Armmite H7
User
Manual

MMBasic Ver 5.05.06

This manual is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Australia license (CC BY-NC-SA 3.0)

The Armmite H7 is a new addition to the Micromite family using the STM32H7. The Armmite H7
firmware implements most of the features of the standard Micromite and the Micromite Plus as
described in the Micromite User Manual and the Micromite Plus Manual. It has a number of
differences and additional features and they are described in this document.

The focus of this manual is to describe just the features that are unique to the Armmite H7. For
general Micromite programming you should refer to the Micromite User Manual and the Micromite
Plus Manual in addition to this manual.

Contents
T 1o To [¥ox 1 o] o IF PSPPI 3
Micromite Family SUMIMAIYoooiiiiiiiiiiiee et e e e e e e e e eeeaennaes 4
Hardware CONSIAEIALIONSooiiiiiiiie ettt e e et e et e e e e e b e e e e eeaaa e 6
144-pin ArMMItE H7 PINOUL ..ottt e e e e e e e e e e eeenananes 8
Unique Armmite H7 FEALUIES i e e e e e e e e e eaa e aes 12
Commands (Armmite H7 ONIY)oooiiiiie e 15
Functions (Armmite H7 ONIY) ... e 28
APPENTIX A = SENSON FUSION ...ttt e e e e e e e e et a e e e e e 31
APPENAIX B = SPIILES ..uiiiiiiiiie et e e e e 32
Appendix C - NUCIE0 Pin DefiNItIONS..........uiiiiii e 34

Armmite H7 Manual Page 2

Introduction

This manual provides an introduction for users who are familiar with the Micromite and the Micromite
Plus and need a summary of the extra features in the Armmite H7.

The Armmite H7 is an extension of the standard Micromite and the Micromite Plus; most of the features
of these two versions are also in the Armmite H7. This includes features of the BASIC language,
input/output, communications, etc. Some commands have changed slightly but for the main part
Micromite programs will run unchanged on the Armmite H7.

The following summarises features of the Armmite H7 as compared to the standard Micromite and the
Micromite Plus:

The Armmite H7 is based on the STM32H743ZI. It has up to fifteen times the program space of the
MX series used in the standard Micromite and is many times faster. The Armmite H7 is roughly 2x
faster than even a 252MHz PIC32MZ.

The Armmite H7 uses the built in hardware floating point capability of the STM32H743ZI processor
which is much faster than floating point on the standard Micromite and uses double precision floating
point.

The Armmite H7 has 96 free I/O pins. The Armmite H7 supports 25 16-bit analogue inputs.

The Armmite H7 has two I°C ports, four SPI ports, eight high speed PWM channels , two 12-bit
DACs, a high speed counter input, and four serial COM ports.

The STM32H743Zl is conveniently available as a package on a development PCB the NUCLEO-
H743ZI1 . This is widely available through the normal suppliers (RS, Farnell, Mouser, etc.) at low cost.

Armmite H7 Manual Page 3

Micromite Family Summary

The Micromite Family consists of five major types, the standard Micromite, the Micromite Plus, the
Micromite eXtreme, the Pi-cromite and the Armmite H7. All use the same BASIC interpreter and
have the same basic capabilities however they differ in the number of I/O pins, the amount of

memory, the displays that they support and their intended use.

Standard Micromite

Comes in a 28-pin or 44-pin package and is designed for small embedded

controller applications and supports small LCD display panels. The 28-pin
version is particularly easy to use as it is easy to solder and can be plugged

into a standard 28-pin IC socket.
This uses a 64-pin and 100-pin TQFP surface mount package and supports a

Micromite Plus

wide range of touch sensitive LCD display panels from 1.44" to 8" in addition to

the standard features of the Micromite. It is intended as a sophisticated

controller with easy to create on-screen controls such as buttons, switches,

etc.
This comes in 64, 100-pin and 144-pin TQFP surface mount packages. The

Micromite eXtreme

eXtreme version has all the features of the other two Micromites but is faster
and has a larger memory capacity plus the ability to drive a VGA monitor for a
large screen display. It works as a powerful, self contained computer with its
own BASIC interpreter and instant start-up.

Pi-cromite

Runs on all versions of the Raspberry Pi with a 40-pin I/O connector. No

analogue input capability but 5x faster than a Micromite eXtreme when running
onaPi3.

Armmite H7

Micromite currently available.

Runs on the NUCLEO-H743ZI processor. This is the highest speed single-chip

Micromite Micromite Plus Micromite eXtreme Armmite
H7
28-pin | 44-pin | 64-pin | 199" | 100-pin | 144-pin .
pP | sMvD | svp | PN SMD smp | 84-pin | NUCLEO
SMD SMD -H743ZI
Maximum CPU Speed 48 48 120 120 252MHz 252 252 400MHz
MHz MHz MHz MHz MHz MHz
Maximum BASIC 50KB | 59KB | 100KB | 100KB | 540KB 540KB | 540KB 512KB
Program Size
RAM Memory Size 52KB | 52KB | 108KB | 108 KB | 460KB | 460KB | 460KB 512KB
Clock Speed (MHz) 5to 5to 5 to 5to 200 to 200to | 200to 400
48 48 120 120 252 252 252
Total Number of I1/O 19 33 45 77 75 115 46 102
pins
Number of Analog 10 13 28 28 40 48 24 26
Inputs
Number of Serial 1/0 2 2 3or4d | 3or4 3or4 3or4 3or4 4
ports
Number of SPI 1 1 2 2 3 3 2 4
Channels
Number of I1°C 1 1 1+ 1+ 2+ RTC 2+ 1+ 2
Channels RTC RTC RTC RTC
Number of 1-Wire I/O 19 33 45 77 75 115 46 96
pins
PWM or Servo 5 5 5 5 6 6 6 8
Channels
Serial Console v v v v v v v v
USB Console v v v v v X
PS2 Keyboard and v v v v v
LCD Console
USB Keyboard and v v v v

Armmite H7 Manual

Page 4

LCD Console

SD Card Interface v v v v v v

Supports ILI9341 LCD v v v v v v v v

Displays

Supports Ten LCD v+ v+

Panels from 1.44" to 8" v v v Yt ILioas1 | L9481

i : ILI9481 | ILI9481

(diameter)

Supports VGA Displays v v

Sound Output v v v v v On-chip

(WAV/tones) DACs

Supports PS2 Mouse v v v

Input

Floating Point Precision | Single | Single | Double | Double | Double | Double | Double | Double

SIW SIW H/W H/W H/W H/W

Power Requirements 3.3V | 3.3V 3.3V 3.3V 3.3V 3.3V 3.3V 3.3V

30mA | 30mA | 80mA | 80mA | 160mA | 160mA | 160mA | 200mA

Armmite H7 Manual

Page 5

Hardware considerations

The microcontroller used in the Armmite H7 is the STM32H743ZI manufactured by ST.

The default clock speed of the Armmite H7 is 400 MHz. The clock input to the chip must be an 8MHz
external oscillator on pin 23.

The supported chips are:

STM32H743ZI 144-pin LQFP package (0.5mm pin pitch) — maximum speed
400 MHz

STM32H753ZI 144-pin LQFP package (0.5 mm pin pitch) — maximum speed
400 MHz

144-pin Test and Development Board

The Nucleo-H743Zl is a complete module and breaks out all the pins on the chip. It includes a ST-
LINK programmer for uploading the Armmite firmware and also provides a console connection via a
USB CDC connection. It can be used standalone, or can be mounted directly onto a back pack PCB
which provides connections to various LCD panels. Gerbers for the backpack are available on
http://www.thebackshed.com/forum/forum_posts.asp?TID=10700&PN=1

The power selector (JP3) on the Nucleo should be selected to E5V to use the daughter board

It is recommended that the following links on the Nucleo are removed:
JP4, SB13, SB160, JP6, SB127, SB125, SB164, SB178, SB181, JP7, SB183, SB182

In addition you must remove SB156 if using an external battery connected to VBAT

Please download and install ST-LINK/V2 utility software and use it to program the Nucleo rather than
STM32CubeProgrammer.It takes a little longer but it correctly programs the chip. My uploads are all
done through the development environment which uses ST-LINK. I've just tested the most recent
posted binary with both STM32CubeProgrammer and ST-LINK and it only works properly when
programmed with ST-LINK.

SDcard, SPILCD and Touch Connections
The connections required to use an LCD panel are as follows

T_DO, SDO(MISO), SD_DO Pin-20 (PF8)
T_DIN, SDI(MOSI), SD_DIN Pin-21 (PF9)
T_CLK, SCK, SD_CLK Pin-19 (PF7)
SD_CS configurable
SD_CD configurable
T_IRQ configurable
T CS configurable

SSD1963, 16-bit ILI9341 Connections
Touch and SDcard connections as above

DBO Pin-141 (PEO) DB8 Pin-59 (PES) WR Pin-125 (PG10)
DB1 Pin-142 (PE1) DB9 Pin-60 (PE9) RS Pin-57 (PG1)

DB2 Pin-1 (PE2) DB10 Pin-63 (PE10) RESET Pin-127 (PG12)
DB3 Pin-2 (PE3) DB11 Pin-64 (PE11) RD Pin-128 (PG13) *

Armmite H7 Manual Page 6

http://www.thebackshed.com/forum/forum_posts.asp?TID=10700&PN=1

DB4 Pin-3 (PE4) DB12 Pin-65 (PE12) cS GND

DB5 Pin-4 (PE5) DB13 Pin-66 (PE13)
DB6 Pin-5 (PE6) DB14 Pin-67 (PE14)
DB7 Pin-58 (PE7) DB15 Pin-68 (PE15)

SSD1963 displays should be configured for backlight control using 1963 _PWM. Controlling the
backlight using an Armmite H7 pin like the MM+ is not supported.

¢ Mandatory connection

OV7670 Camera connections

sloc Pin-139 (PB8) SIoD Pin-140 (PB9)
VSYNC Pin-89 (PG4) HREF Pin-90 (PG5)
PCLK Pin-88 (PG3) XCLK Pin-100 (PAS)
D7 Pin-97 (PC7) D6 Pin-96 (PC6)
D5 Pin-45 (PC5) D4 Pin-44 (PC4)
D3 Pin-29 (PC3) D2 Pin-28 (PC2)
D1 Pin-27 (PC1) DO Pin-26 (PCO)
RESET 3.3V PWDN GND

Armmite H7 Manual

Page 7

144-pin Armmite H7 Pinouts

Pin Features

1 DIGITAL_IN DIGITAL_OUT SSD1963-DB2

2 DIGITAL_IN DIGITAL_OUT SSD1963-DB3

3 DIGITAL_IN DIGITAL_OUT SSD1963-DB4

4 DIGITAL_IN DIGITAL_OUT SSD1963-DB5

5 DIGITAL_IN DIGITAL_OUT SSD1963-DB6

6 VBAT

7 DIGITAL_IN DIGITAL_OUT NUCLEO-B1

8 32KHz Xtal

9 32KHz Xtal

10 DIGITAL_IN DIGITAL_OUT COUNT1

11 DIGITAL_IN DIGITAL_OUT COUNT2

12 DIGITAL_IN DIGITAL_OUT COUNT3

13 ANALOG_C DIGITAL_IN DIGITAL_OUT COUNT4
14 ANALOG_C DIGITAL_IN DIGITAL_OUT IR

15 ANALOG_C DIGITAL_IN DIGITAL_OUT

16 GND

17 VDD

18 ANALOG_C DIGITAL_IN DIGITAL_OUT

19 ANALOG_C DIGITAL_IN DIGITAL_OUT SPI5-CLK
20 ANALOG_C DIGITAL_IN DIGITAL_OUT SPI5-IN
21 ANALOG_C DIGITAL_IN DIGITAL_OUT SPI5-OUT
22 ANALOG_C DIGITAL_IN DIGITAL_OUT

23 8MHz OSC

24 N/C

25 RESET

26 ANALOG_C DIGITAL_IN DIGITAL_OUT OVv7670-DO
27 ANALOG_C DIGITAL_IN DIGITAL_OUT SPI2-OUT OV7670-D1
28 ANALOG_C DIGITAL_IN DIGITAL_OUT SPI2-IN OV7670-D2
29 ANALOG_C DIGITAL_IN DIGITAL_OUT OV7670-D3
30 VDD

31 ANALOG-GND

32 VREF

33 ANALOG-VDD

34 ANALOG_A DIGITAL_IN DIGITAL_OUT PWM-2A
35 ANALOG_A DIGITAL_IN DIGITAL_OUT PWM-2B
36 ANALOG_A DIGITAL_IN DIGITAL_OUT PWM-2C
37 ANALOG_A DIGITAL_IN DIGITAL_OUT PWM-2D

Armmite H7 Manual

Page 8

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

GND
VDD
DAC1
DAC2
ANALOG_A
ANALOG_A
ANALOG_A
ANALOG_A
ANALOG_A
ANALOG_A
DIGITAL_A
ANALOG_A
ANALOG_A
GND
VDD
ANALOG_B
ANALOG_B
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
GND
VSS
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
12C2-SCL
12C2-SDA
VCAP
VDD
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
CONSOLE-TX
CONSOLE-RX

Armmite H7 Manual

AUDIO-L
AUDIO-R
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_OUT
DIGITAL_IN
DIGITAL_IN

DIGITAL_IN
DIGITAL_IN
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT

DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT

DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT

DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
SPI3-OUT
DIGITAL_OUT
DIGITAL_OUT

DIGITAL_OUT
DIGITAL_OUT

SSD1963-RS
SSD1963-DB7
SSD1963-DB8
SSD1963-DB9

SSD1963-DB10
SSD1963-DB11
SSD1963-DB12
SSD1963-DB13
SSD1963-DB14
SSD1963-DB15

COMB3-RX
COMS3-TX
NUCLEO-RED
COM1-RX

SPI-IN
SPI-OUT
OV7670-D4
OV7670-D5

NUCLEO-GREEN

Page 9

79
80
81
82
83
84
85
86
87
88
89
90
91

92
93
94
95
96
97
98
99

100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
GND
VDD
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN

NUCLEO-
USBPWR

DIGITAL_IN
DIGITAL_IN
GND
VDDUSB
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
USB-D+
USB-D-
SWDIO
VCAP
GND
VDD
SWCLK
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN
DIGITAL_IN

Armmite H7 Manual

DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT

DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT

DIGITAL_OUT
DIGITAL_OUT

DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT

DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT

PWM-1A
PWM-1B

PWM-1C
PWM-1D
OV7670_PCLK

OV7670_VSYNC
OV7670_HREF

COUNTS5-HS

OV7670-D6
OVv7670-D7

OV7670_XCLK

SPI2-CLK
COM2-DE

Page 10

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

DIGITAL_IN
GND
VDD

DIGITAL_IN

DIGITAL_IN

DIGITAL_IN

DIGITAL_IN

DIGITAL_IN

DIGITAL_IN

DIGITAL_IN

DIGITAL_IN
GND
VSS

DIGITAL_IN

DIGITAL_IN

DIGITAL_IN

DIGITAL_IN

DIGITAL_IN

DIGITAL_IN

BOOTO
12C-SCL
12C-SDA

DIGITAL_IN

DIGITAL_IN

PDR-ON
VDD

DIGITAL_OUT

DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT

DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT
DIGITAL_OUT

DIGITAL_OUT
DIGITAL_OUT

COM2-TX

COM2-RX

COM4-RX
SSD1963_WR
SPI-CLK
SSD1963_RESET
SSD1963_RD
COM4-TX

SPI3-CLK
SPI3-IN

COM1-TX
NUCLEO-BLUE

SSD1963-DBO
SSD1963-DB1

Armmite H7 Manual

Page 11

Armmite H7 Features

400MHz clock
The Armmite H7 is the fastest single chip implementation of MMBasic

512Kbyte program and 498Kbyte variable space
The Armmite H7 supports MMBasic programs up to 512Kbytes in size. By default the maximum

program size is set to 128Kb to expedite loading and saving programs but this can be extended as
required with the OPTION FLASHPAGES command. Variable space is always 498Kbyte.

Dual 12-bit DACs

The Armmite H7 has 2 12-bit DACs built into the chip. The analogue levels can be set using the DAC
command. In addition they are used for the PLAY TONE, PLAY WAV, PLAY FLAC, PLAY MP3 and
TTS commands. The pins cannot be used for general purpose 1/0. The DACs support an arbitrary
function generator capability using the DAC START command

Double Precision Floating Point

The Armmite H7 uses the hardware floating point capability of the STM32H743ZI chip and can
therefore process floating point calculations faster than the Micromite and Micromite Plus. All floating
point uses double precision calculations.

Eight PWM Channels
Minimum frequency is 1Hz, maximum is 20MHz. Duty cycle and frequency accuracy will depend on
frequency. The frequency can be any value of 200,000,000/n.

Three SPI Channels

The Armmite H7 supports three SPI channels. The second and third channels operate the same as the
first, the only difference is that the commands use the notation SPI2 and SPI3 (for example SPI3
WRITE, efc).

Note that if the Armmite H7 is configured for a SPI based LCD panel, touch or an SD card then an
additional SPI channel is used and does not impact the other three.

MM.DEVICE$
On the Armmite H7 the read only variable MM.DEVICES$ will return " Armmite H7".

Longstring handling
The Armmite H7 supports a comprehensive set of commands and functions for handling long strings
stored in integer arrays

12C

You can use 12C exactly the same as the Micromite with the following limitations:
The implementation does not support 10-bit addressing (i.e. options 0 and 1 only).
The implementation does not support 12C slave mode

A second 12C channel can be used using the command [2C2.

I2C ports are dedicated and cannot be used for general purpose 1/O

On-chip RTC supporting DATES$ and TIME$

Date$ and Time$ are derived from the STM32H743ZI on-chip real time clock. They are returned in
standard MMBasic format when read. Setting them will update the real time clock. If a 3V battery is
connected the STM32H743Z| will maintain the time even when powered off. An additional MMBasic
function DAY$ returns the day of the week as a string. RTC SETTIME and RTC GETTIME are not
needed and not supported.

Armmite H7 Manual Page 12

VAR command
The Armmite H7 allows up to 128Kbs of variables to be saved

Resetting the chip and options

The chip can be reset to “just-programmed” state by connecting pin 7 to VDD whilst resetting the chip
by grounding the RESET pin.

16-bit ADCs

All analogue to digital conversion can be carried out in 16-bit resolution, 14-bit resolution, 12-bit
resolution, 10-bit resolution, and 8-bit resolution. In addition the ADC can read the voltage being
output on the DACSs, the battery backup voltage, the chip die temperature and the internal reference
voltage. Using the ADC command conversion of three channels can be set to run in the background
at up to 500,000 samples per second per channel and one of the channels can be set to provide
edge-triggering of the conversion.

USB Keyboard support

The Armmite H7 supports a USB keyboard in US or UK format. This is enabled with the OPTION
USBKEYBOARD command. A keyboard can be plugged directly into the micro-USB port of a
Nucleo-H743ZI using a suitable adapter.

Buffered Drivers for all displays

All displays up to and including 480x320 pixel resolution automatically use a buffered driver where a
memory image of the display is maintained in the Armmite’s memory. This does not impact user
RAM space but helps reduce artefacts whilst writing to the screen. Commands OPTION
AUTOREFRESH and REFRESH can be used to control when the updates to the screen take place
allowing the programmer maximum flexibility in using the screen effectively. An 8-bit buffered driver
(64 colours) is included for 800x480 SSD1963 displays. This is specifically targeted at games
programming as user RAM is still 473K with the driver loaded. A RGB565 buffered driver is also
included for 800x480 displays but this reduces user RAM significantly (down to 98Kbytes free).

16-bit Interface to SSD1963 Based LCD Displays

The Armmite H7 can drive a SSD1963 display using a 16-bit parallel bus for extra speed. The extra
I/O pins for this are listed as SSD1963-DB8 to SSD1963-DB15 on the pinout tables in this manual and
they must be connected to the pins labelled DB8 to DB15 on the I/O connector on the SSD1963
display.

Note that in this mode the SSD1963 controller runs with a reduce colour range (65 thousand colours)
compared to 16 million colours with the normal 8-bit interface.

WS2812 support

The Armmite H7 supports the WS2812 Led driver. This chip needs very specific timing to work
properly and by incorporating support in the Armmite H7 firmware the user can program these chips
with minimum effort. The command WS2812 is used to set the colours of the LEDs. There is no limit
to the size of the WS2812 string supported.

GPS support

The Armmite H7 support connection of a GPS to any of the 4 serial interfaces. The command OPEN
“COMn:baudrate” as GPS is used to enable reception of NMEA GPS messages. THE GPS()
function can then be used to interrogate the GPS data which is automatically parsed in the Armmite
firmware. In addition PRINT #GPS,string$ can be used to automatically append a correct checksum
to a GPS message.

Armmite H7 Manual Page 13

High speed frequency counter support

The Armmite H7 supports a frequency counter input to pin 93. This supports counting high speed
signals (tested to 20MHz, but may go considerably higher).

OV7670 camera support with movement detection

The Armmite H7 supports a non-buffered OV7670 camera in full colour 640x480 pixel mode using
the CAMERA command. To use this a 800x480 SSD1963 display must be connected and configured
using a special driver (OPTION LCDPANEL SSD1963 5 640, orientation or OPTION LCDPANEL
SSD1963 7 640, orientation) in landscape or reverse landscape mode. The driver maintains a
complete image in Armmite memory which allows the software to compare a newly captured image
with a stored one to check for movement using the MOVEMENT () function.

Sprites

The Armmite H7 supports a complete implementation of sprites including screen scrolling and
collision detection

Extended WAV File Playback

The Armmite H7 can play WAV files (like the Micromite Plus) however, it is also capable of playing
WAV files recorded with sampling rates of 24 KHz, 44.1KHz, and 48 KHz.

Random Number Generation

The Armmite H7 uses the hardware random number generator in the STM32 series of chips to deliver
true random numbers. This means that the RANDOMIZE command is no longer needed and is not
supported.

OPTION VCC command

The Armmite H7 supports the OPTION VCC command. This allows the user to precisely set the
supply voltage to the chip and is used in the calculation of voltages when using analogue inputs e.qg.
OPTION VCC 3.15. The parameter is not saved and should be initialised either on the command line or
in a program.

Unsupported commands

The Armmite H7 does not currently support dynamically changing the CPU speed or the sleep function.
Accordingly the commands CPU speed and CPU SLEEP are not available.

The Armmite H7 does not support the LIBRARY command but given the large program space available
this should not create any issues. CFunctions are not supported.

Armmite H7 Manual Page 14

Commands (Armmite H7 Only)

ADC

ADC OPEN frequency,
channell-pin [,channel2-
pin] [,channel3-pin] [,
interrupt]

ADC FREQUENCY
frequency

ADC TRIGGER channel,
level

ADC START
channellarray!()
[,channel2array!()]
[,channel3array!()]

ADC CLOSE

The ADC functionality that can capture up to 3 channels of
data in the background at up to 500KHz per channel with user
selectable triggering

Open the ADC channels. "frequency" is the sampling
frequency in Hz. The maximum frequency is 500KHz.

From 320KHz to 500KHz the conversion is 8-bits per channel
From 160KHz to 320KHz the conversion is 10-bits per channel
From 80KHz to 160KHz the conversion is 12-bits per channel
From 40KHz to 80KHz the conversion is 14-bits per channel
Below 40KHz conversion is 16-bits per channel

This is automatically compensated for in the firmware.

"channell-pin" can be one of 34, 35, 36, 37, 42, 43, 44, 45, 46,
47, 49, 50

"channel2-pin" can be one of 13, 14, 15, 18, 19, 21, 22, 26, 27,
28, 29

"channel3-pin" can be one of 53, 54

The "interrupt" parameter is a normal MMBasic subroutine that
can be called when the conversion completes.

Allows the ADC frequency to be adjusted after the ADC
START command. This command is only allowed if the
number of bits calculated in the table above does not change
otherwise it will give an error.

Sets up triggering of the ADC. This should be specified before
the ADC START command.

The "channel” can be a number between one and three
depending on the number of pins specified in the ADC OPEN
command.

The level can be between -VCC and VCC.

A positive number indicates that you are looking for a positive
going transition through the specified voltage.

A negative number indicates that you are looking for a
negative going transition through the specified voltage.

Starts ADC conversion. The floating point arrays must be the
same size and the size will determine the number of samples.
Once the start command is issued the ADC(s) will start
converting the input signals into the arrays at the frequency
specified.

If the OPEN command includes an interrupt then the command
is non-blocking. If an interrupt is not specified the command is
blocking.

The samples are returned as floating point values between 0
and VCC.

Closes the ADC and returns the pins to normal use

Armmite H7 Manual

Page 15

BOX x1,y1,w, h[, Iw][,c] | All parameters can now be expressed as arrays and the

[,fill] software will plot the number of boxes as determined by the
dimensions of the smallest array. x1, y1, w, and h must all be
arrays or all be single variables /constants otherwise an error
will be generated. lw, ¢, and fill can be either arrays or single
variables/constants. See the Micromite User manual for full
details of parameter usage.

ARC x,y, r1, [r2], radl, Draws an arc of a circle or a given colour and width between
rad2, colour two radials (defined in degrees). Parameters for the ARC
command are:

x: X coordinate of centre of arc

y: Y coordinate of centre of arc

rl: inner radius of arc

r2: outer radius of arc - can be omitted if 1 pixel wide
radl: start radial of arc in degrees

rad2: end radial of arc in degrees

colour: Colour of arc

BEZIER xs, ys, xc1, ycl, Draws a cubic Bezier curve by specifying the start and end
XC2, yc2, xe, ye, colour points and two control points. Parameters for the BEZIER
command are:

xs: X coordinate of start point

ys: Y coordinate of start point

xcl: X coordinate of first control point
ycl: Y coordinate of first control point
xc2: X coordinate of second control point
yc2: Y coordinate of second control point
xe: X coordinate of end point

ye: Y coordinate of end point

colour: Colour of curve

BLIT The BLIT and SPRITE commands can be used
interchangeably. All Micromite Plus functionality is preserved
with minor functional changes. See the SPRITE command for
functionality over and above the Micromite Plus and command
differences.

Armmite H7 Manual Page 16

CAMERA OPEN

CAMERA CAPTURE

CAMERA SAVE “filename”

CAMERA REGISTER
register, value

CAMERA CLOSE

Initialises an OV7670 camera ready for use

Captures an image from the camera to a connected 800x480
SSD1963 display. NB: the display must be set to 640 pixel
mode using the OPTION LCDPANEL command

saves the on-screen image to the SDcard. If the file extension
is not specified then ".BMP" is appended.

can be used to change the camera settings see the datasheet
for details

disables the camera and frees the allocated pins

CIRCLE x,y, r[,Iw] [, a] [,
c] [, fill]

All parameters can now be expressed as arrays and the
software will plot the number of boxes as determined by the
dimensions of the smallest array. x, y and r must all be arrays
or all be single variables /constants otherwise an error will be
generated. lw, a, c, and fill can be either arrays or single
variables/constants. See the Micromite User manual for full
details of parameter usage.

CLOSE [#]nbr [,[#]nbr]

The text “GPS” can be substituted for [#]nbr to close a
communications port used for a GPS receiver

DAC n, voltage

DAC START frequency,
DAClarray%()
[,DAC2array%!()]

DAC CLOSE

Sets the DAC channel (1 or 2) to the voltage requested. This
command cannot be used if the DACs are in use for audio
output.

Sets up the DAC to create an arbitrary waveform.
DAC1larray%() and optional DAC2array%() should contain
numbers in the range 0-4095 to suit the 12-bit DACs.

Once started the output continues in the background and
control returns to MMBasic.

The software automatically and separately uses the number of
items in each of the arrays to drive the DACs.

The frequency is the rate at which the DACs change value.
The maximum frequency is 700KHz.

As an example if there are 180 items in the array c%() which
are displayed at a frequency of 100,000 Hz this will give a
waveform frequency of 100,000/180 = 555Hz. If there are 90
items in the array d%() at the same frequency of 100,000 Hz
this will at the same time produce a waveform frequency of
100,000/90 = 1111Hz.

Stops DAC output and returns the DACs to normal use.

Armmite H7 Manual

Page 17

FFT signalarray!(), Performs a fast fourier transform of the data in “signalarray!”.
FFTarray!() "signalarray" must be floating point and the size must be a
power of 2 (e.g. s(1023) assuming OPTION BASE is zero)

"FFTarray" must be floating point and have dimension 2*N
where N is the same as the signal array (e.g. f(1,1023)
assuming OPTION BASE is zero)

The command will return the FFT as complex numbers with
the real part in f(0,n) and the imaginary part in f(1,n)

FFT INVERSE Performs an inverse fast fourier transform of the data in
FFTarray!(), signalarray!() | “FFTarray!”. "FFTarray" must be floating point and have
dimension 2*N where N must be a power of 2 (e.g. f(1,1023)
assuming OPTION BASE is zero) with the real part in f(O,n)
and the imaginary part in f(1,n).

"signalarray” must be floating point and the single dimension
must be the same as the FFT array.

The command will return the real part of the inverse transform
in "signalarray”.

FFT MAGNITUDE Generates magnitudes for frequencies for the data in
signalarray!(),magnitudear | “signalarray!”
ray!() "signalarray" must be floating point and the size must be a

power of 2 (e.g. s(1023) assuming OPTION BASE is zero)
"magnitudearray" must be floating point and the size must be
the same as the signal array

The command will return the magnitude of the signal at various
frequencies according to the formula:

frequency at array position N = N * sample_frequency /
number_of _samples

FFT PHASE signalarray!(), | Generates phases for frequencies for the data in “signalarray!”.
phasearray!() "signalarray” must be floating point and the size must be a
power of 2 (e.g. s(1023) assuming OPTION BASE is zero)
"phasearray” must be floating point and the size must be the
same as the signal array

The command will return the phase angle of the signal at
various frequencies according to the formula above.

GUI STARTLINE n Sets the row in the graphics memory which will appear at the
top of the screen (landscape or reverse landscape) or left of
the screen (portrait or reverse portrait) for a 4.3 SSD1963
display initialised with OPTION LCDPANEL SSD1963 4P

[_16]

Armmite H7 Manual Page 18

[2C2 OPEN speed,
timeout

[, PU

12C2 WRITE addr, option,
sendlen, senddata
[,sendata

e

12C2 READ addr, option,
rcvlen, rcvbuf

[2C2 CLOSE

12C2 SLAVE OPEN addr,
mask, option, send_int,
rcv_int

12C2 SLAVE WRITE

sendlen, senddata
[,sendata

.|

[2C2 SLAVE READ rcvlen,
rcvbuf, rcvd

[2C2 SLAVE CLOSE

See Appendix B of the Micromite User Manual.

LINE x1, y1, x2, y2 [, LW [,
Cll

All parameters can now be expressed as arrays and the
software will plot the number of boxes as determined by the
dimensions of the smallest array. x1, y1, x2, and y2 must all be
arrays or all be single variables /constants otherwise an error
will be generated. lw and ¢ can be either arrays or single
variables/constants. See the Micromite User manual for full
details of parameter usage.

LOAD SPRITE [#]n,
fname$

Alternate form. See SPRITE LOAD

LONGSTRING APPEND
array%i(), string$

LONGSTRING CLEAR
array%o()

LONGSTRING COPY
dest%(), src%!()

LONGSTRING CONCAT
dest%(), src%!()

LONGSTRING LCASE
array%!()

Append a normal MMBasic string to a long string variable.
array% () is a long string variable while string$ is a normal
MMBasic string expression.

Will clear the long string variable array%!(). ie, it will be set to
an empty string.

Copy one long string to another. dest%() is the destination
variable and src%() is the source variable. Whatever was in
dest%() will be overwritten.

Concatenate one long string to another. dest%() is the
destination variable and src%() is the source variable. src%()
will the added to the end of dest%() (the destination will not be
overwritten).

Will convert any uppercase characters in array%() to
lowercase. array%() must be long string variable.

Armmite H7 Manual

Page 19

LONGSTRING LEFT
dest9%(), src%(), nbr

LONGSTRING LOAD
array%(), nbr, string$

LONGSTRING MID
dest%(), src%:(), start, nbr

LONGSTRING PRINT [#n,]
src%()

LONGSTRING REPLACE
array%!() , string$, start

LONGSTRING RIGHT
dest%(), src%(), nbr

LONGSTRING TRIM
array%(), nbr

LONGSTRING UCASE
array%o()

Will copy the left hand 'nbr' characters from src%() to dest%()
overwriting whatever was in dest%(). ie, copy from the
beginning of src%!(). src%() and dest%() must be long string
variables. 'nbr' must be an integer constant or expression.

Will copy 'nbr' characters from string$ to the long string variable
array% () overwriting whatever was in array%!().

Will copy 'nbr' characters from src%() to dest%() starting at
character position 'start’ overwriting whatever was in dest%!().
ie, copy from the middle of src%(). 'nbr'is optional and if
omitted the characters from 'start’ to the end of the string will
be copied src%() and dest%() must be long string variables.
'start’ and 'nbr' must be an integer constants or expressions.

Prints the longstring stored in src%()

Will substitute characters in the normal MMBasic string string$
into an existing long string array%() starting at position ‘start’ in
the long string.

Will copy the right hand 'nbr' characters from src%() to dest%!()
overwriting whatever was in dest%(). ie, copy from the end of
src%(). src%() and dest%() must be long string variables. 'nbr’
must be an integer constant or expression.

Will trim ‘nbr’ characters from the left of a long string. array%s()
must be a long string variables. 'nbr' must be an integer
constant or expression.

Will convert any lowercase characters in array%() to
uppercase. array%() must be long string variable.

MM.PERSIST

Sets a user variable that will survive restarts and watchdog
timeouts. e.g. MM.PERSIST=123

OPEN comspec$ AS GPS
[,timezone_offset]
[,monitor]

Will open a serial communications port for reading from a GPS
receiver. See the GPS function for details. The timezone_offset
parameter is used to convert UTC as received from the GPS to
the local timezone. If omitted the timezone will default to UTC.
The timezone_offset can be a any number between -12 and 14
allowing the time to be set correctly even for the Chatham
Islands in New Zealand (UTC +12:45). If the monitor parameter
is set to 1 then all GPS input is directed to the console. This can
be stopped by closing the GPS channel.

OPTION AUTOREFRESH
mode

When using buffered driver TFT drivers this command controls
when screen updates take place. When autorefresh is “ON”
updates take place immediately. When autorefresh is “OFF”
updates take place in the framebuffer and are only written to the
screen when autorefresh is next turned “ON” or the REFRESH
command is issued.

Armmite H7 Manual

Page 20

OPTION FLASHPAGES n

Sets the number of 128Kbyte pages to be used for storing
programs. Valid values are 1 (default) to 4. Increasing the
number of pages increases time to store programs and
execute “NEW” commands.

OPTION LCDPANEL
ILI9341_8, orientation

Selects 8-bit bus operation of the ILI9341 display. Pin usage
is exactly as per the SSD1963. Pins SSD1963_DB8 to
SSD1963 D15 are allocated but not used. Uses a memory
resident framebuffer to improve performance.

OPTION LCDPANEL
ILI9341 16, orientation

Selects 16-bit bus operation of the ILI9341 display. Pin usage
is exactly as per the SSD1963. Uses a memory resident
framebuffer to improve performance.

OPTION LCDPANEL
ILI9841, orientation,
DCpin, RESETpin, CSpin

Initialises a TFT display using the ILI9841 controller. This
supports 480 * 320 resolution. See the Micromite User
manual, IL19341 section, for full details of parameter usage.

OPTION LCDPANEL
SSD1963 n_16,
orientation

Selects 16-bit bus operation of the various SSD1963 displays.
See the Micromite plus manual for full details of syntax.

OPTION LCDPANEL
SSD1963 n_8BIT,
orientation

Selects 16-bit bus operation of the 57, 7” and 8" SSD1963
displays using a memory framebuffer with 64 colours for
improved performance. This uses 25K of memory leaving 473K
for user programs

OPTION LCDPANEL
SSD1963 n_BUFF,
orientation

Selects 16-bit bus operation of the 57, 7” and 8” SSD1963
displays using a memory framebuffer for improved performance.
This uses 400K of memory leaving 98K for user programs

OPTION LCDPANEL
SSD1963 n_640,
orientation

Selects 16-bit bus operation of the 5" ,7” and 8" SSD1963
displays with a usable display width of 640 pixels using a
memory framebuffer for improved performance. This uses 250K
of memory leaving 248K for user programs. This driver must be
selected in order to use the CAMERA commands. It can also be
used effectively for game programming using the SPRITE
commands and functions

OPTION MILLESECONDS
OFF

OPTION MILLISECONDS
ON

Default. The time$ function returns the time as “HH:MM:SS”

The time$ function returns the time as “HH:MM:SS.MMM”

OPTION RTC CALIBRATE
n

Used to calibrate the RTC. n specifies the number of extra clock
pulses to be "created" or "removed" every 2”20 real clock
pulses. n can be between -511 and + 512. A change of +/-1
should equate to about 0.0824 seconds per day.

OPTION SERIAL PULLUP
DISABLE

OPTION SERIAL PULLUP
ENABLE

permanently stored option that disables pullups on all serial
ports

default: permanently stored option that enables pullups on all
serial ports

Armmite H7 Manual

Page 21

OPTION USBKEYBOARD
layout

Sets the key layout for a connected USB keyboard. Valid
layouts are UK and US

OPTION VCC voltage This allows the user to precisely set the supply voltage to the
chip and is used in the calculation of voltages when using
analogue inputs. The parameter is not saved and should be
initialised either on the command line or in a program.

PIXEL X, y [,c] All parameters can now be expressed as arrays and the

software will plot the number of boxes as determined by the
dimensions of the smallest array. x and y must both be arrays
or both be single variables /constants otherwise an error will be
generated. ¢ can be either an arrays or single
variable/constant. See the Micromite User manual for full
details of parameter usage.

PLAY FLAC file$ [,
interrupt]

Will play a FLAC file on the DAC outputs.
Supported frequencies are:

44100Hz 16-bit(CD quality) and 24-bit
48000Hz 16-bit and 24-bit

88200Hz 16-bit and 24-bit

96000Hz 24-bit

192000Hz 24-bit

file$' is the FLAC file to play (the extension of .flac will be
appended if missing).
The FLAC file is played in the background. ‘interrupt' is

optional and is the name of a subroutine which will be called
when the file has finished playing.

PLAY MP3 file$ [,
interrupt]

Will play a MP3 file on the DAC outputs.
file$' is the MP3 file to play (the extension of .mp3 will be
appended if missing).

The MP3 file is played in the background. 'interrupt' is optional
and is the name of a subroutine which will be called when the
file has finished playing.

POLYGON xarray%o(),
yarray%o() [, bordercolour]
[, fillcolour]

Draws a outline or filled polygon defined by the x,y coordinate
pairs in xarray%() and yarray%(). If fill colour is omitted then
just the polygon outline is drawn. If bordercolour is omitted
then it will default to the current gui foreground colour. The
polygon should be closed with the first and last elements the
same. The size of the array should exactly match the number
of X,y coordinate pairs.

PRINT #GPS, string$

Outputs a NMEA string to an opened GPS device. The string
must start with a $ character and end with a * character. The
Checksum is calculated automatically by the firmware and is
appended to the string together with cr,If

PWM 1, freq, 1A [,1B]
[,1C], [1D]
PWM 2, freq, 2A [,2B]
[,2C], [2D]

See description of the PWM command in the Micromite User
Manual. This command allows the specification of a frequency
for extra PWM channels

Armmite H7 Manual

Page 22

REFRESH

Flushes the entire memory buffer of the display to the screen.
This command can be used with OPTION AUTOREFRESH
OFF to control when the screen is updated

RBOX x1, y1, w, h [, r] [,c]
[,fill]

All parameters can now be expressed as arrays and the
software will plot the number of boxes as determined by the
dimensions of the smallest array. x1, y1, w, and h must all be
arrays or all be single variables /constants otherwise an error
will be generated. r, ¢, and fill can be either arrays or single
variables/constants. See the Micromite User manual for full
details of parameter usage.

SETPIN n, AIN [,bits]

An optional parameter on SETPIN can be used to select how
many bits of resolution should be used for ADC conversions.
Valid values are 8, 10, 12, 14, and 16. The more bits the
slower the conversion. A single conversion takes between
0.127mSec (8-bit) to 0.6mSec (16-bit).

SETPIN 93, CIN
SETPIN 93 ,FIN

This enables a high speed frequency counter (tested to
20MHz) Period measurement (SETPIN 93, PIN) is not
supported on this pin

SPRITE

SPRITE x1, y1, x2, y2, w,

h

SPRITE CLOSE [#]n

SPRITE CLOSE ALL

SPRITE COPY [#]n, [#]m,
nbr

SPRITE HIDE [#]n

SPRITE INTERRUPT sub

SPRITE LOAD [#]n,
fname$ [,colour]

The BLIT and SPRITE commands can be used
interchangeably

Copies the memory area specified by top right coordinate x1,
y1 and of width w and height h to a new location where the top
right coordinate is x2, y2.

Closes sprite n and releases all memory resources. Updates
the screen (see SPRITE HIDE). Sprites which have been
“copied” cannot be closed until all “copies” have been closed

Closes all sprites and releases all memory resources. It does
not change the screen.

Makes a copy of sprite “n” to “nbr” of new sprites starting a
number “m”. Copied sprites share the same loaded image as
the original to save memory

Removes sprite n from the display and replaces the stored
background. To restore a screen to a previous state sprites
should be hidden in the opposite order to which they were
written "LIFO"

Specifies the name of the subroutine that will be called when a
sprite collision occurs. See Appendix C for how to use the
function SPRITE to interrogate details of what has collided

Loads the file fname$ as a sprite into buffer number n. The file
must be in PNG format RGB888 or RGBAS888. If the file
extension .PNG is omitted then it will be automatically added.
The parameter “colour” specifies the background colour for the

Armmite H7 Manual

Page 23

SPRITE MOVE

SPRITE NEXT [#]n, X, y

SPRITE NOINTERRUPT

SPRITE READ [#]n, X, Y,
w, h

SPRITE SCROLLH n [,col]

SPRITE SCROLLR x, y,
w, h, delta_x, delta_y [,col]

SPRITE SCROLLYV n [,col]

SPRITE SHOW [#]n, X,
layer, [orientation]

sprite. Pixels in the background colour will not overwrite the
background when the sprite is displayed. Colour defaults to
zero

Actions a single atomic transaction that re-locates all sprites
which have previously had a location change set up using the
SPRITE NEXT command. Collisions are detected once all
sprites are moved and reported in the same way as from a
scroll

Sets the X and Y coordinate of the sprite to be used when the
screen is next scrolled or the SPRITE MOVE command is
executed. Using SPRITE NEXT rather than SPRITE SHOW
allows multiple sprites to be moved as part of the same atomic
transaction.

Disables collision interrupts

Reads the display area specified by coordinates x and y, width
w and height h into buffer number n. If the buffer is already in
use and the width and height of the new area are the same as
the original then the new command will overwrite the stored
area.

Scrolls the background and any sprites on layer 0 n pixels to
the right. n can be any number between -31 and 31. Sprites on
any layer other than zero will remain fixed in position on the
screen. By default the scroll wraps the image round. If “col” is
specified the colour will replace the area behind the scrolled
image

Scrolls the region of the screen defined by top-right
coordinates “x” and “y” and width and height “w” and “h” by
“delta_x” pixels to the right and “delta_y” pixels up. By default
the scroll wraps the background image round. If “col” is
specified the colour will replace the area behind the scrolled
image. Sprites on any layer other than zero will remain fixed in
position on the screen. Sprites in layer zero where the centre
of the sprite (x+ w/2, y+ h/2) falls within the scrolled region will
move with the scroll and wrap round if the centre moves

outside one of the boundaries of the scrolled region.

Scrolls the background, and any sprites on layer 0, n pixels up.
n can be any number between -MM.VRES-1 and MM.VRES-1.
Sprites on any layer other than zero will remain fixed in
position on the screen. . By default the scroll wraps the image
round. If “col” is specified the colour will replace the area
behind the scrolled image

Displays sprite n on the screen with the top left at coordinates
X, y. Sprites will only collide with other sprites on the same
layer, layer zero, or with the screen edge. If a sprite is already

Armmite H7 Manual

Page 24

SPRITE WRITE [#]n, X y

displayed on the screen then the SPRITE SHOW command
acts to move the sprite to the new location. The display
background is stored as part of the command such that it can
be replaced when the sprite is hidden or moved further. The
orientation is an optional parameter, valid values are:

0 - normal display (default if omitted)
1 - mirrored left to right

2 - mirrored top to bottom

3 - rotated 180 degrees (= 1+2)

Overwrites the display with the contents of sprite buffer n with
the top left at coordinates x, y. SPRITE WRITE overwrites the
complete area of the display. The background that is
overwritten is not stored so SPRITE WRITE is inherently
higher performing than SPRITE SHOW but with greater
functional limitations.

SERVO 1 [, freq], 1A [,1B]
[,1C] [,1D]
SERVO 2 [, freq], 2A [,28B]
[,2C] [,2D]

See description of the SERVO command in the Micromite User
Manual. This command allows the specification of a frequency
for extra channels

SENSORFUSION type ax,
ay, az, gx, gy, gz, mx, my,
mz, pitch, roll, yaw [,p1]

[.p2]

Calculates pitch, roll and yaw angles from accelerometer and
magnetometer inputs. Valid fusion types are MAHONY and
MADGWICK. Usage is described in Appendix A

SPI3 OPEN speed, mode,
bits

SPI READ nbr, array()

SPI WRITE nbr, datal,
data2, datag, ... etc

or

SPI WRITE nbr, string$
or

SPI WRITE nbr, array()

SPI CLOSE

See Appendix D of the Micromite User Manual.

TRIANGLE X1, Y1, X2,
Y2, X3, Y3[, C [, FILL]]

All parameters can now be expressed as arrays and the
software will plot the number of boxes as determined by the
dimensions of the smallest array. x1, y1, x2, y2, x3,and y3
must all be arrays or all be single variables /constants
otherwise an error will be generated ¢ and fill can be either
arrays or single variables/constants. See the Micromite Plus
manual for full details of parameter usage.

Armmite H7 Manual

Page 25

TTS [PHONETIC] "text"
[,speed] [,pitch] [,mouth]
[throat] [, interrupt]

Outputs text as speech on the DAC outputs. See

http://www.retrobits.net/atari/sam.shtml for details of parameter

usage.

The speech is played in the background. ‘interrupt’ is optional
and is the name of a subroutine which will be called when the

speech has finished playing.

Armmite H7 Manual

Page 26

http://www.retrobits.net/atari/sam.shtml

TURTLE RESET

TURTLE DRAW TURTLE

TURTLE PEN UP

TURTLE PEN DOWN

TURTLE FORWARD n
TURTLE BACKWARD n

TURTLE DOT

TURTLE TURN LEFT deg

TURTLE TURN RIGHT
deg

TURTLE BEGIN FILL

TURTLE END FILL

TURTLE HEADING deg

TURTLE PEN COLOUR
col

TURTLE FILL COLOUR
col

TURTLE MOVE x, y

Clears the screen and re-initialises the turtle system. The turtle
is located at MM.HRES\2, MM.VRES\2. The default pen colour
is white and the fill colour is green. The initial heading is up (0
degrees)

Draws a turtle at the current location and in the current
orientation

Lifts the pen so moves do not write to the screen

Lowers the pen so moves do write to the screen
Moves the turtle n pixels in the current heading
Moves the turtle n pixels opposite the current heading

Draw a 1-pixel dot at the current location, regardless of pen
status

Turn the turtle to the left (anti-clockwise) by the specified
number of degrees.

Turn the turtle to the right (clockwise) by the specified number
of degrees.

Start filling. Call this before drawing a polygon to activate the
bookkeeping required to run the filling algorithm later.

End filling. Call this after drawing a polygon to trigger the fill
algorithm. The filled polygon may have up to 128 sides.

Rotate the turtle to the given absolute heading (in degrees). 0
degrees means facing straight up. 90 degrees means facing to
the right.

Set the current drawing colour. Colours are specified as per
normal Micromite drawing commands

Set the current fill colour. Colours are specified as per normal
Micromite drawing commands

Move the turtle to the specified location, drawing a straight line
if the pen is down.

Armmite H7 Manual

Page 27

TURTLE DRAW PIXEL X,
y

TURTLE FILL PIXEL x, y
TURTLE DRAW LINE x1,
yl, x2,y2

TURTLE DRAW DIRCLE
XY, r

Draw a 1-pixel dot at the given location using the current draw
colour, regardless of current turtle location or pen status.

Draw a 1-pixel dot at the given location using the current fill
colour, regardless of current turtle location or pen status.

Draw a straight line between the given coordinates, regardless
of current turtle location or pen status.

Draw a circle at the given coordinates with the given radius,
regardless of current turtle location or pen status.

WS2812 pinno, colours%()

This command outputs the required signals needed to drive
WS2812 LED drivers on the pin specified. The colours%()
array should be sized to have exactly the same number of
elements as the number of LEDs to be driven. Each element in
the array should contain the colour in the normal RGB888
format (0 - &HFFFF) e.g.

dim b%(6)=(rgb(red), rgb(green), rgb(blue), rgb(Yellow)
, rgb(cyan), rgb(magenta), rgb(white))

setpin 1,dout

ws2812 1,b% ()

will output the specified colours to an array of 7 WS2812 LEDs

Armmite H7 Manual

Page 28

Functions (Armmite H7 Only)

DATETIMES$(n)

DAY$(date$)

Returns the date and time corresponding to the epoch number
n (number of seconds that have elapsed since midnight GMT
on January 1, 1970). The format of the returned string is “dd-
mm-yyyy hh:mm:ss”. Use the text NOW to get the current
datetime string, i.e. ? DATETIME$(NOW)

Returns the day of the week for a given date as a string
“Monday”, “Tuesday” etc. The format for date$ is “dd-mm-
yyyy”. Use NOW to get the day for the current date, e.g. ?

DAYS$(NOW)

EPOCH(DATETIME$)

GPS(ALTITUDE)

GPS(DATE)

GPS(DOP)

GPS(FIX)

GPS(GEOID)

GPS(LATITUDE)

GPS LONGITUDE)

GPS(SATELLITES)

GPS(SPEED)

GPS(TIME)

GPS(TRACK)

GPS(VALID)

Returns the the epoch number (number of seconds that have
elapsed since midnight GMT on January 1, 1970) for the
supplied DATETIMES string. The format for DATETIMES$ is
“‘dd-mm-yyyy hh:mm:ss”. Use NOW to get the epoch number
for the current date and time, i.e. ? EPOCH(NOW)

returns current altitude if sentence GGA enabled

returns the normal date string corrected for local time e.g. “12-
01-2017”

returns DOP (dilution of precision) value if sentence GGA
enabled

returns 0=no fix, 1=fix, etc. if sentence GGA enabled

Returns the geoid-ellipsoid separation. if sentence GGA
enabled

returns the latitude in degrees as a floating point number,
values are —ve for South of equator

returns the longitude in degrees as a floating point number,
values are —ve for West of the meridian

returns number of satellites in view if sentence GGA enabled
returns the ground speed in knots as a floating point number
returns the normal time string corrected for local time e.g.
“12:09:33”

returns the track over the ground (degrees true) as a floating
point number

returns: O=invalid data, 1=valid data. ALWAYS CHECK THIS

VALUE TO ENSURE DATA IS VALID BEFORE USING
OTHER GPS() FUNCTION CALLS

Armmite H7 Manual

Page 29

JSONS$(array%o(),string$) Returns a string representing a specific item out of the JSON
input stored in the longstring array%!()

e.g.
JSON$(a%(), “name”)

JSON$(a%(), “coord.lat”)

JSON$(a%(), “weather[0].description”)
JSON$(a%(),”list[4].weather[0].description

Examples taken from api.openweathermap.org

LCOMPARE(array1%:(), Compare the contents of two long string variables array1%()
array2%()) and array2%!(). The returned is an integer and will be -1 if
arrayl% () is less than array2%(). It will be zero if they are
eqgual in length and content and +1 if array1%() is greater than
array2%(). The comparison uses the ASCII character set and
IS case sensitive.

LGETSTRS$(array%o(), Returns part of a long string stored in array%() as a normal
start, length) MMBasic string. The parameters start and length define the
part of the string to be returned.

LINSTR(array%(), search$ Returns the position of a search string in a long string. The
[,start]) returned value is an integer and will be zero if the substring
cannot be found. array%() is the string to be searched and
must be a long string variable. Search$ is the substring to look
for and it must be a normal MMBasic string or expression (not
a long string). The search is case sensitive.

Normally the search will start at the first character in 'str' but
the optional third parameter allows the start position of the
search to be specified.

LLEN(array%()) Returns the length of a long string stored in array%()

MM.DEVICE$ Returns "Armmite "

MM.PERSIST Returns the value of a user variable that is not impacted by
CPU RESTART or a watchdog timeout

MOVEMENT (sensitivity) This function combines capturing a new image from an

OV7670 camera with a comparison with the currently
displayed image. It returns the number of pixels that are
different between the images. The sensitivity parameter
controls whether or not a pixel is considered to be different.
The algorithm works by converting each image to a 6-bit
greyscale image. The sensitivity is then the difference between
the pixels that will be counted as a change.

The top 20 and bottom 20 rows are ignored in the comparison.
This allows the user to use these for other display purposes
without artificially triggering the movement detection.

Armmite H7 Manual Page 30

OWSEARCH(pin, flag
[,serial_number_mask])

Returns the onewire device serial number as an INTEGER.
Flags are:

0 - Continue an existing search

1 - start a new search

4 - Continue an existing search for devices in the requested
family

5 - start a new search for devices in the requested family (the
MSB of the serial_number_mask)

8 - skip the current device family and return the next device

16 - verify that the device with the serial number in
serial number_mask is available

SPI3(n)

See Appendix D of the Micromite User Manual

SPRITE(...)

SPRITE(C, [#]n)

SPRITE(C, [#n, m)

SPRITE(H,[#]n)

SPRITE(L, [#]n)
SPRITE(N)
SPRITE(N,n)

SPRITE(S)

SPRITE(W, [#]n)

SPRITE(X, [#]n)

SPRITE(Y, [#]n)

Returns the number of currently active collisions for sprite n. If
n=0 then returns the number of sprites that have a currently
active collision following a SPRITE SCROLL command

Returns the number of the sprite which caused the “m”th
collision of sprite n. If n=0 then returns the sprite number of
“‘m’th sprite that has a currently active collision following a
SPRITE SCROLL command

Returns the height of sprite n. This function is active whether or
not the sprite is currently displayed (active).

Returns the layer number of active sprites number n
Returns the number of displayed (active) sprites
Returns the number of displayed (active) sprites on layer n

Returns the number of the sprite which last caused a collision.
NB if the number returned is Zero then the collision is the result
of a SPRITE SCROLL command and the SPRITE(C...) function
should be used to find how many and which sprites collided.

Returns the width of sprite n. This function is active whether or
not the sprite is currently displayed (active).

Returns the X-coordinate of sprite n. This function is only active
when the sprite is currently displayed (active). Returns 10000
otherwise.

Returns the Y-coordinate of sprite n. This function is only active
when the sprite is currently displayed (active). Returns 10000
otherwise

Armmite H7 Manual

Page 31

Appendix A
Sensor Fusion

The Armmite H7 supports the calculation of pitch, roll and yaw angles from accelerometer and
magnetometer inputs.

For information on this technology see https://github.com/kriswiner/MPU-6050/wiki/Affordable-9-
DoF-Sensor-Fusion

The SENSORFUSION command supports both the MADGWICK and MAHONY fusion algorithms.
The format of the command is:

SENSORFUSION type ax, ay, az, gx, gy, gz, mx, my, mz, pitch, roll, yaw [,p1] [,p2]
Type can be MAHONY or MADGWICK

AX, ay, and az are the accelerations in the three directions and should be specified in units of
standard gravitational acceleration.

Gx, gy, and gz are the instantaneous values of rotational speed which should be specified in radians
per second.

Mx, my, and mz are the magnetic fields in the three directions and should be specified in nano-Tesla
(nT)

Care must be taken to ensure that the x, y and z components are consistent between the three
inputs. So , for example, using the MPU-9250 the correct input will be ax, ay,az, gx, gy, gz, my, mx, -
mz based on the reading from the sensor.

Pitch, roll and yaw should be floating point variables and will contain the outputs from the sensor
fusion.

The SENSORFUSION routine will automatically measure the time between consecutive calls and will
use this in its internal calculations.

The Madwick algorithm takes an optional parameter pl. This is used as beta in the calculation. It
defaults to 0.5 if not specified

The Mahony algorithm takes two optional parameters p1, and p2. These are used as Kp and Ki in the
calculation. If not specified these default to 10.0 and 0.0 respectively.

A fully worked example of using the code is given on the BackShed forum at

http://www.thebackshed.com/forum/forum_posts.asp?TID=9321&PN=1&TPN=1

Armmite H7 Manual Page 32

https://github.com/kriswiner/MPU-6050/wiki/Affordable-9-DoF-Sensor-Fusion
https://github.com/kriswiner/MPU-6050/wiki/Affordable-9-DoF-Sensor-Fusion

Appendix B
Sprites

See the SPRITE commands and functions for syntax details.
The concept of the sprite implementation is as follows:

Sprites are full colour and of any size. The collision boundary is the enclosing rectangle.
Sprites are loaded to a specific number (1-50)

Sprites are displayed using the SPRITE SHOW command

For each SHOW command the user must select a "layer”. This can be between 0 and 10.
Sprites collide with sprites on the same layer, layer 0, or the screen edge

Layer O is a special case and sprites on all other layers will collide with it

The SCROLL commands leave sprites on all layers except layer 0 unmoved

Layer O sprites scroll with the background and this can cause collisions

There is no practical limit on the number of collisions caused by SHOW or SCROLL
commands

10. The sprite function allows the user to fully interrogate the details of a collision
11. A SHOW command will overwrite the details of any previous collisions for that sprite
12. A SCROLL command will overwrite details of previous collisions for ALL sprites

13. To restore a screen to a previous state sprites should be removed in the opposite order to
which they were written "LIFO"

©o NN RE

Because moving a sprite or, particularly, scrolling the background can cause multiple sprite collisions
it is important to understand how they can be interrogated.

The best way to deal with a sprite collision is using the interrupt facility. A collision interrupt routine is
set up using the SPRITE INTERRUPT command.

e.g. SPRITE INTERRUPT collision

The following is a pro-forma for identifying all collisions that have resulted from either a SPRITE
SHOW command or a SCROLL command

' This routine demonstrates a complete interrogation of collisions
sub collision
local integer i
' First use the SPRITE(S) function to see what caused the interrupt
if sprite(S) <> 0 then 'collision of specific individual sprite
'sprite(S) returns the sprite that moved to cause the collision
print "Collision on sprite ",sprite(S)
process_collision(sprite(S))
print "™

else '0 means collision of one or more sprites caused by background move

Armmite H7 Manual Page 33

' SPRITE(C, 0) will tell us how many sprites had a collision

print "Scroll caused a total of ",sprite(C,0)," sprites to have collisions"

for i=1 to sprite(C,0)
" SPRITE(C, 0, i) will tell us the sprite number of the “I"th sprite
print "Sprite ",sprite(C,0,i)
process_collision(sprite(C,0,i))
next i
print ™"
endif
end sub
' get details of the specific collisions for a given sprite
sub process_collision(S as integer)
local integer i ,j
'sprite(C, #n) returns the number of current collisions for sprite n
print "Total of ",sprite(C,S)," collisions"
for i=1 to sprite(C,S)
"SPRITE(C, S, i) will tell us the sprite number of the “I"th sprite
j=sprite(C,S,i)
if j=100 then
print "collision with left of screen”
else if j=101 then
print "collision with top of screen”
else if j=102 then
print "collision with right of screen”
else if j=103 then
print "collision with bottom of screen"
else

print "Collision with sprite ",sprite(C,S,i) 'sprite(C, #n, #m) returns details of the mth collision

endif
next i
end sub

Armmite H7 Manual

Page 34

Appendix C
Nucleo Pin Definitions

The following provides constants to access the Nucleo pins by a variety of relevant naming
conventions

Const PE2=1,D56=1,CN9_14=1,CN11_46=1
Const PE3=2,D60=2,CN9_22=2 CN11 _47=2
Const PE4=3,D57=3,CN9_16=3,CN11_48=3
Const PE5=4,D58=4,CN9_18=4,CN11_50=4
Const PE6=5,D59=5,CN9_20=5,CN11_62=5
Const PC13=7,CN11 23=7

Const PC14=8,CN11 25=8

Const PC15=9,CN11 27=9

Const PF0=10,D68=10,CN9_21=10,CN11_53=10
Const PF1=11,D69=11,CN9_19=11,CN11_51=11
Const PF2=12,D70=12,CN9_17=12,CN11_52=12
Const PF3=13,A3=13,CN9_7=13,CN12_58=13
Const PF4=14,A8=14,CN10_11=14,CN12_38=14
Const PF5=15,A4=15,CN9_9=15,CN12_36=15
Const PF6=18,CN11_9=18

Const PF7=19,062=19,CN9_26=19,CN11_11=19
Const PF8=20,CN11_54=20

Const PF9=21,D63=21,CN9_28=21,CN11 56=21
Const PF10=22,A5=22,CN9_11=22 CN12_42=22
Const PH0=23,CN11 29=23

Const PH1=24,CN11_31=24

Const PC0=26,A1=26,CN9_3=26,CN11_38=26
Const PC1=27,CN11_36=27

Const PC2=28,A7=28,CN10_9=28,CN11_35=28
Const PC3=29,A2=29,CN9_5=29,CN11_37=29
Const PA0=34,D32=34,CN10_29=34,CN11_28=34
Const PA1=35,CN11_30=35

Const PA2=36,CN12_35=36

Const PA3=37,A0=37,CN9_1=37,CN12_37=37
Const PA4=40,D24=40,CN7_17=40,CN11_32=40
Const PA5=41,D13=41,CN7_10=41,CN12_11=41
Const PA6=42,012=42,CN7_12=42,CN12_13=42
Const PA7=43,D11=43,CN7_14=43,CN12_15=43
Const PC4=44,CN12_34=44

Const PC5=45,CN12_6=45

Const PB0=46,D33=46,CN10_31=46,CN11_34=46
Const PB1=47,A6=47,CN10_7=47,CN12_24=47
Const PB2=48,D27=48,CN10_15=48,CN12_22=48
Const PF11=49,CN12_62=49

Const PF12=50,D8=50,CN7_20=50,CN12_59=50
Const PF13=53,D7=53,CN10_2=53,CN12_57=53

Armmite H7 Manual Page 35

Const PF14=54,D4=54,CN10_8=54,CN12_50=54
Const PF15=55,CN12_60=55

Const PG0=56,CN11_59=56

Const PG1=57,D64=57,CN9_30=57,CN11_58=57
Const PE7=58,D41=58,CN10_20=58,CN12_44=58
Const PE8=59,D42=59,CN10_18=59,CN12_40=59
Const PE9=60,D6=60,CN10_4=60,CN12_52=60
Const PE10=63,D40=63,CN10_24=63,CN12_47=63
Const PE11=64,D5=64,CN10_6=64,CN12_56=64
Const PE12=65,D39=65,CN10_26=65,CN12_49=65
Const PE13=66,D3=66,CN10_12=66,CN12_55=66
Const PE14=67,D38=67,CN10_28=67,CN12_51=67
Const PE15=68,CN12_53=68

Const PB10=69,D36=69,CN10_32=69,CN12_25=69
Const PB11=70,D35=70,CN10_34=70,CN12_18=70
Const PB12=73,D19=73,CN7_7=73,CN12_16=73
Const PB13=74,D18=74,CN7_5=74,CN12_30=74
Const PB14=75,CN12_28=75

Const PB15=76,D17=76,CN7_3=76,CN12_26=76
Const PD8=77,CN12_10=77

Const PD9=78,CN11 _69=78

Const PD10=79,CN12_65=79

Const PD11=80,D30=80,CN10_23=80,CN12_45=80
Const PD12=81,D29=81,CN10_21=81,CN12_43=81
Const PD13=82,D28=82,CN10_19=82,CN12_41=82
Const PD14=85,D10=85,CN7_16=85,CN12_46=85
Const PD15=86,D9=86,CN7_18=86,CN12_48=86
Const PG2=87,D49=87,CN8_14=87,CN11_42=87
Const PG3=88,D50=88,CN8_16=88,CN11_44=88
Const PG4=89,CN12_69=89

Const PG5=90,CN12_68=90

Const PG6=91,CN12_70=91

Const PG7=92,CN12_67=92

Const PG8=93,CN12_66=93

Const PC6=96,D16=96,CN7_1=96,CN12_4=96
Const PC7=97,D21=97,CN7_11=97,CN12_19=97
Const PC8=98,D43=98,CN8_2=98,CN12_2=98
Const PC9=99,D44=99,CN8_4=99,CN12_1=99
Const PA8=100,CN12_23=100

Const PA9=101,CN12_21=101

Const PA10=102,CN12_33=102

Const PA11=103,CN12_14=103

Const PA12=104,CN12_12=104

Const PA13=105,CN11_13=105

Const PA14=109,CN11_15=109

Const PA15=110,D20=110,CN7_9=110,CN11_17=110
Const PC10=111,D45=111,CN8_6=111,CN11_1=111

Armmite H7 Manual Page 36

Const PC11=112,D46=112,CN8_8=112,CN11_2=112
Const PC12=113,D47=113,CN8_10=113,CN11_3=113
Const PD0=114,D67=114,CN9_25=114,CN11_57=114
Const PD1=115,D66=115,CN9_27=115,CN11_55=115
Const PD2=116,D48=116,CN8_12=116,CN11_4=116
Const PD3=117,D55=117,CN9_10=117,CN11_40=117
Const PD4=118,D54=118,CN9_8=118,CN11_39=118
Const PD5=119,D53=119,CN9_6=119,CN11_41=119
Const PD6=122,D052=122,CN9_4=122,CN11_43=122
Const PD7=123,D51=123,CN9_2=123,CN11_45=123
Const PG9=124,00=124,CN10_16=124,CN11_63=124
Const PG10=125,CN11_66=125

Const PG11=126,CN11_70=126

Const PG12=127,CN11_65=127

Const PG13=128,CN11_68=128

Const PG14=129,01=129,CN10_14=129,CN12_61=129
Const PG15=132,CN11_64=132

Const PB3=133,D23=133,CN7_15=133,CN12_31=133
Const PB4=134,D25=134,CN7_19=134,CN12_27=134
Const PB5=135,D22=135,CN7_13=135,CN12_29=135
Const PB6=136,D26=136,CN10_13=136,CN12_17=136
Const PB7=137,CN11_21=137

Const PB8=139,D15=139,CN7_2=139,CN12_3=139
Const PB9=140,D14=140,CN7_4=140,CN12_5=140
Const PE0=141,D34=141,CN10_33=141,CN12_64=141
Const PE1=142,CN11_61=142

Armmite H7 Manual Page 37

