

Armmite H7
User

Manual

MMBasic Ver 5.04.30

This manual is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Australia license (CC BY-NC-SA 3.0)

Pi-cromite Manual Page 2

The Armmite H7 is a new addition to the Micromite family using the STM32H7. The Armmite H7
firmware implements most of the features of the standard Micromite and the Micromite Plus as
described in the Micromite User Manual and the Micromite Plus Manual. It has a number of
differences and additional features and they are described in this document.
The focus of this manual is to describe just the features that are unique to the Armmite H7. For
general Micromite programming you should refer to the Micromite User Manual and the Micromite
Plus Manual in addition to this manual.

Contents

Introduction ... 3
Micromite Family Summary .. 4
Hardware Considerations ... 6
144-pin Armmite H7 Pinout .. 8
Unique Armmite H7 Features ... 12
Commands (Armmite H7 Only)... 15
Functions (Armmite H7 Only) ... 23
Appendix A - Sensor Fusion .. 26
Appendix B - Sprites .. 27

Pi-cromite Manual Page 3

Introduction
This manual provides an introduction for users who are familiar with the Micromite and the Micromite
Plus and need a summary of the extra features in the Armmite H7.
The Armmite H7 is an extension of the standard Micromite and the Micromite Plus; most of the features
of these two versions are also in the Armmite H7. This includes features of the BASIC language,
input/output, communications, etc. Some commands have changed slightly but for the main part
Micromite programs will run unchanged on the Armmite H7.
The following summarises features of the Armmite H7 as compared to the standard Micromite and the
Micromite Plus:
The Armmite H7 is based on the STM32H743ZI. The It has up to fifteen times the program space of
the MX series used in the standard Micromite and is many times faster. The Armmite H7 is roughly
2x faster than even a 252MHz PIC32MZ.
The Armmite H7 uses the built in hardware floating point capability of the STM32H743ZI processor
which is much faster than floating point on the standard Micromite and uses double precision floating
point.
The Armmite H7 has 96 free I/O pins. The Armmite H7 supports 25 16-bit analogue inputs.
The Armmite H7 has two I2C ports, four SPI ports, eight high speed PWM channels , two 12-bit
DACs, a high speed counter input, and four serial COM ports.

The STM32H73ZI is conveniently available package on a development PCB the NUCLEO-H743ZI .
This is widely available through the normal suppliers (RS, Farnell, Mouser, etc.) at low cost.

Pi-cromite Manual Page 4

Micromite Family Summary
The Micromite Family consists of five major types, the standard Micromite, the Micromite Plus, the
Micromite eXtreme, the Pi-cromite and the Armmite H7. All use the same BASIC interpreter and
have the same basic capabilities however they differ in the number of I/O pins, the amount of
memory, the displays that they support and their intended use.

Standard Micromite Comes in a 28-pin or 44-pin package and is designed for small embedded
controller applications and supports small LCD display panels. The 28-pin
version is particularly easy to use as it is easy to solder and can be plugged
into a standard 28-pin IC socket.

Micromite Plus This uses a 64-pin and 100-pin TQFP surface mount package and supports a
wide range of touch sensitive LCD display panels from 1.44" to 8" in addition to
the standard features of the Micromite. It is intended as a sophisticated
controller with easy to create on-screen controls such as buttons, switches,
etc.

Micromite eXtreme This comes in 64, 100-pin and 144-pin TQFP surface mount packages. The
eXtreme version has all the features of the other two Micromites but is faster
and has a larger memory capacity plus the ability to drive a VGA monitor for a
large screen display. It works as a powerful, self contained computer with its
own BASIC interpreter and instant start-up.

Pi-cromite Runs on all versions of the Raspberry Pi with a 40-pin I/O connector. No
analogue input capability but 5x faster than a Micromite eXtreme when running
on a Pi 3.

Armmite H7 Runs on the NUCLEO-H743ZI processor. This is the highest speed single-chip
Micromite currently available.

 Micromite Micromite Plus Micromite eXtreme Armmite

H7

28-
pin
DIP

44-pin
SMD

64-pin
SMD

100-
pin

SMD

100-pin
SMD

144-pin
SMD

64-pin
SMD

NUCLEO
-H743ZI

Maximum CPU Speed 48

MHz
48

MHz
120

MHz
120

MHz
252MHz 252

MHz
252

MHz
400MHz

Maximum BASIC
Program Size

59

KB
59 KB 100 KB 100 KB 540 KB 540 KB 540 KB 512KB

RAM Memory Size 52

KB
52 KB 108 KB 108 KB 460 KB 460 KB 460 KB 512KB

Clock Speed (MHz) 5 to
48

5 to
48

5 to
120

5 to
120

200 to
252

200 to
252

200 to
252

400

Total Number of I/O pins 19 33 45 77 75 115 46 102
Number of Analog Inputs 10 13 28 28 40 48 24 26
Number of Serial I/O
ports

2 2 3 or 4 3 or 4 3 or 4 3 or 4 3 or 4 2

Number of SPI Channels 1 1 2 2 3 3 2 4
Number of I2C Channels 1 1 1 +

RTC
1 +

RTC
2 + RTC 2 +

RTC
1 +

RTC
2

Number of 1-Wire I/O
pins

19 33 45 77 75 115 46 96

PWM or Servo Channels 5 5 5 5 6 6 6 8
Serial Console
USB Console x
PS2 Keyboard and LCD
Console

USB Keyboard and LCD
Console

SD Card Interface
Supports ILI9341 LCD
Displays

Pi-cromite Manual Page 5

Supports Ten LCD
Panels from 1.44" to 8"
(diameter)

 +
ILI9481

+
ILI9481

+
ILI9481

+
ILI9481

Supports VGA Displays
Sound Output
(WAV/tones)

 On-chip
DACs

Supports PS2 Mouse
Input

Floating Point Precision Singl
e

Single Double Double Double Double Double Double

Power Requirements
3.3V
30

mA

3.3V
30 mA

3.3V
80 mA

3.3V
80 mA

3.3V
160 mA

3.3V
160 mA

3.3V
160 mA

3.3V
200mA

Pi-cromite Manual Page 6

Hardware considerations

The microcontroller used in the Armmite H7 is the STM32H743ZI manufactured by ST.

The default clock speed of the Armmite H7 is 400 MHz. The clock input to the chip must be an 8MHz
external oscillator on pin 23.

The supported chips are:

STM32H743ZI 144-pin LQFP package (0.5 mm pin pitch) – maximum speed
400 MHz

STM32H753ZI 144-pin LQFP package (0.5 mm pin pitch) – maximum speed
400 MHz

144-pin Test and Development Board
The Nucleo-H743ZI is a complete module and breaks out all the pins on the chip. It includes a ST-
LINK programmer for uploading the Armmite firmware and also provides a console connection via a
USB CDC connection. It can be used standalone, or can be mounted directly onto a back pack PCB
which provides connections to various LCD panels. Gerbers for the backpack are available on

http://www.thebackshed.com/forum/forum_posts.asp?TID=10700&PN=1

Please download and install ST-LINK and use it to program the Nucleo rather than
STM32CubeProgrammer.It takes a little longer but it correctly programs the chip. My uploads are all
done through the development environment which uses ST-LINK. I've just tested the most recent
posted binary with both STM32CubeProgrammer and ST-LINK and it only works properly with when
programmed with ST-LINK.

SDcard, SPI LCD and Touch Connections
The connections required to use an LCD panel are as follows

T_DO, SDO(MISO), SD_DO Pin-20 (PF8)

T_DIN, SDI(MOSI), SD_DIN Pin-21 (PF9)

T_CLK, SCK, SD_CLK Pin-19 (PF7)

SD_CS configurable

SD_CD configurable

T_IRQ configurable

T_CS configurable

SSD1963, 16-bit ILI9341 Connections
Touch and SDcard connections as above

DB0 Pin-141 (PE0) DB8 Pin-59 (PE8) WR Pin-125 (PG10)

DB1 Pin-141 (PE1) DB9 Pin-60 (PE9) RS Pin-57 (PG11)

DB2 Pin-1 (PE2) DB10 Pin-64 (PE10) RESET Pin-127 (PG12)

DB3 Pin-2 (PE3) DB11 Pin-64 (PE11) RD Pin-128 (PG13) *

DB4 Pin-3 (PE4) DB12 Pin-65 (PE12) CS GND

DB5 Pin-4 (PE5) DB13 Pin-66 (PE13)

DB6 Pin-5 (PE6) DB14 Pin-67 (PE14)

DB7 Pin-58 (PE7) DB15 Pin-68 (PE15)

SSD1963 displays should be configured for backlight control using 1963_PWM. Controlling the
backlight using an Armmite H7 pin like the MM+ is not supported.

 Mandatory connection

Pi-cromite Manual Page 7

OV7670 Camera connections
SIOC Pin-139 (PB8) SIOD Pin-140 (PB9)

VSYNC Pin-89 (PG4) HREF Pin-90 (PG5)

PCLK Pin-88 (PG3) XCLK Pin-100 (PA8)

D7 Pin-97 (PC7) D6 Pin-96 (PC6)

D5 Pin-45 (PC5) D4 Pin-44 (PC4)

D3 Pin-29 (PC3) D2 Pin-28 (PC2)

D1 Pin-27 (PC1) D0 Pin-26 (PC0)

RESET 3.3V PWDN GND

Pi-cromite Manual Page 8

144-pin Armmite H7 Pinouts

Pin Features

1 DIGITAL_IN DIGITAL_OUT SSD1963-DB2

2 DIGITAL_IN DIGITAL_OUT SSD1963-DB3

3 DIGITAL_IN DIGITAL_OUT SSD1963-DB4

4 DIGITAL_IN DIGITAL_OUT SSD1963-DB5

5 DIGITAL_IN DIGITAL_OUT SSD1963-DB6

6 VBAT

7 DIGITAL_IN DIGITAL_OUT NUCLEO-B1

8 32KHz Xtal

9 32KHz Xtal

10 DIGITAL_IN DIGITAL_OUT COUNT1

11 DIGITAL_IN DIGITAL_OUT COUNT2

12 DIGITAL_IN DIGITAL_OUT COUNT3

13 ANALOG_IN DIGITAL_IN DIGITAL_OUT COUNT4

14 ANALOG_IN DIGITAL_IN DIGITAL_OUT IR

15 ANALOG_IN DIGITAL_IN DIGITAL_OUT

16 GND

17 VDD

18 ANALOG_IN DIGITAL_IN DIGITAL_OUT

19 ANALOG_IN DIGITAL_IN DIGITAL_OUT SPI5-CLK

20 ANALOG_IN DIGITAL_IN DIGITAL_OUT SPI5-IN

21 ANALOG_IN DIGITAL_IN DIGITAL_OUT SPI5-OUT

22 ANALOG_IN DIGITAL_IN DIGITAL_OUT

23 8MHz OSC

24 N/C

25 RESET

26 ANALOG_IN DIGITAL_IN DIGITAL_OUT OV7670-D0

27 ANALOG_IN DIGITAL_IN DIGITAL_OUT SPI2-OUT OV7670-D1

28 ANALOG_IN DIGITAL_IN DIGITAL_OUT SPI2-IN OV7670-D2

29 ANALOG_IN DIGITAL_IN DIGITAL_OUT OV7670-D3

30 VDD

31 ANALOG-GND

32 VREF

33 ANALOG-VDD

34 ANALOG_IN DIGITAL_IN DIGITAL_OUT PWM-2A

35 ANALOG_IN DIGITAL_IN DIGITAL_OUT PWM-2B

36 ANALOG_IN DIGITAL_IN DIGITAL_OUT PWM-2C

37 ANALOG_IN DIGITAL_IN DIGITAL_OUT PWM-2D

38 GND

Pi-cromite Manual Page 9

39 VDD

40 DAC1 AUDIO-L

41 DAC2 AUDIO-R

42 ANALOG_IN DIGITAL_IN DIGITAL_OUT SPI-IN

43 ANALOG_IN DIGITAL_IN DIGITAL_OUT SPI-OUT

44 ANALOG_IN DIGITAL_IN DIGITAL_OUT OV7670-D4

45 ANALOG_IN DIGITAL_IN DIGITAL_OUT OV7670-D5

46 ANALOG_IN DIGITAL_IN DIGITAL_OUT NUCLEO-GREEN

47 ANALOG_IN DIGITAL_IN DIGITAL_OUT

48 DIGITAL_IN DIGITAL_OUT SPI3-OUT

49 ANALOG_IN DIGITAL_IN DIGITAL_OUT

50 ANALOG_IN DIGITAL_IN DIGITAL_OUT

51 GND

52 VDD

53 ANALOG_IN DIGITAL_IN DIGITAL_OUT

54 ANALOG_IN DIGITAL_IN DIGITAL_OUT

55 DIGITAL_IN DIGITAL_OUT

56 DIGITAL_IN DIGITAL_OUT

57 DIGITAL_IN DIGITAL_OUT SSD1963-RS

58 DIGITAL_IN DIGITAL_OUT SSD1963-DB7

59 DIGITAL_IN DIGITAL_OUT SSD1963-DB8

60 DIGITAL_IN DIGITAL_OUT SSD1963-DB9

61 GND

62 VSS

63 DIGITAL_IN DIGITAL_OUT SSD1963-DB10

64 DIGITAL_IN DIGITAL_OUT SSD1963-DB11

65 DIGITAL_IN DIGITAL_OUT SSD1963-DB12

66 DIGITAL_IN DIGITAL_OUT SSD1963-DB13

67 DIGITAL_IN DIGITAL_OUT SSD1963-DB14

68 DIGITAL_IN DIGITAL_OUT SSD1963-DB15

69 I2C2-SCL

70 I2C2-SDA

71 VCAP

72 VDD

73 DIGITAL_IN DIGITAL_OUT COM3-RX

74 DIGITAL_IN DIGITAL_OUT COM3-TX

75 DIGITAL_IN DIGITAL_OUT NUCLEO-RED

76 DIGITAL_IN DIGITAL_OUT COM1-RX

77 CONSOLE-TX

78 CONSOLE-RX

79 DIGITAL_IN DIGITAL_OUT

80 DIGITAL_IN DIGITAL_OUT

Pi-cromite Manual Page 10

81 DIGITAL_IN DIGITAL_OUT PWM-1A

82 DIGITAL_IN DIGITAL_OUT PWM-1B

83 GND

84 VDD

85 DIGITAL_IN DIGITAL_OUT PWM-1C

86 DIGITAL_IN DIGITAL_OUT PWM-1D

87 DIGITAL_IN DIGITAL_OUT

88 DIGITAL_IN DIGITAL_OUT OV7670_PCLK

89 DIGITAL_IN DIGITAL_OUT OV7670_VSYNC

90 DIGITAL_IN DIGITAL_OUT OV7670_HREF

91 NUCLEO-
USBPWR

92 DIGITAL_IN DIGITAL_OUT

93 DIGITAL_IN DIGITAL_OUT COUNT5-HS

94 GND

95 VDDUSB

96 DIGITAL_IN DIGITAL_OUT OV7670-D6

97 DIGITAL_IN DIGITAL_OUT OV7670-D7

98 DIGITAL_IN DIGITAL_OUT

99 DIGITAL_IN DIGITAL_OUT

100 DIGITAL_IN DIGITAL_OUT OV7670_XCLK

101 DIGITAL_IN DIGITAL_OUT

102 DIGITAL_IN DIGITAL_OUT

103 USB-D+

104 USB-D-

105 SWDIO

106 VCAP

107 GND

108 VDD

109 SWCLK

110 DIGITAL_IN DIGITAL_OUT

111 DIGITAL_IN DIGITAL_OUT

112 DIGITAL_IN DIGITAL_OUT

113 DIGITAL_IN DIGITAL_OUT

114 DIGITAL_IN DIGITAL_OUT

115 DIGITAL_IN DIGITAL_OUT

116 DIGITAL_IN DIGITAL_OUT

117 DIGITAL_IN DIGITAL_OUT SPI2-CLK

118 DIGITAL_IN DIGITAL_OUT COM2-DE

119 DIGITAL_IN DIGITAL_OUT COM2-TX

120 GND

121 VDD

Pi-cromite Manual Page 11

122 DIGITAL_IN DIGITAL_OUT COM2-RX

123 DIGITAL_IN DIGITAL_OUT

124 DIGITAL_IN DIGITAL_OUT COM4-RX

125 DIGITAL_IN DIGITAL_OUT SSD1963_WR

126 DIGITAL_IN DIGITAL_OUT SPI-CLK

127 DIGITAL_IN DIGITAL_OUT SSD1963_RESET

128 DIGITAL_IN DIGITAL_OUT SSD1963_RD

129 DIGITAL_IN DIGITAL_OUT COM4-TX

130 GND

131 VSS

132 DIGITAL_IN DIGITAL_OUT

133 DIGITAL_IN DIGITAL_OUT SPI3-CLK

134 DIGITAL_IN DIGITAL_OUT SPI3-IN

135 DIGITAL_IN DIGITAL_OUT

136 DIGITAL_IN DIGITAL_OUT COM1-TX

137 DIGITAL_IN DIGITAL_OUT NUCLEO-BLUE

138 BOOT0

139 I2C-SCL

140 I2C-SDA

141 DIGITAL_IN DIGITAL_OUT SSD1963-DB0

142 DIGITAL_IN DIGITAL_OUT SSD1963-DB1

143 PDR-ON

144 VDD

Pi-cromite Manual Page 12

Armmite H7 Features

400MHz clock
The Armmite H7 is the fastest single chip implementation of MMBasic

512Kbyte program and 498Kbyte variable space
The Armmite H7 supports MMBasic programs up to 512Kbytes in size. By default the maximum
program size is set to 128Kb to expedite loading and saving programs but this can be extended as
required with the OPTION FLASHPAGES command. Variable space is always 498Kbyte.

Dual 12-bit DACs
The Armmite H7 has 2 12-bit DACs built into the chip. The analogue levels can be set using the DAC
command. In addition they are used for the PLAY TONE, PLAY WAV, PLAY FLAC and TTS
commands. The pins cannot be used for general purpose I/O.

Double Precision Floating Point
The Armmite H7 uses the hardware floating point capability of the STM32H743ZI chip and can
therefore process floating point calculations faster than the Micromite and Micromite Plus. All floating
point uses double precision calculations.

Eight PWM Channels
Minimum frequency is 1Hz, maximum is 20MHz. Duty cycle and frequency accuracy will depend on
frequency. The frequency can be any value of 200,000,000/n.

Three SPI Channels
The Armmite H7 supports three SPI channels. The second and third channels operate the same as the
first, the only difference is that the commands use the notation SPI2 and SPI3 (for example SPI3
WRITE, etc).

Note that if the Armmite H7 is configured for a SPI based LCD panel, touch or an SD card then an
additional SPI channel is used and does not impact the other three.

MM.DEVICE$
On the Armmite H7 the read only variable MM.DEVICE$ will return " Armmite ".

Longstring handling
The Armmite H7 supports a comprehensive set of commands and functions for handling long strings
stored in integer arrays

I2C
You can use I2C exactly the same as the Micromite with the following limitations:
The implementation does not support 10-bit addressing (i.e. options 0 and 1 only).
The implementation does not support I2C slave mode

A second I2C channel can be used using the command I2C2.

I2C ports are dedicated and cannot be used for general purpose I/O

On-chip RTC supporting DATE$ and TIME$
Date$ and Time$ are derived from the STM32H743ZI on-chip real time clock. They are returned in
standard MMBasic format when read. Setting them will update the real time clock. If a 3V battery is
connected the STM32H743ZI will maintain the time even when powered off. An addition MMBasic
function DAY$ returns the day of the week as a string.

VAR command
The Armmite H7 allows up to 128Kbs of variables to be saved

Pi-cromite Manual Page 13

Resetting the chip and options
The chip can be reset to “just-programmed” state by connecting pin 7 to VDD whilst resetting the chip
by grounding the RESET pin.

16-bit ADCs
All analogue to digital conversion is carried out in 16-bit resolution. In addition the ADC can read the
voltage being output on the DACs, the battery backup voltage, the chip die temperature and the
internal reference voltage.

USB Keyboard support
The Armmite H7 supports a USB keyboard in US or OK format. This is enabled with the OPTION
USBKEYBOARD command. A keyboard can be plugged directly into the micro-USB port of a
Nucleo-H743ZI using a suitable adapter.

Buffered Drivers for all displays
All displays up to and including 480x320 pixel resolution automatically use a buffered driver where a
memory image of the display is maintained in the Armmite’s memory. This does not impact user
RAM space but helps reduce artefacts whilst writing to the screen. Commands OPTION
AUTOREFRESH and REFRESH can be used to control when the updates to the screen take place
allowing the programmer maximum flexibility in using the screen effectively. A buffered driver is also
included for 800x480 displays but this reduces user RAM significantly (down to 98Kbytes free).

16-bit Interface to SSD1963 Based LCD Displays
The Armmite H7 can drive a SSD1963 display using a 16-bit parallel bus for extra speed. The extra
I/O pins for this are listed as SSD1963-DB8 to SSD1963-DB15 on the pinout tables in this manual and
they must be connected to the pins labelled DB8 to DB15 on the I/O connector on the SSD1963
display.

Note that in this mode the SSD1963 controller runs with a reduce colour range (65 thousand colours)
compared to 16 million colours with the normal 8-bit interface.

WS2812 support
The Armmite H7 supports the WS2812 Led driver. This chip needs very specific timing to work
properly and by incorporating support in the Armmite H7 firmware the user can program these chips
with minimum effort. The command WS2812 is used to set the colours of the LEDs. There is no limit
to the size of the WS2812 string supported.

GPS support
The Armmite H7 support connection of a GPS to any of the 4 serial interfaces. The command OPEN
“COMn:baudrate” as GPS is used to enable reception of NMEA GPS messages. THE GPS()
function can then be used to interrogate the GPS data which is automatically parsed in the Armmite
firmware. In addition PRINT #GPS,string$ can be used to automatically append a correct checksum
to a GPS message.

High speed frequency counter support
The Armmite H7 supports a frequency counter input to pin 93. This supports counting high speed
signals (tested to 20MHz, but may go considerably higher).

OV7670 camera support with movement detection
The Armmite H7 supports a non-buffered OV7670 camera in full colour 640x480 pixel mode using
the CAMERA command. To use this a 800x480 SSD1963 display must be connected and configured
using a special driver (OPTION LCDPANEL SSD1963_5_640, orientation or OPTION LCDPANEL

Pi-cromite Manual Page 14

SSD1963_7_640, orientation) in landscape or reverse landscape mode. The driver maintains a
complete image in Armmite memory which allows the software to compare a newly captured image
with a stored one to check for movement using the MOVEMENT() function.

Sprites

The Armmite H7 supports a complete implementation of sprites including screen scrolling and
collision detection

Extended WAV File Playback
The Armmite H7 can play WAV files (like the Micromite Plus) however, it is also capable of playing
WAV files recorded with sampling rates of 24 KHz, 44.1KHz, and 48 KHz.

Random Number Generation
The Armmite H7 uses the hardware random number generator in the STM32 series of chips to deliver
true random numbers. This means that the RANDOMIZE command is no longer needed and is not
supported.

OPTION VCC command
The Armmite H7 supports the OPTION VCC command. This allows the user to precisely set the
supply voltage to the chip and is used in the calculation of voltages when using analogue inputs e.g.
OPTION VCC 3.15. The parameter is not saved and should be initialised either on the command line or
in a program.

CFunctions
CFunctions are supported and work correctly. However, currently there is no specified mechanism for
compiling CFunctions and converting the compiled code to MMBasic statements.

Unsupported commands
The Armmite H7 does not currently support dynamically changing the CPU speed or the sleep function.
Accordingly the commands CPU speed and CPU SLEEP are not available.
The ArmmiteH7 does not currently support the watchdog command and functionality.
The Armmite H7 does not support the LIBRARY command but given the large program space available
this should not create any issues.

Pi-cromite Manual Page 15

Commands (Armmite H7 Only)
Detailed Listing

BOX x1, y1, w, h [, lw] [,c]

[,fill]

All parameters can now be expressed as arrays and the
software will plot the number of boxes as determined by the
dimensions of the smallest array. x1, y1, w, and h must all be
arrays or all be single variables /constants otherwise an error
will be generated. lw, c, and fill can be either arrays or single
variables/constants. See the Micromite User manual for full
details of parameter usage.

BLIT …… The BLIT and SPRITE commands can be used
interchangeably. All Micromite Plus functionality is preserved
with minor functional changes. See the SPRITE command for
functionality over and above the Micromite Plus and command
differences.

CAMERA OPEN

CAMERA CAPTURE

CAMERA SAVE “filename”

CAMERA REGISTER
register, value

CAMERA CLOSE

Initialises an OV7670 camera ready for use

Captures an image from the camera to a connected 800x480
SSD1963 display. NB: the display must be set to 640 pixel
mode using the OPTION LCDPANEL command

saves the on-screen image to the SDcard. If the file extension
is not specified then ".BMP" is appended.

can be used to change the camera settings see the datasheet
for details

disables the camera and frees the allocated pins

CIRCLE x, y, r [,lw] [, a] [,

c] [, fill]
All parameters can now be expressed as arrays and the
software will plot the number of boxes as determined by the
dimensions of the smallest array. x, y and r must all be arrays
or all be single variables /constants otherwise an error will be
generated. lw, a, c, and fill can be either arrays or single
variables/constants. See the Micromite User manual for full
details of parameter usage.

CLOSE [#]nbr [,[#]nbr] The text “GPS” can be substituted for [#]nbr to close a
communications port used for a GPS receiver

DAC n, voltage Sets the DAC channel (1 or 2) to the voltage requested. This
command cannot be used if the DACs are in use for audio
output.

GUI STARTLINE n Sets the row in the graphics memory which will appear at the
top of the screen (landscape or reverse landscape) or left of
the screen (portrait or reverse portrait) for a 4.3” SSD1963
display initialised with OPTION LCDPANEL SSD1963_4P
[_16]

Pi-cromite Manual Page 16

I2C2 OPEN speed,
timeout

[, PU

I2C2 WRITE addr, option,
sendlen, senddata
[,sendata

....]

I2C2 READ addr, option,

rcvlen, rcvbuf

I2C2 CLOSE

I2C2 SLAVE OPEN addr,
mask, option, send_int,

rcv_int

I2C2 SLAVE WRITE
sendlen, senddata
[,sendata

....]

I2C2 SLAVE READ rcvlen,

rcvbuf, rcvd

I2C2 SLAVE CLOSE

See Appendix B of the Micromite User Manual.

LINE x1, y1, x2, y2 [, LW [,
C]]

All parameters can now be expressed as arrays and the
software will plot the number of boxes as determined by the
dimensions of the smallest array. x1, y1, x2, and y2 must all be
arrays or all be single variables /constants otherwise an error
will be generated. lw and c can be either arrays or single
variables/constants. See the Micromite User manual for full
details of parameter usage.

LOAD SPRITE [#]n,
fname$

Alternate form. See SPRITE LOAD

LONGSTRING APPEND
array%(), string$

LONGSTRING CLEAR
array%()

LONGSTRING COPY
dest%(), src%()

LONGSTRING CONCAT
dest%(), src%()

LONGSTRING LCASE
array%()

LONGSTRING LEFT

Append a normal MMBasic string to a long string variable.
array%() is a long string variable while string$ is a normal
MMBasic string expression.

Will clear the long string variable array%(). ie, it will be set to
an empty string.

Copy one long string to another. dest%() is the destination
variable and src%() is the source variable. Whatever was in
dest%() will be overwritten.

Concatenate one long string to another. dest%() is the
destination variable and src%() is the source variable. src%()
will the added to the end of dest%() (the destination will not be
overwritten).

Will convert any uppercase characters in array%() to
lowercase. array%() must be long string variable.

Will copy the left hand 'nbr' characters from src%() to dest%()

Pi-cromite Manual Page 17

dest%(), src%(), nbr

LONGSTRING LOAD
array%(), nbr, string$

LONGSTRING MID
dest%(), src%(), start, nbr

LONGSTRING PRINT [#n,]
src%()

LONGSTRING REPLACE
array%() , string$, start

LONGSTRING RIGHT
dest%(), src%(), nbr

LONGSTRING TRIM
array%(), nbr

LONGSTRING UCASE
array%()

overwriting whatever was in dest%(). ie, copy from the
beginning of src%(). src%() and dest%() must be long string
variables. 'nbr' must be an integer constant or expression.

Will copy 'nbr' characters from string$ to the long string variable
array%() overwriting whatever was in array%().

Will copy 'nbr' characters from src%() to dest%() starting at
character position 'start' overwriting whatever was in dest%().
ie, copy from the middle of src%(). 'nbr' is optional and if
omitted the characters from 'start' to the end of the string will
be copied src%() and dest%() must be long string variables.
'start' and 'nbr' must be an integer constants or expressions.

Prints the longstring stored in src%()

Will substitute characters in the normal MMBasic string string$
into an existing long string array%() starting at position ‘start’ in
the long string.

Will copy the right hand 'nbr' characters from src%() to dest%()
overwriting whatever was in dest%(). ie, copy from the end of
src%(). src%() and dest%() must be long string variables. 'nbr'
must be an integer constant or expression.

Will trim ‘nbr’ characters from the left of a long string. array%()
must be a long string variables. 'nbr' must be an integer
constant or expression.

Will convert any lowercase characters in array%() to
uppercase. array%() must be long string variable.

OPEN comspec$ AS GPS
[,timezone_offset]
[,monitor]

Will open a serial communications port for reading from a GPS
receiver. See the GPS function for details. The timezone_offset
parameter is used to convert UTC as received from the GPS to
the local timezone. If omitted the timezone will default to UTC.
The timezone_offset can be a any number between -12 and 14
allowing the time to be set correctly even for the Chatham
Islands in New Zealand (UTC +12:45). If the monitor parameter
is set to 1 then all GPS input is directed to the console. This can
be stopped by closing the GPS channel.

OPTION AUTOREFRESH
mode

When using buffered driver TFT drivers this command controls
when screen updates take place. When autorefresh is “ON”
updates take place immediately. When autorefresh is “OFF”
updates take place in the framebuffer and are only written to the
screen when autorefresh is next turned “ON” or the REFRESH
command is issued.

OPTION FLASHPAGES n Sets the number of 128Kbyte pages to be used for storing
programs. Valid values are 1 (default) to 4. Increasing the
number of pages increases time to store programs and
execute “NEW” commands.

Pi-cromite Manual Page 18

OPTION LCDPANEL
ILI9341_16_BUFF,
orientation

Selects 16-bit bus operation of the ILI9341 display. Pin usage
is exactly as per the SSD1963. Uses a memory resident
framebuffer to improve performance.

OPTION LCDPANEL
ILI9841, orientation,
DCpin, RESETpin, CSpin

Initialises a TFT display using the ILI9841 controller. This
supports 480 * 320 resolution. See the Micromite User
manual, ILI9341 section, for full details of parameter usage.

OPTION LCDPANEL
SSD1963_n_16,
orientation

Selects 16-bit bus operation of the various SSD1963 displays.
See the Micromite plus manual for full details of syntax.

OPTION LCDPANEL
SSD1963_n_BUFF,
orientation

Selects 16-bit bus operation of the 5” and 7” SSD1963 displays
using a memory framebuffer for improved performance. This
uses 400K of memory leaving 98K for user programs

OPTION LCDPANEL
SSD1963_n_640,
orientation

Selects 16-bit bus operation of the 5” and 7” SSD1963 displays
with a usable display width of 640 pixels using a memory
framebuffer for improved performance. This uses 250K of
memory leaving 248K for user programs. This driver must be
selected in order to use the CAMERA commands. It can also be
used effectively for game programming using the SPRITE
commands and functions

OPTION SERIAL PULLUP
DISABLE

OPTION SERIAL PULLUP
ENABLE

permanently stored option that disables pullups on all serial
ports

default: permanently stored option that enables pullups on all
serial ports

OPTION USBKEYBOARD
layout

Sets the key layout for a connected USB keyboard. Valid
layouts are UK and US

OPTION VCC voltage

This allows the user to precisely set the supply voltage to the
chip and is used in the calculation of voltages when using
analogue inputs. The parameter is not saved and should be
initialised either on the command line or in a program.

PIXEL x, y [,c] All parameters can now be expressed as arrays and the
software will plot the number of boxes as determined by the
dimensions of the smallest array. x and y must both be arrays
or both be single variables /constants otherwise an error will be
generated. c can be either an arrays or single
variable/constant. See the Micromite User manual for full
details of parameter usage.

Pi-cromite Manual Page 19

PLAY FLAC file$ [,
interrupt]

Will play a FLAC file on the DAC outputs.

Supported frequencies are:

44100Hz 16-bit(CD quality) and 24-bit

48000Hz 16-bit and 24-bit

88200Hz 16-bit and 24-bit

96000Hz 24-bit

192000Hz 24-bit

'file$' is the FLAC file to play (the extension of .flac will be
appended if

missing).

The FLAC file is played in the background. 'interrupt' is
optional and is the name of a subroutine which will be called
when the file has finished playing.

PRINT #GPS, string$ Outputs a NMEA string to an opened GPS device. The string
must start with a $ character and end with a * character. The
Checksum is calculated automatically by the firmware and is
appended to the string together with cr,lf

PWM 1, freq, 1A [,1B]
[,1C], [1D]

PWM 2, freq, 2A [,2B]
[,2C], [2D]

See description of the PWM command in the Micromite User
Manual. This command allows the specification of a frequency
for extra PWM channels

REFRESH Flushes the entire memory buffer of the display to the screen.
This command can be used with OPTION AUTOREFRESH
OFF to control when the screen is updated

RBOX x1, y1, w, h [, r] [,c]
[,fill]

All parameters can now be expressed as arrays and the
software will plot the number of boxes as determined by the
dimensions of the smallest array. x1, y1, w, and h must all be
arrays or all be single variables /constants otherwise an error
will be generated. r, c, and fill can be either arrays or single
variables/constants. See the Micromite User manual for full
details of parameter usage.

SETPIN 93, CIN
SETPIN 93 ,FIN

This enables a high speed frequency counter (tested to
20MHz) Period measurement (SETPIN 93, PIN) is not
supported on this pin

SPRITE

SPRITE x1, y1, x2, y2, w,
h

SPRITE CLOSE [#]n

SPRITE CLOSE ALL

SPRITE COPY [#]n, [#]m,

The BLIT and SPRITE commands can be used
interchangeably

Copies the memory area specified by top right coordinate x1,
y1 and of width w and height h to a new location where the top
right coordinate is x2, y2.

Closes sprite n and releases all memory resources. Updates
the screen (see SPRITE HIDE). Sprites which have been
“copied” cannot be closed until all “copies” have been closed

Closes all sprites and releases all memory resources. It does
not change the screen.

Makes a copy of sprite “n” to “nbr” of new sprites starting a

Pi-cromite Manual Page 20

nbr

SPRITE HIDE [#]n

SPRITE INTERRUPT sub

SPRITE LOAD [#]n,
fname$ [,colour]

SPRITE MOVE

SPRITE NEXT [#]n, x, y

SPRITE NOINTERRUPT

SPRITE READ [#]n, x , y,
w, h

SPRITE SCROLLH n [,col]

SPRITE SCROLLR x, y,
w, h, delta_x, delta_y [,col]

number “m”. Copied sprites share the same loaded image as
the original to save memory

Removes sprite n from the display and replaces the stored
background. To restore a screen to a previous state sprites
should be hidden in the opposite order to which they were
written "LIFO"

Specifies the name of the subroutine that will be called when a
sprite collision occurs. See Appendix C for how to use the
function SPRITE to interrogate details of what has collided

Loads the file fname$ as a sprite into buffer number n. The file
must be in PNG format RGB888 or RGBA888. If the file
extension .PNG is omitted then it will be automatically added.
The parameter “colour” specifies the background colour for the
sprite. Pixels in the background colour will not overwrite the
background when the sprite is displayed. Colour defaults to
zero

Actions a single atomic transaction that re-locates all sprites
which have previously had a location change set up using the
SPRITE NEXT command. Collisions are detected once all
sprites are moved and reported in the same way as from a
scroll

Sets the X and Y coordinate of the sprite to be used when the
screen is next scrolled or the SPRITE MOVE command is
executed. Using SPRITE NEXT rather than SPRITE SHOW
allows multiple sprites to be moved as part of the same atomic
transaction.

Disables collision interrupts

Reads the display area specified by coordinates x and y, width
w and height h into buffer number n. If the buffer is already in
use and the width and height of the new area are the same as
the original then the new command will overwrite the stored
area.

Scrolls the background and any sprites on layer 0 n pixels to
the right. n can be any number between -31 and 31. Sprites on
any layer other than zero will remain fixed in position on the
screen. By default the scroll wraps the image round. If “col” is
specified the colour will replace the area behind the scrolled
image

Scrolls the region of the screen defined by top-right
coordinates “x” and “y” and width and height “w” and “h” by
“delta_x” pixels to the right and “delta_y” pixels up. By default
the scroll wraps the background image round. If “col” is
specified the colour will replace the area behind the scrolled
image. Sprites on any layer other than zero will remain fixed in

Pi-cromite Manual Page 21

SPRITE SCROLLV n [,col]

SPRITE SHOW [#]n, x,
layer, [orientation]

SPRITE WRITE [#]n, x y

position on the screen. Sprites in layer zero where the centre
of the sprite (x+ w/2, y+ h/2) falls within the scrolled region will
move with the scroll and wrap round if the centre moves
outside one of the boundaries of the scrolled region.

Scrolls the background, and any sprites on layer 0, n pixels up.
n can be any number between -MM.VRES-1 and MM.VRES-1.
Sprites on any layer other than zero will remain fixed in
position on the screen. . By default the scroll wraps the image
round. If “col” is specified the colour will replace the area
behind the scrolled image

Displays sprite n on the screen with the top left at coordinates
x, y. Sprites will only collide with other sprites on the same
layer, layer zero, or with the screen edge. If a sprite is already
displayed on the screen then the SPRITE SHOW command
acts to move the sprite to the new location. The display
background is stored as part of the command such that it can
be replaced when the sprite is hidden or moved further. The
orientation is an optional parameter, valid values are:

0 - normal display (default if omitted)

1 - mirrored left to right

2 - mirrored top to bottom

3 - rotated 180 degrees (= 1+2)

Overwrites the display with the contents of sprite buffer n with
the top left at coordinates x, y. SPRITE WRITE overwrites the
complete area of the display. The background that is
overwritten is not stored so SPRITE WRITE is inherently
higher performing than SPRITE SHOW but with greater
functional limitations.

SERVO 1 [, freq], 1A [,1B]
[,1C] [,1D]

SERVO 2 [, freq], 2A [,2B]
[,2C] [,2D]

See description of the SERVO command in the Micromite User
Manual. This command allows the specification of a frequency
for extra channels

SENSORFUSION type ax,
ay, az, gx, gy, gz, mx, my,
mz, pitch, roll, yaw [,p1]
[,p2]

Calculates pitch, roll and yaw angles from accelerometer and
magnetometer inputs. Valid fusion types are MAHONY and
MADGWICK. Usage is described in Appendix A

Pi-cromite Manual Page 22

SPI3 OPEN speed, mode,
bits

SPI READ nbr, array()

SPI WRITE nbr, data1,
data2, data3, … etc
or
SPI WRITE nbr, string$
or
SPI WRITE nbr, array()

SPI CLOSE

See Appendix D of the Micromite User Manual.

TRIANGLE X1, Y1, X2,
Y2, X3, Y3 [, C [, FILL]]

All parameters can now be expressed as arrays and the
software will plot the number of boxes as determined by the
dimensions of the smallest array. x1, y1, x2, y2, x3,and y3
must all be arrays or all be single variables /constants
otherwise an error will be generated c and fill can be either
arrays or single variables/constants. See the Micromite Plus
manual for full details of parameter usage.

TTS [PHONETIC] "text"
[,speed] [,pitch] [,mouth]
[,throat] [, interrupt]

Outputs text as speech on the DAC outputs. See
http://www.retrobits.net/atari/sam.shtml for details of parameter
usage.

The speech is played in the background. 'interrupt' is optional
and is the name of a subroutine which will be called when the
speech has finished playing.

WS2812 pinno, colours%() This command outputs the required signals needed to drive
WS2812 LED drivers on the pin specified. The colours%()
array should be sized to have exactly the same number of
elements as the number of LEDs to be driven. Each element in
the array should contain the colour in the normal RGB888
format (0 - &HFFFF) e.g.
dim b%(6)=(rgb(red), rgb(green), rgb(blue), rgb(Yellow)
, rgb(cyan), rgb(magenta), rgb(white))
setpin 1,dout
ws2812 1,b%()

will output the specified colours to an array of 7 WS2812 LEDs

Pi-cromite Manual Page 23

Functions (Armmite H7 Only)
Detailed Listing

DAY$ Returns the day of the week as a string “Monday”, “Tuesday”
etc.

GPS(ALTITUDE)

GPS(DATE)

GPS(DOP)

GPS(FIX)

GPS(GEOID)

GPS(LATITUDE)

GPS LONGITUDE)

GPS(SATELLITES)

GPS(SPEED)

GPS(TIME)

GPS(TRACK)

GPS(VALID)

returns current altitude if sentence GGA enabled

returns the normal date string corrected for local time e.g. “12-
01-2017”

returns DOP (dilution of precision) value if sentence GGA
enabled

returns 0=no fix, 1=fix, etc. if sentence GGA enabled

Returns the geoid-ellipsoid separation. if sentence GGA
enabled

returns the latitude in degrees as a floating point number,
values are –ve for South of equator

returns the longitude in degrees as a floating point number,
values are –ve for West of the meridian

returns number of satellites in view if sentence GGA enabled

returns the ground speed in knots as a floating point number

returns the normal time string corrected for local time e.g.
“12:09:33”

returns the track over the ground (degrees true) as a floating
point number

returns: 0=invalid data, 1=valid data. ALWAYS CHECK THIS
VALUE TO ENSURE DATA IS VALID BEFORE USING
OTHER GPS() FUNCTION CALLS

JSON$(array%(),string$) Returns a string representing a specific item out of the JSON
input stored in the longstring array%()

e.g.
JSON$(a%(), “name”)
JSON$(a%(), “coord.lat”)
JSON$(a%(), “weather[0].description”)
JSON$(a%(),”list[4].weather[0].description

Examples taken from api.openweathermap.org

LCOMPARE(array1%(),
array2%())

Compare the contents of two long string variables array1%()
and array2%(). The returned is an integer and will be -1 if

Pi-cromite Manual Page 24

array1%() is less than array2%(). It will be zero if they are
equal in length and content and +1 if array1%() is greater than
array2%(). The comparison uses the ASCII character set and
is case sensitive.

LGETSTR$(array%(),
start, length)

Returns part of a long string stored in array%() as a normal
MMBasic string. The parameters start and length define the
part of the string to be returned.

LINSTR(array%(), search$
[,start])

Returns the position of a search string in a long string. The
returned value is an integer and will be zero if the substring
cannot be found. array%() is the string to be searched and
must be a long string variable. Search$ is the substring to look
for and it must be a normal MMBasic string or expression (not
a long string). The search is case sensitive.
Normally the search will start at the first character in 'str' but
the optional third parameter allows the start position of the
search to be specified.

LLEN(array%()) Returns the length of a long string stored in array%()

MM.DEVICE$ Returns "Armmite "

MOVEMENT(sensitivity) This function combines capturing a new image from an
OV7670 camera with a comparison with the currently
displayed image. It returns the number of pixels that are
different between the images. The sensitivity parameter
controls whether or not a pixel is considered to be different.
The algorithm works by converting each image to a 6-bit
greyscale image. The sensitivity is then the difference between
the pixels that will be counted as a change.

The top 20 and bottom 20 rows are ignored in the comparison.
This allows the user to use these for other display purposes
without artificially triggering the movement detection.

OWSEARCH(pin, flag
[,serial_number_mask])

Returns the onewire device serial number as an INTEGER.

Flags are:

0 - Continue an existing search

1 - start a new search
4 - Continue an existing search for devices in the requested
family

5 - start a new search for devices in the requested family (the
MSB of the serial_number_mask)

8 - skip the current device family and return the next device

16 - verify that the device with the serial number in
serial_number_mask is available

SPI3(n) See Appendix D of the Micromite User Manual

SPRITE(…)

SPRITE(C, [#]n)

Returns the number of currently active collisions for sprite n. If

Pi-cromite Manual Page 25

SPRITE(C, [#]n, m)

SPRITE(H,[#]n)

SPRITE(L, [#]n)

SPRITE(N)

SPRITE(N,n)

SPRITE(S)

SPRITE(W, [#]n)

SPRITE(X, [#]n)

SPRITE(Y, [#]n)

n=0 then returns the number of sprites that have a currently
active collision following a SPRITE SCROLL command

Returns the number of the sprite which caused the “m”th
collision of sprite n. If n=0 then returns the sprite number of
“m”th sprite that has a currently active collision following a
SPRITE SCROLL command

Returns the height of sprite n. This function is active whether or
not the sprite is currently displayed (active).

Returns the layer number of active sprites number n

Returns the number of displayed (active) sprites

Returns the number of displayed (active) sprites on layer n

Returns the number of the sprite which last caused a collision.
NB if the number returned is Zero then the collision is the result
of a SPRITE SCROLL command and the SPRITE(C…) function
should be used to find how many and which sprites collided.

Returns the width of sprite n. This function is active whether or
not the sprite is currently displayed (active).

Returns the X-coordinate of sprite n. This function is only active
when the sprite is currently displayed (active). Returns 10000
otherwise.

Returns the Y-coordinate of sprite n. This function is only active
when the sprite is currently displayed (active). Returns 10000
otherwise

Pi-cromite Manual Page 26

Appendix A – 1-Wire Communications
Sensor Fusion

The Armmite H7 supports the calculation of pitch, roll and yaw angles from accelerometer and
magnetometer inputs.

For information on this technology see https://github.com/kriswiner/MPU-6050/wiki/Affordable-9-
DoF-Sensor-Fusion

The SENSORFUSION command supports both the MADGWICK and MAHONY fusion algorithms.
The format of the command is:
SENSORFUSION type ax, ay, az, gx, gy, gz, mx, my, mz, pitch, roll, yaw [,p1] [,p2]
Type can be MAHONY or MADGWICK
Ax, ay, and az are the accelerations in the three directions and should be specified in units of
standard gravitational acceleration.
Gx, gy, and gz are the instantaneous values of rotational speed which should be specified in radians
per second.
Mx, my, and mz are the magnetic fields in the three directions and should be specified in nano-Tesla
(nT)

Care must be taken to ensure that the x, y and z components are consistent between the three
inputs. So , for example, using the MPU-9250 the correct input will be ax, ay,az, gx, gy, gz, my, mx, -
mz based on the reading from the sensor.

Pitch, roll and yaw should be floating point variables and will contain the outputs from the sensor
fusion.

The SENSORFUSION routine will automatically measure the time between consecutive calls and will
use this in its internal calculations.

The Madwick algorithm takes an optional parameter p1. This is used as beta in the calculation. It
defaults to 0.5 if not specified

The Mahony algorithm takes two optional parameters p1, and p2. These are used as Kp and Ki in the
calculation. If not specified these default to 10.0 and 0.0 respectively.

A fully worked example of using the code is given on the BackShed forum at

http://www.thebackshed.com/forum/forum_posts.asp?TID=9321&PN=1&TPN=1

Pi-cromite Manual Page 27

Appendix B – 1-Wire Communications
Sprites

 See the SPRITE commands and functions for syntax details.

The concept of the sprite implementation is as follows:

1. Sprites are full colour and of any size. The collision boundary is the enclosing rectangle.

2. Sprites are loaded to a specific number (1-50)

3. Sprites are displayed using the SPRITE SHOW command

4. For each SHOW command the user must select a "layer". This can be between 0 and 10.

5. Sprites collide with sprites on the same layer, layer 0, or the screen edge

6. Layer 0 is a special case and sprites on all other layers will collide with it

7. The SCROLL commands leave sprites on all layers except layer 0 unmoved

8. Layer 0 sprites scroll with the background and this can cause collisions

9. There is no practical limit on the number of collisions caused by SHOW or SCROLL
commands

10. The sprite function allows the user to fully interrogate the details of a collision

11. A SHOW command will overwrite the details of any previous collisions for that sprite

12. A SCROLL command will overwrite details of previous collisions for ALL sprites

13. To restore a screen to a previous state sprites should be removed in the opposite order to
which they were written "LIFO"

Because moving a sprite or, particularly, scrolling the background can cause multiple sprite collisions
it is important to understand how they can be interrogated.

The best way to deal with a sprite collision is using the interrupt facility. A collision interrupt routine is
set up using the SPRITE INTERRUPT command.

e.g. SPRITE INTERRUPT collision

The following is a pro-forma for identifying all collisions that have resulted from either a SPRITE
SHOW command or a SCROLL command

'

' This routine demonstrates a complete interrogation of collisions

'

sub collision

 local integer i

' First use the SPRITE(S) function to see what caused the interrupt

 if sprite(S) <> 0 then 'collision of specific individual sprite

 'sprite(S) returns the sprite that moved to cause the collision

print "Collision on sprite ",sprite(S)

 process_collision(sprite(S))

 print ""

'

 else '0 means collision of one or more sprites caused by background move

 ' SPRITE(C, 0) will tell us how many sprites had a collision

Pi-cromite Manual Page 28

 print "Scroll caused a total of ",sprite(C,0)," sprites to have collisions"

 for i=1 to sprite(C,0)

' SPRITE(C, 0, i) will tell us the sprite number of the “I”th sprite

 print "Sprite ",sprite(C,0,i)

 process_collision(sprite(C,0,i))

 next i

 print ""

 endif

end sub

' get details of the specific collisions for a given sprite

sub process_collision(S as integer)

 local integer i ,j

 'sprite(C, #n) returns the number of current collisions for sprite n

 print "Total of ",sprite(C,S)," collisions"

 for i=1 to sprite(C,S)

' SPRITE(C, S, i) will tell us the sprite number of the “I”th sprite

 j=sprite(C,S,i)

 if j=100 then

 print "collision with left of screen"

 else if j=101 then

 print "collision with top of screen"

 else if j=102 then

 print "collision with right of screen"

 else if j=103 then

 print "collision with bottom of screen"

 else

 print "Collision with sprite ",sprite(C,S,i) 'sprite(C, #n, #m) returns details of the mth collision

 endif

 next i

end sub

