MMBasic Structures User Manual

Introduction

Structures (also known as User-Defined Types) allow you to group related variables of different types together under a
single name. This is useful for organizing complex data such as coordinates, records, or any collection of related values.

Defining a Structure Type

Use the "TYPE...END TYPE" block to define a new structure type:
Type typenane
menber1l As type
menber2 As type

End Type

Supported Member Types

- "INTEGER" - 64-bit signed integer
- "FLOAT" - 64-bit floating point number
- "STRING" - String up to 255 characters (use "LENGTH n" to specify maximum length)

Examples

Simple structure:
Type Poi nt
x As | NTEGER
y As | NTEGER
End Type

Structure with mixed types:
Type Person
age As | NTEGER
hei ght As FLOAT
name As STRI NG
End Type

Structure with string length specified:
Type Record
id As | NTEGER
description As STRI NG LENGTH 100
End Type

Memory Layout and Alignment

Understanding how structures are packed in memory is important when working with binary file 1/0 or calculating
memory usage.

Member Storage Sizes

Type Storage Size
‘INTEGER® 8 bytes
"FLOAT® 8 bytes
"STRING® length + 1 bytes (1 byte for length prefix + specified/default length)

"STRING LENG.|.n + 1 bytes

Nested struc... [Size of the nested structure type

Alignment Rules

Page 1

MMBasic Structures User Manual

Members are placed sequentially in memory with the following alignment rules:

- **Strings**: No alignment requirement. Placed immediately after the previous member.

- *INTEGER, FLOAT, and nested structures**: Aligned to 8-byte boundaries. If the current offset is not divisible by 8,
padding bytes are inserted before the member.

Padding Example

When a numeric type follows a string whose total storage is not aligned to 8 bytes, padding is automatically inserted:
Type Exanpl el

nane As STRI NG LENGTH 10 ' Ofset 0, size 11 bytes (10 + 1 length byte)
val ue As | NTEGER ' Offset 16 (padded from 11l to align to 8)
End Type

Total size: 24 bytes (11 + 5 padding + 8)

Type Exanpl e2

nane As STRI NG LENGTH 15 ' Ofset 0, size 16 bytes (15 + 1 length byte)
val ue As | NTECER ' Ofset 16 (no paddi ng needed, already aligned)
End Type

Total size: 24 bytes (16 + 8)

Type Exanpl e3

a As | NTEGER ' Offset 0, size 8 bytes

nane As STRI NG LENGTH 5 ' Ofset 8, size 6 bytes (5 + 1 length byte)

b As | NTEGER ' Ofset 16 (padded from14 to align to 8)
End Type

Total size: 24 bytes (8 + 6 + 2 padding + 8)

Optimizing Structure Size

To minimize wasted space from padding, consider:

1. *Grouping humeric members together**: Place all INTEGER and FLOAT members consecutively.

2. **Using string lengths that result in 8-byte aligned totals**: String lengths of 7, 15, 23, 31, etc. (where length + 1 is
divisible by 8) avoid padding when followed by numeric types.
Note on structure end padding: Padding is always added to the end of a structure to ensure the total size is aligned
to 8 bytes. This is required so that arrays of structures maintain proper memory alignment for all elements. Without end

padding, the second element of an array would start at a misaligned address, potentially causing memory access errors.
Less efficient (has internal padding):
Type I nefficient

flag As | NTEGER ' 8 bytes

name As STRI NG LENGTH 10 ' 11 bytes

count As | NTEGER ' 8 bytes (but needs 5 bytes padding before it)
End Type

Total : 32 bytes

More efficient (no internal padding, but end padding still applies):
Type Efficient

flag As | NTEGER ' 8 bytes

count As | NTEGER ' 8 bytes

nane As STRI NG LENGTH 10 ' 11 bytes + 5 bytes end paddi ng
End Type

Total : 32 bytes (padded to 8-byte boundary)
Use "STRUCT(SIZEOF, "typename")" to verify the actual size of your structures.

Declaring Structure Variables

Use "DIM" to declare variables of a structure type:
Di m vari abl enane As typenamne

Examples

Page 2

MMBasic Structures User Manual

Simple structure variable:
Type Poi nt
X As | NTEGER
y As | NTEGER
End Type

Dimp As Point
Dimorigin As Point

Multiple variables:
Dimpl As Point, p2 As Point, p3 As Point

Accessing Structure Members

Use the dot (".") notation to access individual members:
vari abl enane. menber nanme

Examples

Setting values:
Dimp As Point
p. X 100
p.y = 200

Reading values:
Print p.x, p.y
result = p.x + p.y
Using in expressions:
distance = Sqr(p.x * p.x + p.y * p.y)

Arrays of Structures

You can create arrays where each element is a structure:
Di m arraynane(si ze) As typenane

Examples

Declaring an array of structures:
Di m poi nts(10) As Poi nt

Accessing array elements:

points(0).x = 10
points(0).y = 20
points(1l).x = 30
points(1l).y = 40

Print points(0).x, points(0).y

Using variable indices:

For i =0 To 10
points(i).x =i * 10
points(i).y =i * 20

Next

Multi-dimensional arrays:
Dimgrid(10, 10) As Point
grid(5, 5).x = 100

Page 3

MMBasic Structures User Manual

grid(5, 5).y = 200

Initializing Structures

Structures can be initialized when declared using parentheses with comma-separated values:
Di m vari abl enane As typenane = (val uel, value2, ...)

Values must be provided in the order the members are defined in the TYPE block.

Examples

Simple structure initialization:
Type Poi nt
X As | NTEGER
y As | NTEGER
End Type

Dmp As Point = (100, 200)
p.x = 100, p.y = 200

Structure with string:
Type Person
age As | NTEGER
hei ght As FLOAT
name As STRI NG
End Type

Di m personl As Person = (25, 1.75, "Alice")

Array of structures initialization:
Di m points(2) As Point = (10, 20, 30, 40, 50, 60)

points(0).x = 10, points(0).y = 20
points(1l).x = 30, points(1l).y = 40
points(2).x = 50, points(2).y = 60

Values are assigned sequentially: all members of element 0, then all members of element 1, etc.

Copying Structures

Structures can be copied using direct assignment or the "STRUCT COPY" command.

Direct Assignment

The simplest way to copy a structure is using direct assignment:
destinati on = source
This works for:
- Single structure variables
- Individual array elements

Example - Single structures:
Dimsrc As Point, dst As Point

src.x = 100
src.y = 200
dst = src

' dst.x = 100, dst.y = 200
Example - Array elements:

Di m poi nt s(10) As Poi nt
points(0).x = 50 : points(0).y = 60

Page 4

MMBasic Structures User Manual

poi nts(5) = points(0) ' Copy element 0 to elenent 5
poi nts(5).x = 50, points(5).y = 60

Example - Cross-array copy:
Dimsrc(5) As Person
Di m dst (5) As Person
popul ate src ...

dst(2) = src(3) ' Copy element 3 fromsrc to elenment 2 of dst
Important: Both source and destination must be the same structure type. Attempting to assign structures of different
types will cause an error.

STRUCT COPY Command

The "STRUCT COPY" command provides the same functionality with explicit syntax:
Struct Copy source To destination

Both variables must be of the same structure type.

Example:
Dimsrc As Point, dst As Point
src.x = 100
src.y = 200

Struct Copy src To dst
dst.x = 100, dst.y = 200

Copying Entire Arrays

You can copy entire structure arrays using empty parentheses:
Struct Copy sourceArray() To destinationArray()

Requirements:
- Both arrays must be the same structure type
- The destination array must be at least as large as the source array
- Both must use the "()" syntax, or both must be single elements
- Only the source elements are copied (extra destination elements are preserved)

Example:
Dimsrc(2) As Point
src(0).x =10 : src(0).y = 11
src(l).x =20 : src(l).y = 21
src(2).x =30 : src(2).y = 31
Dimdst(4) As Point ' Larger destination is OK

Struct Copy src() To dst()
dst (0), dst(1l), dst(2) now contain copies fromsrc
' dst(3), dst(4) are unchanged

Example - Same size arrays:
Di m ori ginal (10) As Person
popul ate array ...
Di m backup(10) As Person
Struct Copy original () To backup()

Sorting Structure Arrays

Use the "STRUCT SORT" command to sort an array of structures in-place based on any member field:

Page 5

MMBasic Structures User Manual

Struct Sort array(), nenbernane [, flags]

Parameters

- "array()" - The structure array to sort (must include empty parentheses)
- "membername" - The name of the member field to sort by
- "flags" - Optional flags to modify sort behavior (can be combined by adding):

Value Description
0 Default: ascending sort, case-sensitive
1 Reverse sort (descending order)
2 Case-insensitive sort (strings only)
4 Empty strings sort to end of array (strings only)

Flags can be combined by adding values (e.g., 3 = descending + case-insensitive).

Examples

Sort by integer field (ascending):
Type Person
age As | NTEGER
name As STRI NG
End Type

Di m peopl e(3) As Person

peopl e(0).age = 35 : people(0).nanme = "Charlie"
peopl e(1l).age = 25 : people(l).name = "Alice"
peopl e(2).age = 45 : peopl e(2).nanme = "David"
peopl e(3).age = 30 : peopl e(3).nane = "Bob"

Struct Sort people(), age
' Result: Alice(25), Bob(30), Charlie(35), David(45)

Sort by string field:

Struct Sort people(), nane
Result: Alice, Bob, Charlie, David

Reverse sort (descending):
Struct Sort people(), age, 1
Resul t: David(45), Charlie(35), Bob(30), Alice(25)

Case-insensitive string sort:
Struct Sort people(), nanme, 2

Combine flags (reverse + case-insensitive):
Struct Sort people(), name, 3
' 3 =1+ 2 (reverse + case insensitive)

Empty strings at end:
Struct Sort people(), nane, 4
Non-enpty strings sorted first, enpty strings at end

Notes

- The entire structure is moved during sorting, not just the sort key

- All other member values are preserved with their corresponding records
- The sort is performed in-place (no additional array is created)

- Array members within structures cannot be used as sort keys

Page 6

MMBasic Structures User Manual

- Supports INTEGER, FLOAT, and STRING member types

Clearing Structures

Use the "STRUCT CLEAR" command to reset all members of a structure to their default values (0 for numbers, empty
string for strings):

Struct Clear variable

Struct Cear array()

Examples

Clear a single structure:
Dimp As Point
p.x = 100
p.y = 200

Struct Clear p
p.x =0, py =0

Clear an entire array of structures:
Di m peopl e(10) As Person
popul ate array ...

Struct C ear people()
" Al elenments reset to defaults

Swapping Structures

Use the "STRUCT SWAP" command to exchange the contents of two structure variables:
Struct Swap varl, var2

Both variables must be of the same structure type. This is useful when implementing sorting algorithms or reordering
records.

Examples

Dma As Point, b As Point
a.x =10 : a.y = 20

b.x =30 : b.y =40

Struct Swap a, b
Now. a.x = 30, a.y = 40, b.x = 10, b.y = 20

Swapping array elements:
Di m peopl e(5) As Person
popul ate array ...

Struct Swap peopl e(2), people(4)

El enents 2 and 4 are exchanged

Printing Structures

Use the "STRUCT PRINT" command to display all members of a structure for debugging:
Struct Print variable
Struct Print array()
Struct Print array(index)

Forms

Page 7

MMBasic Structures User Manual

- "Struct Print variable" - Print a single structure variable
- "Struct Print array()" - Print all elements of a structure array
- "Struct Print array(n)" - Print a specific element of a structure array

Examples

Print a single structure:
Dimp As Person
p.name = "Alice"
p.age = 25
p. height = 1.65

Struct Print p

Output:
Per son:
.nane = "Alice"
.age = 25
.height = 1.65

Print an array element:
Di m peopl e(10) As Person
popul ate array ..

Struct Print peopl e(0)

Print entire array:
Struct Print people()

Output:
Person array (11 el ements):
[0]:
.name = "Alice"
.age = 25
.height = 1.65
[1]:
. name = "Bob"
.age = 30
.height = 1.80

Notes

- Array members are printed as comma-separated values
- Strings are displayed with surrounding quotes
- Useful for debugging and inspecting structure contents

Searching Structure Arrays

Use the "STRUCT(FIND, ...)" function to search a structure array for an element with a matching member value:
index = Struct(FIND, array(), nenbernane$, value [, start])

Parameters

- "FIND" - The subfunction name

- "array()" - The structure array to search (must include empty parentheses)
- "membername$" - The name of the member field to search (as a string)

- "value" - The value to search for (must match the member's type)

- "start" - Optional. The index to start searching from (default: first element)

Page 8

MMBasic Structures User Manual

Return Value

- Returns the index of the first matching element (starting from "start™)
- Returns -1 if no match is found

Examples

Find by integer:
Type Person
age As | NTEGER
name As STRI NG
End Type

Di m peopl e(10) As Person
popul ate array ...

idx = Struct(FIND, people(), "age", 35)
If idx >= 0 Then

Print "Found at index"; idx; "; peopl e(idx).name
El se

Print "Not found"
Endl f

Find by string:
idx = Struct(FIND, people(), "nanme", "Alice")
If idx >= 0 Then
Print "Alice is at index"; idx
Endl f

Find by float:
idx = Struct(FIND, people(), "height", 1.75)

Iterate through all matches using start parameter:
Find all people aged 30
idx = Struct(FIND, people(), "age", 30)
Do Wiile idx >= 0

Print "Found at index"; idx; ": "; people(idx).nane
idx = Struct(FIND, people(), "age", 30, idx + 1)
Loop
Notes

- Search is performed linearly from the start position

- Only the first match (from the start position) is returned

- Use the start parameter to iterate through multiple matches
- For strings, comparison is case-sensitive and exact

- Array members within structures cannot be searched

- The member name is passed as a string (can be a variable)

Getting Array Bounds

Use the "STRUCT(SIZE, ...)" function to get the upper bound of a structure array dimension:
upper Bound = Struct(SIZE, array() [, dinension])

Parameters

- "SIZE" - The subfunction name
- "array()" - The structure array (must include empty parentheses)
- "dimension" - Optional. Which dimension to query (1-based, default: 1)

Page 9

MMBasic Structures User Manual

Return Value

- Returns the upper bound of the specified dimension

Examples

Basic usage (1D array):
Di m poi nts(9) As Point
bound = Struct (SIZE, points()) ' Returns 9

Multi-dimensional array:
Dimgrid(4, 7) As Point
di mL Struct (SIZE, grid(), 1) ' Returns 4
di n2 Struct (SIZE, grid(), 2) ' Returns 7

Default dimension:
Di m dat a(10, 20) As Person
bound = Struct(SIZE, data()) ' Returns 10 (first dinension)

Use in loops:
Di m peopl e(n) As Person
' popul ate array ...

For i = 0 To Struct(SIZE, people())
Print people(i).nane
Next i
Notes

- Similar to the standard BOUND() function but for structure arrays
- Dimension numbering is 1-based (1 = first dimension, 2 = second, etc.)
- If dimension is omitted, returns the bound of the first dimension

Getting Structure Size

Use the "STRUCT(SIZEOF, ...)" function to get the size in bytes of a structure type:
byt eSi ze = Struct (Sl ZECF, typenane$)

Parameters

- "SIZEOF" - The subfunction name
- "typename$" - A string containing the structure type name

Return Value

- Returns the total size in bytes of the specified structure type

Examples

Basic usage:
Type Poi nt

x As | NTEGER

y As | NTEGER

End Type
size = Struct (SI ZECF, "Point") ' Returns 16 (2 x 8-byte integers)
Print "Point size:"; size; "bytes"

Using with different types:

Page 10

MMBasic Structures User Manual

Type Person

age As | NTEGER ' 8 bytes

hei ght As FLOAT ' 8 bytes

nane As STRI NG ' 256 bytes (default string)
End Type
size = Struct (SI ZECF, "Person") ' Returns 272

Dynamic type name:
typenanme$ = "Point"
size = Struct (S| ZECF, typenane$)

Use for memory calculations:
Di m dat a(99) As Record
total Bytes = 100 * Struct (Sl ZEOF, "Record")
Print "Array uses"; total Bytes; "bytes"

Notes

- The type name comparison is case-insensitive
- Returns an error if the structure type is not defined
- Useful for calculating memory requirements or file sizes before STRUCT SAVE

Saving and Loading Structures

Structures can be saved to and loaded from files in binary format. This is useful for persisting data between program
runs or exchanging data.

STRUCT SAVE

Writes structure data to an already-open file:
Struct Save #fil enunber, vari abl e
Struct Save #filenunber, array()
Struct Save #fil enunber, array(index)

The file must be opened before using "STRUCT SAVE". You manage the file opening and closing.

Syntax options for arrays:
- "array()" - Saves the entire array
- "array(index)" - Saves only the element at the specified index

STRUCT LOAD

Reads structure data from an already-open file:
Struct Load #fil enunber, variable
Struct Load #fil enunber, array()
Struct Load #fil enunber, array(index)

The file must be opened before using "STRUCT LOAD". The structure variable must already be declared.

Syntax options for arrays:
- "array()" - Loads the entire array
- "array(index)" - Loads only into the element at the specified index

Examples

Save and load a single structure:
Dimp As Point
p. X 100
p.y 200

Page 11

MMBasic Structures User Manual

Save

Open "point.dat" For Qutput As #1
Struct Save #1, p

Cl ose #1

Load
Di m p2 As Point
Open "point.dat" For Input As #1
Struct Load #1, p2
Cl ose #1

Print p2.x, p2.y ' Qutput: 100 200

Save and load an array of structures:
Di m peopl e(100) As Person
popul ate array ...

Save to file
Open "peopl e.dat" For Qutput As #1
Struct Save #1, people()
Cl ose #1
' Load fromfile
Di m | oadedPeopl e(100) As Person
Open "peopl e.dat” For |nput As #1
Struct Load #1, | oadedPeopl e()
Cl ose #1

Save and load individual array elements:
Di mrecords(99) As Record
popul ate records ...

Save specific records to file
Open "sel ected. dat" For Qutput As #1

Struct Save #1, records(5) ' Save elenment 5
Struct Save #1, records(10) ' Append el erent 10
Struct Save #1, records(25) ' Append el ement 25
Cl ose #1

Load records back (to different positions or variabl es)
Dimtenp As Record
Open "sel ected.dat” For Input As #1

Struct Load #1, tenp ' Load first saved record
Print temp.id
Struct Load #1, records(50) ' Load second saved record into el ement 50
Struct Load #1, records(51) ' Load third saved record into el ement 51
Cl ose #1

Notes

- Data is saved in binary format (not human-readable)

- The structure type must match when loading

- For whole array operations, array dimensions must match when loading

- Files should be opened in appropriate mode for the operation

- Multiple structures can be saved to the same file sequentially

- Error occurs if file is not open or is not a disk file

- **Array variables must use parentheses**: "array()" for whole array, "array(i)" for single element
- Using an array name without parentheses will cause an error

Structures in Subroutines and Functions

Page 12

MMBasic Structures User Manual

Passing Structures as Parameters

Structures are always passed **by reference**, meaning the subroutine or function can modify the original structure:
Sub subnane(par anet er nanme As typenane)

End Sub

Example - Read-only access:
Sub PrintPoint(pt As Point)
Print "X"; pt.x; " Y:"; pt.y
End Sub

Dimp As Point = (100, 200)
Print Point p

Example - Modifying the structure:
Sub Doubl ePoi nt (pt As Point)
pt.x = pt.x * 2
pt.y =pt.y * 2
End Sub

Dimp As Point = (10, 20)
Doubl ePoi nt p
Print p.x, p.y ' Qutput: 20 40

Passing Array Elements

You can pass a single element of a structure array:
Di m poi nt s(10) As Poi nt
points(5).x = 100
points(5).y = 200

Pri nt Poi nt poi nt s(5)
Doubl ePoi nt poi nt s(5)

Passing Structure Arrays

Use empty parentheses to pass an entire array of structures:
Sub ProcessPoints(pts() As Point)
Access pts(0), pts(1l), etc.
End Sub

Di m myPoi nt s(10) As Poi nt
Pr ocessPoi nts nyPoi nts()

Example:

Sub SunAl | Poi nts(pts() As Point, count%
Local total _x%= 0, total _y% =0
Local i%

For i%= 0 To count%- 1
total _x% = total _x% + pts(i%.x
total _y% = total _y% + pts(i%.y

Next i %
Print "Total X:"; total _x% " Total Y:"; total _y%
End Sub

Di m dat a(5) As Poi nt
initialize data ...
SumAl | Points data(), 6

Functions with Structure Parameters

Page 13

MMBasic Structures User Manual

Functi on Di stance(pt As Point) As FLOAT
Distance = Sqr(pt.x * pt.x + pt.y * pt.y)
End Functi on

Dmp As Point = (3, 4)
Print Distance(p) ' Qutput: 5

Functions Returning Structures

Functions can return structure values using "As typename" in the function declaration:
Function functionnanme(paraneters) As typenane
functi onname. menber1 = val uel
functi onname. menber 2 = val ue2
End Function

The function name acts as a local structure variable that is returned when the function exits.

Example - Creating a Point:
Function MakePoi nt (x% y% As Point
MakePoi nt. x = x%
MakePoint.y = y%
End Function

Dimp As Point
p = MakePoi nt (100, 200)
Print p.x, p.y " Qutput: 100 200

Example - Structure with multiple types:
Functi on CreatePerson(n$, a% h!) As Person
Cr eat ePer son. name = n$
Creat ePerson. age = a%
Cr eat ePer son. hei ght = h!
End Function

Di m enpl oyee As Person
enpl oyee = CreatePerson("Alice", 30, 1.68)
Print enpl oyee.nane; " is"; enployee.age; " years old"

Example - Factory function:
Function Oigin() As Point
Oiginnx =0
Oiginy =0
End Function

Dim startPoint As Poi nt
startPoint = Oigin()

Local Structures

Use "LOCAL" to declare structures that exist only within a subroutine or function:

Sub Exanpl e

Local pt As Point

pt.x = 100

pt.y = 200

' pt is automatically freed when the sub exits
End Sub

Local Structure Arrays

Sub ProcessbDat a
Local tenmpPoints(10) As Point
Use tenmpPoints. ..

Page 14

MMBasic Structures User Manual

End Sub

Local Structures with Initialization

Sub Exanpl e
Local pt As Point = (50, 75)
Print pt.x, pt.y

End Sub

Nested Structures

Structures can contain other structures as members. The nested structure type must be defined before it is used in
another structure.

Defining Nested Structures

Define inner structure first
Type Poi nt

X As | NTEGER

y As | NTEGER

End Type
Now define structure that contains Point
Type Line
start As Poi nt ' Nested structure nenber
finish As Poi nt ' Anot her nested nenber
col or As | NTEGER
End Type

Accessing Nested Members

Use chained dot notation to access nested members:
Di m nyLi ne As Line
myLine.start.x = 10
nmyLi ne.start.y = 20
nmyLi ne. finish.x = 100
myLine.finish.y = 200
myLi ne. col or = 255

Print nyLine.start.x " Prints 10
Print nyLine.finish.y " Prints 200

Multiple Levels of Nesting

Structures can be nested to multiple levels:
Type Poi nt
X As | NTECER
y As | NTEGER
End Type

Type Box
topLeft As Point
bott onRi ght As Poi nt

End Type

Type Scene
boundary As Box ' Box contains Points - 3 levels
nane As STRI NG LENGTH 20

End Type

Di m nyScene As Scene

Page 15

MMBasic Structures User Manual

myScene. boundary. topLeft.x = 0
myScene. boundary. bott onRi ght. x = 640
myScene. nane = " Mi nScene"

Print nyScene. boundary.topLeft.x " Prints O

Arrays with Nested Structures

Arrays of structures containing nested structures work as expected:
Dimlines(10) As Line
lines(0).start.x =1
lines(0).start.y = 2
lines(5).finish.x = 100

Arrays of Nested Structure Members

Structure members can be arrays of nested structures:
Type Poi nt
X As | NTEGER
y As | NTEGER
End Type

Type Pol ygon
vertices(9) As Point ' Array of 10 nested Point structures
col or As | NTEGER

End Type

Di m shape As Pol ygon

shape. vertices(0).x = 0
shape. vertices(0).y = 0
shape. vertices(1).x = 100
shape. vertices(1).y = 50

shape. col or = 255

Complex Nesting Example

The most complex supported syntax combines all features:
Type I nnerType

val ues(9) As FLOAT ' Array of floats
End Type
Type QuterType

itenms(5) As InnerType ' Array of nested structs, each with array
End Type

Dimdata(3) As QuterType ' Array of outer structs

Access: array(i).array_nenber(j).array_nenber (k)
data(2).itenms(1).val ues(4) = 3.14159
Print data(2).itens(1).val ues(4) " Prints 3.14159
This demonstrates:
- "data(2)" - Element 2 of the outer array
- ".items(1)" - Element 1 of the nested struct array member
- ".values(4)" - Element 4 of the innermost float array

LIST TYPE with Nested Structures

The "LIST TYPE" command shows nested structure types by name:
>LI ST TYPE Li ne
TYPE LI NE
START AS Point ' offset=0

Page 16

MMBasic Structures User Manual

FINISH AS Point ' offset=16
COLOR AS I NTEGER ' offset=32
END TYPE ' size=40 bytes

Limitations

- The nested type must be defined BEFORE the containing type
- No self-referential structures (a type cannot contain itself)
- Maximum nesting depth: 8 levels (configurable via "MAX_STRUCT_NEST_DEPTH")

Multiple Structure Types

You can define multiple different structure types in your program:
Type Poi nt
X As | NTEGER
y As | NTEGER
End Type

Type Rectangl e
| eft As | NTEGER
top As | NTEGER
wi dth As | NTEGER
hei ght As | NTEGER

End Type

Type Line
start As Point " Nested structure
finish As Poi nt

End Type

Dimp As Point
Dmr As Rectangle
DimlIn As Line

Best Practices

1. **Define types at the start of your program** - Place all TYPE definitions near the beginning, before any executable
code.
2. *Define nested types before containing types** - Inner structures must be defined first.

3. *Use meaningful names** - Choose descriptive names for both types and members:
Type Sensor Readi ng
timestanp As | NTEGER
tenperature As FLOAT
hum dity As FLOAT
End Type
4. **|nitialize structures** - Always initialize structure members before use, either with the initialization syntax or by
assignment.
5. **Use LOCAL for temporary structures** - When a structure is only needed within a subroutine, declare it as LOCAL
to automatically free memory.
6. **Pass structures to subroutines** - Rather than passing many individual parameters, group related data into a
structure.

Limitations

- Maximum structure types: 32
- Maximum members per structure: 16
- Member names follow standard MMBasic variable naming rules

Page 17

MMBasic Structures User Manual

- Maximum nesting depth: 8 levels (configurable via "MAX_STRUCT_NEST_DEPTH")

Error Messages

Error Cause
"Structure t... The structure type name in DIM AS doesn't match any defined TYPE
"Unknown str... | Accessing a member name that doesn't exist in the structure
"Structure t... Trying to copy or pass structures of different types
"Expected a ... |A subroutine expected a structure but received something else

"Source must... |STRUCT COPY source is not a structure

"Destination... STRUCT COPY destination is not a structure

"Not enough ... |Initialization list has fewer values than required
"Expected ‘(... | Missing opening parenthesis in initialization
"Expected a ... |STRUCT.FIND requires a structure array, not a single variable

"Member not ... [STRUCT.FIND or STRUCT SORT member name doesn't exist

"Cannot sear... |STRUCT.FIND cannot search members that are arrays

"Type mismat... | STRUCT.FIND search value type doesn't match member type

"Type mismat... | STRUCT.FIND search value is not a string but member is

"Expected #f... |STRUCT SAVE/LOAD requires a file number starting with #

"Invalid fil... File number is outside valid range
"File not op... STRUCT SAVE/LOAD file is not open
"Not a disk ... STRUCT SAVE/LOAD requires a disk file, not serial port

"Cannot save... |STRUCT SAVE/LOAD requires whole structure, not member

"Array varia... STRUCT SAVE/LOAD array must use parentheses

Complete Example

' Define structure types
Type Poi nt

x As | NTEGER

y As | NTEGER
End Type

Type Line
name As STRI NG LENGTH 20
start X As | NTEGER
startY As | NTEGER
endX As | NTEGER
endY As | NTEGER
End Type
' Declare vari abl es
Dimorigin As Point = (0, 0)
Di m cursor As Poi nt
Dimlines(10) As Line
" Initialize cursor
cursor.x = 100
cursor.y = 100

Create sone lines

lines(0).name = "Horizontal"
lines(0).startX = 0 : lines(0).startY = 50
lines(0).endX = 100 : lines(0).endY = 50
lines(1l).nane = "Vertical"
lines(l).startX = 50 : lines(1).startY =0

Page 18

lines(1l).endX = 50 :

MMBasic Structures User Manual

lines(l).endY = 100

' Subroutine to calculate line length
Function LineLength(ln As Line) As FLOAT

Local
Local

dx% = | n. endX -
dy% = | n. endY -

In.startX
In.startyY

Li neLength = Sqr(dx% * dx% + dy% * dy%
End Function

" Print line information
Sub PrintLine(ln As Line)
Print In.name; ": ("; In.startX; ","; In.startyY; ") to ("; In.endX ","; In.endY; ")"
Print " Length: "; LineLength(ln)
End Sub
' Display all Ilines
For i% =0 To 1
PrintLine lines(i%
Next i %
Output:
Hori zontal: (0,50) to (100, 50)
Lengt h: 100
Vertical: (50,0) to (50, 100)
Length: 100
Quick Reference
Commands
Command Description
“Type...End ... |Define a new structure type
‘Dim var As ... |Declare a structure variable
“Dim arr(n) ... Declare an array of structures
“dst = src’ Copy structure using assignment
arr(i) = ar... Copy array elements using assignment
“Struct Copy... | Copy structure contents
“Struct Copy... | Copy entire structure array
“Struct Sort... Sort array by member field
“Struct Clea... Reset all members to defaults
“Struct Clea... Reset all array elements to defaults
“Struct Swap... | Exchange contents of two structures
“Struct Prin... Print structure contents for debugging
“Struct Prin... Print all array elements
“Struct Save... |Save structure to open file
“Struct Save... |Save entire structure array to open file
“Struct Save... |Save single array element to open file
“Struct Load... | Load structure from open file
“Struct Load... | Load entire structure array from open file
“Struct Load... | Load single array element from open file
Functions
Function Description

“Struct(FIND...

Find element with matching member value, returns index or -1

“Struct(SIZE...

Get upper bound of structure array dimension

Page 19

MMBasic Structures User Manual

|‘Struct(SIZE... |Get size in bytes of a structure type

Member Types

Type Size Alignment Description
‘INTEGER® 8 bytes 8-byte 64-bit signed integer
"FLOAT" 8 bytes 8-byte 64-bit floating point
"STRING® 256 bytes None Default string (255 cha...
"STRING LENGTH n® n+1 bytes None String with specified m...
Nested struct Varies 8-byte Size of the nested stru...

Page 20

