIN}°C</TD>
</TR>
</TABLE>
</p>
<input name='Check’ type="checkbox' value='"Reset' onClick="this.form.submit()">
Reset Max/Min<p>
<TABLE BORDER="1' CELLSPACING='0' CELLPADDING='5">
<TR>
<TD>Thermostat</TD>
<TD><input name='R' type="radio' {CP(0)} value="A" onClick="this.form.submit()'> Off<br></TD>
<TD><input name='R' type="radio' {CP(1)} value='B' onClick="this.form.submit()'> {SP(1)}°C<br></

TD>

<TD><input name='R’ type="radio' {CP(2)} value='C' onClick="this.form.submit()'> {SP(2)}°C<br></
TD>

<TD><input name='R' type="radio' {CP(3)} value='D' onClick="this.form.submit()'> {SP(3)}°C<br></
TD>

<TD><input name='R' type="radio' {CP(4)} value='E' onClick="this.form.submit()'’> {SP(4)}°C<br></
TD>

<TD><input name='R' type="radio' {CP(5)} value='F' onClick="this.form.submit()"> {SP(5)}°C<br></
TD>

<TD><input name='R' type="radio' {CP(6)} value='G' onClick="this.form.submit()'> {SP(6)}°C<br></
TD>

<TD><input name='R' type="radio' {CP(7)} value="H' onClick="this.form.submit()'> {SP(7)}°C<br></
TD>

<TD><input name='R' type="radio' {CP(8)} value="I' onClick="this.form.submit()'> {SP(8)}°C<br></T
D>

<TD><input name='R’ type="radio' {CP(9)} value='J' onClick="this.form.submit()'> {SP(9)}°C<br></T
D>

<TD><input name='R’ type="radio' {CP(10)} value='K' onClick="this.form.submit()'> {SP(10)}°C<br>
</TD>

<TD><input name='R’ type="radio' {CP(11)} value="L' onClick="this.form.submit()'> On<br></TD>

</TR>
</TABLE>
</p>
</form>

</body>
</htm|>

Pi-cromite Manual Page 21



Appendix C
Code Examples

Capturing system output to a file

System "Is -al >> myfile"
Open "myfile" For input As #1
Do

Line Input #1,a$

Print a$
Loop While Not Eof(#1)
Close #1
Kill "myfile"

NB The >> will append to the file (and create it if required).

Instead you can use > and it will throw away any existing data then write the file.

Capturing system output to a long string

DIM INTEGER a(1000)

SYSTEM "Is -al",a()

FOR i=1 to LLEN(a())
print LGETSTR$(a(),i,1);

NEXT i

Accessing a USB/UART from MMBasic

Thanks to TassydJim for the code snippet

' serial test program

System "stty -F /dev/ttyUSBO 38400"

OPEN "/dev/ttyUSB0" FOR random AS #5 ' open the serial port

PRINT #5, "HELLO!!! Is anyone out there?"

DO ' preferred way to receive serial data which might not be there!
k$ = INPUTS$(1,#5)

IF k$="" THEN
nodata=nodata+1
ELSE

result$=result$+k$
PRINT ASC(k$),result$
nodata=0
ENDIF
PAUSE 20
LOOP UNTIL k$=CHR$(10)OR nodata=50 ' 50*20ms = 1 second timeout
DO
PRINT #5, "U";
LOOP

CLOSE #5

Pi-cromite Manual

Page 22



Appendix D
Using an 12S DAC with MMBasic

The pinout for 12S is:

Bit-clock : pin 12
LR-clock : pin 35
i2s-data-in : pin 38
i2s data-out : pin 40

I12S can be enabled with

sudo curl -sS https://get.pimoroni.com/phatdac | bash

Set the MMBasic to use the PWM clock with
OPTION CLOCK PWM

Reserve the 12S pins so that MMBasic can’t use them with

OPTION PINS &HA400000800

Then an audio file can be played over i2s either external to mmbasic (and unaffected by it), or from
mmbasic using any appropriate Linux command

SYSTEM "aplay wavfile"

To play mp3 or flac files over i2s | found mpv worked, omxplayer does not work

sudo apt-get install mpv

Pi-cromite Manual Page 23



