
MMBasic Structures User Manual

Introduction
Structures (also known as User-Defined Types) allow you to group related variables of different types together under a
single name. This is useful for organizing complex data such as coordinates, records, or any collection of related values.

Defining a Structure Type
Use the "TYPE...END TYPE" block to define a new structure type:
 Type typename
 member1 As type
 member2 As type
 ...
 End Type

Supported Member Types

 - "INTEGER" - 64-bit signed integer
 - "FLOAT" - 64-bit floating point number
 - "STRING" - String up to 255 characters (use "LENGTH n" to specify maximum length)

Examples

Simple structure:
 Type Point
 x As INTEGER
 y As INTEGER
 End Type

Structure with mixed types:
 Type Person
 age As INTEGER
 height As FLOAT
 name As STRING
 End Type

Structure with string length specified:
 Type Record
 id As INTEGER
 description As STRING LENGTH 100
 End Type

Memory Layout and Alignment

Understanding how structures are packed in memory is important when working with binary file I/O or calculating
memory usage.

Member Storage Sizes

Type Storage Size

`INTEGER` 8 bytes

`FLOAT` 8 bytes

`STRING` length + 1 bytes (1 byte for length prefix + specified/default length)

`STRING LENG...n + 1 bytes

Nested struc... Size of the nested structure type

Alignment Rules

Page 1

MMBasic Structures User Manual

Members are placed sequentially in memory with the following alignment rules:
 - **Strings**: No alignment requirement. Placed immediately after the previous member.
 - **INTEGER, FLOAT, and nested structures**: Aligned to 8-byte boundaries. If the current offset is not divisible by 8,
padding bytes are inserted before the member.

Padding Example

When a numeric type follows a string whose total storage is not aligned to 8 bytes, padding is automatically inserted:
 Type Example1
 name As STRING LENGTH 10 ' Offset 0, size 11 bytes (10 + 1 length byte)
 value As INTEGER ' Offset 16 (padded from 11 to align to 8)
 End Type
 ' Total size: 24 bytes (11 + 5 padding + 8)

 Type Example2
 name As STRING LENGTH 15 ' Offset 0, size 16 bytes (15 + 1 length byte)
 value As INTEGER ' Offset 16 (no padding needed, already aligned)
 End Type
 ' Total size: 24 bytes (16 + 8)

 Type Example3
 a As INTEGER ' Offset 0, size 8 bytes
 name As STRING LENGTH 5 ' Offset 8, size 6 bytes (5 + 1 length byte)
 b As INTEGER ' Offset 16 (padded from 14 to align to 8)
 End Type
 ' Total size: 24 bytes (8 + 6 + 2 padding + 8)

Optimizing Structure Size

To minimize wasted space from padding, consider:
 1. **Grouping numeric members together**: Place all INTEGER and FLOAT members consecutively.
 2. **Using string lengths that result in 8-byte aligned totals**: String lengths of 7, 15, 23, 31, etc. (where length + 1 is
divisible by 8) avoid padding when followed by numeric types.
Note on structure end padding: Padding is always added to the end of a structure to ensure the total size is aligned
to 8 bytes. This is required so that arrays of structures maintain proper memory alignment for all elements. Without end
padding, the second element of an array would start at a misaligned address, potentially causing memory access errors.
 ' Less efficient (has internal padding):
 Type Inefficient
 flag As INTEGER ' 8 bytes
 name As STRING LENGTH 10 ' 11 bytes
 count As INTEGER ' 8 bytes (but needs 5 bytes padding before it)
 End Type
 ' Total: 32 bytes

 ' More efficient (no internal padding, but end padding still applies):
 Type Efficient
 flag As INTEGER ' 8 bytes
 count As INTEGER ' 8 bytes
 name As STRING LENGTH 10 ' 11 bytes + 5 bytes end padding
 End Type
 ' Total: 32 bytes (padded to 8-byte boundary)

Use "STRUCT(SIZEOF, "typename")" to verify the actual size of your structures.

Declaring Structure Variables
Use "DIM" to declare variables of a structure type:
 Dim variablename As typename

Examples

Page 2

MMBasic Structures User Manual

Simple structure variable:
 Type Point
 x As INTEGER
 y As INTEGER
 End Type

 Dim p As Point
 Dim origin As Point

Multiple variables:
 Dim p1 As Point, p2 As Point, p3 As Point

Accessing Structure Members
Use the dot (".") notation to access individual members:
 variablename.membername

Examples

Setting values:
 Dim p As Point
 p.x = 100
 p.y = 200

Reading values:
 Print p.x, p.y
 result = p.x + p.y

Using in expressions:
 distance = Sqr(p.x * p.x + p.y * p.y)

Arrays of Structures
You can create arrays where each element is a structure:
 Dim arrayname(size) As typename

Examples

Declaring an array of structures:
 Dim points(10) As Point

Accessing array elements:
 points(0).x = 10
 points(0).y = 20
 points(1).x = 30
 points(1).y = 40

 Print points(0).x, points(0).y

Using variable indices:
 For i = 0 To 10
 points(i).x = i * 10
 points(i).y = i * 20
 Next i

Multi-dimensional arrays:
 Dim grid(10, 10) As Point
 grid(5, 5).x = 100

Page 3

MMBasic Structures User Manual

 grid(5, 5).y = 200

Initializing Structures
Structures can be initialized when declared using parentheses with comma-separated values:
 Dim variablename As typename = (value1, value2, ...)

Values must be provided in the order the members are defined in the TYPE block.

Examples

Simple structure initialization:
 Type Point
 x As INTEGER
 y As INTEGER
 End Type

 Dim p As Point = (100, 200)
 ' p.x = 100, p.y = 200

Structure with string:
 Type Person
 age As INTEGER
 height As FLOAT
 name As STRING
 End Type

 Dim person1 As Person = (25, 1.75, "Alice")

Array of structures initialization:
 Dim points(2) As Point = (10, 20, 30, 40, 50, 60)
 ' points(0).x = 10, points(0).y = 20
 ' points(1).x = 30, points(1).y = 40
 ' points(2).x = 50, points(2).y = 60

Values are assigned sequentially: all members of element 0, then all members of element 1, etc.

Copying Structures
Structures can be copied using direct assignment or the "STRUCT COPY" command.

Direct Assignment

The simplest way to copy a structure is using direct assignment:
 destination = source

This works for:
 - Single structure variables
 - Individual array elements

Example - Single structures:
 Dim src As Point, dst As Point
 src.x = 100
 src.y = 200

 dst = src
 ' dst.x = 100, dst.y = 200

Example - Array elements:
 Dim points(10) As Point
 points(0).x = 50 : points(0).y = 60

Page 4

MMBasic Structures User Manual

 points(5) = points(0) ' Copy element 0 to element 5
 ' points(5).x = 50, points(5).y = 60

Example - Cross-array copy:
 Dim src(5) As Person
 Dim dst(5) As Person
 ' ... populate src ...

 dst(2) = src(3) ' Copy element 3 from src to element 2 of dst

Important: Both source and destination must be the same structure type. Attempting to assign structures of different
types will cause an error.

STRUCT COPY Command

The "STRUCT COPY" command provides the same functionality with explicit syntax:
 Struct Copy source To destination

Both variables must be of the same structure type.

Example:
 Dim src As Point, dst As Point
 src.x = 100
 src.y = 200

 Struct Copy src To dst
 ' dst.x = 100, dst.y = 200

Copying Entire Arrays

You can copy entire structure arrays using empty parentheses:
 Struct Copy sourceArray() To destinationArray()

Requirements:
 - Both arrays must be the same structure type
 - The destination array must be at least as large as the source array
 - Both must use the "()" syntax, or both must be single elements
 - Only the source elements are copied (extra destination elements are preserved)

Example:
 Dim src(2) As Point
 src(0).x = 10 : src(0).y = 11
 src(1).x = 20 : src(1).y = 21
 src(2).x = 30 : src(2).y = 31

 Dim dst(4) As Point ' Larger destination is OK
 Struct Copy src() To dst()
 ' dst(0), dst(1), dst(2) now contain copies from src
 ' dst(3), dst(4) are unchanged

Example - Same size arrays:
 Dim original(10) As Person
 ' ... populate array ...

 Dim backup(10) As Person
 Struct Copy original() To backup()

Sorting Structure Arrays
Use the "STRUCT SORT" command to sort an array of structures in-place based on any member field:

Page 5

MMBasic Structures User Manual

 Struct Sort array(), membername [, flags]

Parameters

 - "array()" - The structure array to sort (must include empty parentheses)
 - "membername" - The name of the member field to sort by
 - "flags" - Optional flags to modify sort behavior (can be combined by adding):

Value Description

:-----: -------------

0 Default: ascending sort, case-sensitive

1 Reverse sort (descending order)

2 Case-insensitive sort (strings only)

4 Empty strings sort to end of array (strings only)

Flags can be combined by adding values (e.g., 3 = descending + case-insensitive).

Examples

Sort by integer field (ascending):
 Type Person
 age As INTEGER
 name As STRING
 End Type

 Dim people(3) As Person
 people(0).age = 35 : people(0).name = "Charlie"
 people(1).age = 25 : people(1).name = "Alice"
 people(2).age = 45 : people(2).name = "David"
 people(3).age = 30 : people(3).name = "Bob"

 Struct Sort people(), age
 ' Result: Alice(25), Bob(30), Charlie(35), David(45)

Sort by string field:
 Struct Sort people(), name
 ' Result: Alice, Bob, Charlie, David

Reverse sort (descending):
 Struct Sort people(), age, 1
 ' Result: David(45), Charlie(35), Bob(30), Alice(25)

Case-insensitive string sort:
 Struct Sort people(), name, 2

Combine flags (reverse + case-insensitive):
 Struct Sort people(), name, 3
 ' 3 = 1 + 2 (reverse + case insensitive)

Empty strings at end:
 Struct Sort people(), name, 4
 ' Non-empty strings sorted first, empty strings at end

Notes

 - The entire structure is moved during sorting, not just the sort key
 - All other member values are preserved with their corresponding records
 - The sort is performed in-place (no additional array is created)
 - Array members within structures cannot be used as sort keys

Page 6

MMBasic Structures User Manual

 - Supports INTEGER, FLOAT, and STRING member types

Extracting Structure Members to Arrays
Use the "STRUCT EXTRACT" command to copy a single member from each element of a structure array into a simple
contiguous array. This is essential when you need to use structure data with commands that expect arrays with fixed
8-byte stride (such as "LINE PLOT", "MATH SCALE", etc.).
 Struct Extract structarray(), membername, destarray()

Parameters

 - "structarray()" - The source structure array (must include empty parentheses)
 - "membername" - The name of the member to extract from each structure element
 - "destarray()" - The destination simple array (must include empty parentheses)

Requirements

 - Source must be a **1-dimensional** structure array
 - Member must be a simple type (INTEGER, FLOAT, or STRING) - not an array member or nested structure
 - Destination must be a **1-dimensional** simple array (not a structure)
 - **Both arrays must have the same cardinality** (number of elements)
 - **Both must have the same type** (INTEGER, FLOAT, or STRING)
 - **For strings, both must have the same maximum length**

Why This Command is Needed

Many MMBasic commands that process arrays (like "LINE PLOT", various "MATH" commands) assume data is stored
contiguously with a fixed stride of 8 bytes between elements. When you have data in a structure array like:
 Type Room
 temperature As FLOAT ' offset 0
 humidity As FLOAT ' offset 8
 End Type

 Dim readings(144) As Room

The "temperature" values are 16 bytes apart (the size of the structure), not 8 bytes. Passing "readings().temperature"
directly to "LINE PLOT" would read incorrect memory locations for elements after the first.
"STRUCT EXTRACT" solves this by copying the desired member values into a properly-formatted simple array.

Examples

Extract temperatures for plotting:
 Type Room
 temperature As FLOAT
 humidity As FLOAT
 End Type

 Dim readings(144) As Room
 Dim temps(144)

 ' ... populate readings() with sensor data ...

 ' Extract temperature values into a simple array
 Struct Extract readings(), temperature, temps()

 ' Now temps() can be used with LINE PLOT
 LINE PLOT temps()

Extract integer values:

Page 7

MMBasic Structures User Manual

 Type DataPoint
 timestamp As INTEGER
 value As INTEGER
 End Type

 Dim samples(100) As DataPoint
 Dim values%(100)

 ' ... populate samples() ...

 ' Extract just the values for processing
 Struct Extract samples(), value, values%()

 ' Now values%() can be used with MATH commands
 Math Scale values%(), 2, values%()

Extract string data:
 Type Person
 name As STRING LENGTH 20
 age As INTEGER
 End Type

 Dim people(50) As Person
 Dim names$(50) LENGTH 20

 ' ... populate people() ...

 ' Extract all names
 Struct Extract people(), name, names$()

Notes

 - The extraction is a one-time copy - changes to the destination array do not affect the source structures
 - Use this command when you need to pass structure member data to array-processing functions
 - For best performance, extract data once before processing rather than repeatedly in loops

Inserting Array Values into Structures
Use the "STRUCT INSERT" command to copy values from a simple array into a specific member of each element in a
structure array. This is the reverse of "STRUCT EXTRACT".
 Struct Insert srcarray(), structarray(), membername

Parameters

 - "srcarray()" - The source simple array (must include empty parentheses)
 - "structarray()" - The destination structure array (must include empty parentheses)
 - "membername" - The name of the member to write to in each structure element

Requirements

 - Source must be a **1-dimensional** simple array (not a structure)
 - Destination must be a **1-dimensional** structure array
 - Member must be a simple type (INTEGER, FLOAT, or STRING) - not an array member or nested structure
 - **Both arrays must have the same cardinality** (number of elements)
 - **Both must have the same type** (INTEGER, FLOAT, or STRING)
 - **For strings, both must have the same maximum length**

Examples

Page 8

MMBasic Structures User Manual

Insert processed values back into structures:
 Type Room
 temperature As FLOAT
 humidity As FLOAT
 End Type

 Dim readings(144) As Room
 Dim temps!(144)

 ' Extract temperatures
 Struct Extract readings(), temperature, temps!()

 ' Process the data (e.g., apply calibration)
 Math Scale temps!(), 1.02, temps!()
 Math Add temps!(), -0.5, temps!()

 ' Insert corrected values back into structures
 Struct Insert temps!(), readings(), temperature

Populate structure members from computed arrays:
 Type DataPoint
 x As INTEGER
 y As INTEGER
 End Type

 Dim points(100) As DataPoint
 Dim xvals%(100), yvals%(100)

 ' Generate coordinate arrays
 For i% = 0 To 100
 xvals%(i%) = i% * 10
 yvals%(i%) = Sin(i% * 0.1) * 100
 Next i%

 ' Insert into structure array
 Struct Insert xvals%(), points(), x
 Struct Insert yvals%(), points(), y

Notes

 - Only the specified member is modified; all other members retain their values
 - The insertion is a one-time copy - subsequent changes to the source array do not affect the structures
 - Useful for updating structure data after processing with array-based functions

Clearing Structures
Use the "STRUCT CLEAR" command to reset all members of a structure to their default values (0 for numbers, empty
string for strings):
 Struct Clear variable
 Struct Clear array()

Examples

Clear a single structure:
 Dim p As Point
 p.x = 100
 p.y = 200

 Struct Clear p
 ' p.x = 0, p.y = 0

Page 9

MMBasic Structures User Manual

Clear an entire array of structures:
 Dim people(10) As Person
 ' ... populate array ...

 Struct Clear people()
 ' All elements reset to defaults

Swapping Structures
Use the "STRUCT SWAP" command to exchange the contents of two structure variables:
 Struct Swap var1, var2

Both variables must be of the same structure type. This is useful when implementing sorting algorithms or reordering
records.

Examples

 Dim a As Point, b As Point
 a.x = 10 : a.y = 20
 b.x = 30 : b.y = 40

 Struct Swap a, b
 ' Now: a.x = 30, a.y = 40, b.x = 10, b.y = 20

Swapping array elements:
 Dim people(5) As Person
 ' ... populate array ...

 Struct Swap people(2), people(4)
 ' Elements 2 and 4 are exchanged

Printing Structures
Use the "STRUCT PRINT" command to display all members of a structure for debugging:
 Struct Print variable
 Struct Print array()
 Struct Print array(index)

Forms

 - "Struct Print variable" - Print a single structure variable
 - "Struct Print array()" - Print all elements of a structure array
 - "Struct Print array(n)" - Print a specific element of a structure array

Examples

Print a single structure:
 Dim p As Person
 p.name = "Alice"
 p.age = 25
 p.height = 1.65

 Struct Print p

Output:
 Person:
 .name = "Alice"
 .age = 25
 .height = 1.65

Page 10

MMBasic Structures User Manual

Print an array element:
 Dim people(10) As Person
 ' ... populate array ...

 Struct Print people(0)

Print entire array:
 Struct Print people()

Output:
 Person array (11 elements):
 [0]:
 .name = "Alice"
 .age = 25
 .height = 1.65
 [1]:
 .name = "Bob"
 .age = 30
 .height = 1.80
 ...

Notes

 - Array members are printed as comma-separated values
 - Strings are displayed with surrounding quotes
 - Useful for debugging and inspecting structure contents

Searching Structure Arrays
Use the "STRUCT(FIND, ...)" function to search a structure array for an element with a matching member value:
 index = Struct(FIND, array(), membername$, value [, start])

Parameters

 - "FIND" - The subfunction name
 - "array()" - The structure array to search (must include empty parentheses)
 - "membername$" - The name of the member field to search (as a string)
 - "value" - The value to search for (must match the member's type)
 - "start" - Optional. The index to start searching from (default: first element)

Return Value

 - Returns the index of the first matching element (starting from "start")
 - Returns -1 if no match is found

Examples

Find by integer:
 Type Person
 age As INTEGER
 name As STRING
 End Type

 Dim people(10) As Person
 ' ... populate array ...

 idx = Struct(FIND, people(), "age", 35)
 If idx >= 0 Then
 Print "Found at index"; idx; ": "; people(idx).name
 Else

Page 11

MMBasic Structures User Manual

 Print "Not found"
 EndIf

Find by string:
 idx = Struct(FIND, people(), "name", "Alice")
 If idx >= 0 Then
 Print "Alice is at index"; idx
 EndIf

Find by float:
 idx = Struct(FIND, people(), "height", 1.75)

Iterate through all matches using start parameter:
 ' Find all people aged 30
 idx = Struct(FIND, people(), "age", 30)
 Do While idx >= 0
 Print "Found at index"; idx; ": "; people(idx).name
 idx = Struct(FIND, people(), "age", 30, idx + 1)
 Loop

Notes

 - Search is performed linearly from the start position
 - Only the first match (from the start position) is returned
 - Use the start parameter to iterate through multiple matches
 - For strings, comparison is case-sensitive and exact
 - Array members within structures cannot be searched
 - The member name is passed as a string (can be a variable)

Getting Array Bounds
Use the "STRUCT(SIZE, ...)" function to get the upper bound of a structure array dimension:
 upperBound = Struct(SIZE, array() [, dimension])

Parameters

 - "SIZE" - The subfunction name
 - "array()" - The structure array (must include empty parentheses)
 - "dimension" - Optional. Which dimension to query (1-based, default: 1)

Return Value

 - Returns the upper bound of the specified dimension

Examples

Basic usage (1D array):
 Dim points(9) As Point
 bound = Struct(SIZE, points()) ' Returns 9

Multi-dimensional array:
 Dim grid(4, 7) As Point
 dim1 = Struct(SIZE, grid(), 1) ' Returns 4
 dim2 = Struct(SIZE, grid(), 2) ' Returns 7

Default dimension:
 Dim data(10, 20) As Person
 bound = Struct(SIZE, data()) ' Returns 10 (first dimension)

Page 12

MMBasic Structures User Manual

Use in loops:
 Dim people(n) As Person
 ' ... populate array ...

 For i = 0 To Struct(SIZE, people())
 Print people(i).name
 Next i

Notes

 - Similar to the standard BOUND() function but for structure arrays
 - Dimension numbering is 1-based (1 = first dimension, 2 = second, etc.)
 - If dimension is omitted, returns the bound of the first dimension

Getting Structure Size
Use the "STRUCT(SIZEOF, ...)" function to get the size in bytes of a structure type:
 byteSize = Struct(SIZEOF, typename$)

Parameters

 - "SIZEOF" - The subfunction name
 - "typename$" - A string containing the structure type name

Return Value

 - Returns the total size in bytes of the specified structure type

Examples

Basic usage:
 Type Point
 x As INTEGER
 y As INTEGER
 End Type

 size = Struct(SIZEOF, "Point") ' Returns 16 (2 x 8-byte integers)
 Print "Point size:"; size; "bytes"

Using with different types:
 Type Person
 age As INTEGER ' 8 bytes
 height As FLOAT ' 8 bytes
 name As STRING ' 256 bytes (default string)
 End Type

 size = Struct(SIZEOF, "Person") ' Returns 272

Dynamic type name:
 typename$ = "Point"
 size = Struct(SIZEOF, typename$)

Use for memory calculations:
 Dim data(99) As Record
 totalBytes = 100 * Struct(SIZEOF, "Record")
 Print "Array uses"; totalBytes; "bytes"

Notes

Page 13

MMBasic Structures User Manual

 - The type name comparison is case-insensitive
 - Returns an error if the structure type is not defined
 - Useful for calculating memory requirements or file sizes before STRUCT SAVE

Saving and Loading Structures
Structures can be saved to and loaded from files in binary format. This is useful for persisting data between program
runs or exchanging data.

STRUCT SAVE

Writes structure data to an already-open file:
 Struct Save #filenumber, variable
 Struct Save #filenumber, array()
 Struct Save #filenumber, array(index)

The file must be opened before using "STRUCT SAVE". You manage the file opening and closing.

Syntax options for arrays:
 - "array()" - Saves the entire array
 - "array(index)" - Saves only the element at the specified index

STRUCT LOAD

Reads structure data from an already-open file:
 Struct Load #filenumber, variable
 Struct Load #filenumber, array()
 Struct Load #filenumber, array(index)

The file must be opened before using "STRUCT LOAD". The structure variable must already be declared.

Syntax options for arrays:
 - "array()" - Loads the entire array
 - "array(index)" - Loads only into the element at the specified index

Examples

Save and load a single structure:
 Dim p As Point
 p.x = 100
 p.y = 200

 ' Save
 Open "point.dat" For Output As #1
 Struct Save #1, p
 Close #1

 ' Load
 Dim p2 As Point
 Open "point.dat" For Input As #1
 Struct Load #1, p2
 Close #1

 Print p2.x, p2.y ' Output: 100 200

Save and load an array of structures:
 Dim people(100) As Person
 ' ... populate array ...

 ' Save to file
 Open "people.dat" For Output As #1

Page 14

MMBasic Structures User Manual

 Struct Save #1, people()
 Close #1

 ' Load from file
 Dim loadedPeople(100) As Person
 Open "people.dat" For Input As #1
 Struct Load #1, loadedPeople()
 Close #1

Save and load individual array elements:
 Dim records(99) As Record
 ' ... populate records ...

 ' Save specific records to file
 Open "selected.dat" For Output As #1
 Struct Save #1, records(5) ' Save element 5
 Struct Save #1, records(10) ' Append element 10
 Struct Save #1, records(25) ' Append element 25
 Close #1

 ' Load records back (to different positions or variables)
 Dim temp As Record
 Open "selected.dat" For Input As #1
 Struct Load #1, temp ' Load first saved record
 Print temp.id
 Struct Load #1, records(50) ' Load second saved record into element 50
 Struct Load #1, records(51) ' Load third saved record into element 51
 Close #1

Notes

 - Data is saved in binary format (not human-readable)
 - The structure type must match when loading
 - For whole array operations, array dimensions must match when loading
 - Files should be opened in appropriate mode for the operation
 - Multiple structures can be saved to the same file sequentially
 - Error occurs if file is not open or is not a disk file
 - **Array variables must use parentheses**: "array()" for whole array, "array(i)" for single element
 - Using an array name without parentheses will cause an error

Structures in Subroutines and Functions

Passing Structures as Parameters

Structures are always passed **by reference**, meaning the subroutine or function can modify the original structure:
 Sub subname(parametername As typename)
 ...
 End Sub

Example - Read-only access:
 Sub PrintPoint(pt As Point)
 Print "X:"; pt.x; " Y:"; pt.y
 End Sub

 Dim p As Point = (100, 200)
 PrintPoint p

Example - Modifying the structure:
 Sub DoublePoint(pt As Point)

Page 15

MMBasic Structures User Manual

 pt.x = pt.x * 2
 pt.y = pt.y * 2
 End Sub

 Dim p As Point = (10, 20)
 DoublePoint p
 Print p.x, p.y ' Output: 20 40

Passing Array Elements

You can pass a single element of a structure array:
 Dim points(10) As Point
 points(5).x = 100
 points(5).y = 200

 PrintPoint points(5)
 DoublePoint points(5)

Passing Structure Arrays

Use empty parentheses to pass an entire array of structures:
 Sub ProcessPoints(pts() As Point)
 ' Access pts(0), pts(1), etc.
 End Sub

 Dim myPoints(10) As Point
 ProcessPoints myPoints()

Example:
 Sub SumAllPoints(pts() As Point, count%)
 Local total_x% = 0, total_y% = 0
 Local i%
 For i% = 0 To count% - 1
 total_x% = total_x% + pts(i%).x
 total_y% = total_y% + pts(i%).y
 Next i%
 Print "Total X:"; total_x%; " Total Y:"; total_y%
 End Sub

 Dim data(5) As Point
 ' ... initialize data ...
 SumAllPoints data(), 6

Functions with Structure Parameters

 Function Distance(pt As Point) As FLOAT
 Distance = Sqr(pt.x * pt.x + pt.y * pt.y)
 End Function

 Dim p As Point = (3, 4)
 Print Distance(p) ' Output: 5

Functions Returning Structures

Functions can return structure values using "As typename" in the function declaration:
 Function functionname(parameters) As typename
 functionname.member1 = value1
 functionname.member2 = value2
 End Function

The function name acts as a local structure variable that is returned when the function exits.

Page 16

MMBasic Structures User Manual

Example - Creating a Point:
 Function MakePoint(x%, y%) As Point
 MakePoint.x = x%
 MakePoint.y = y%
 End Function

 Dim p As Point
 p = MakePoint(100, 200)
 Print p.x, p.y ' Output: 100 200

Example - Structure with multiple types:
 Function CreatePerson(n$, a%, h!) As Person
 CreatePerson.name = n$
 CreatePerson.age = a%
 CreatePerson.height = h!
 End Function

 Dim employee As Person
 employee = CreatePerson("Alice", 30, 1.68)
 Print employee.name; " is"; employee.age; " years old"

Example - Factory function:
 Function Origin() As Point
 Origin.x = 0
 Origin.y = 0
 End Function

 Dim startPoint As Point
 startPoint = Origin()

Local Structures
Use "LOCAL" to declare structures that exist only within a subroutine or function:
 Sub Example
 Local pt As Point
 pt.x = 100
 pt.y = 200
 ' pt is automatically freed when the sub exits
 End Sub

Local Structure Arrays

 Sub ProcessData
 Local tempPoints(10) As Point
 ' Use tempPoints...
 End Sub

Local Structures with Initialization

 Sub Example
 Local pt As Point = (50, 75)
 Print pt.x, pt.y
 End Sub

Nested Structures
Structures can contain other structures as members. The nested structure type must be defined before it is used in
another structure.

Defining Nested Structures

Page 17

MMBasic Structures User Manual

 ' Define inner structure first
 Type Point
 x As INTEGER
 y As INTEGER
 End Type

 ' Now define structure that contains Point
 Type Line
 start As Point ' Nested structure member
 finish As Point ' Another nested member
 color As INTEGER
 End Type

Accessing Nested Members

Use chained dot notation to access nested members:
 Dim myLine As Line
 myLine.start.x = 10
 myLine.start.y = 20
 myLine.finish.x = 100
 myLine.finish.y = 200
 myLine.color = 255

 Print myLine.start.x ' Prints 10
 Print myLine.finish.y ' Prints 200

Multiple Levels of Nesting

Structures can be nested to multiple levels:
 Type Point
 x As INTEGER
 y As INTEGER
 End Type

 Type Box
 topLeft As Point
 bottomRight As Point
 End Type

 Type Scene
 boundary As Box ' Box contains Points - 3 levels
 name As STRING LENGTH 20
 End Type

 Dim myScene As Scene
 myScene.boundary.topLeft.x = 0
 myScene.boundary.bottomRight.x = 640
 myScene.name = "MainScene"

 Print myScene.boundary.topLeft.x ' Prints 0

Arrays with Nested Structures

Arrays of structures containing nested structures work as expected:
 Dim lines(10) As Line
 lines(0).start.x = 1
 lines(0).start.y = 2
 lines(5).finish.x = 100

Arrays of Nested Structure Members

Structure members can be arrays of nested structures:

Page 18

MMBasic Structures User Manual

 Type Point
 x As INTEGER
 y As INTEGER
 End Type

 Type Polygon
 vertices(9) As Point ' Array of 10 nested Point structures
 color As INTEGER
 End Type

 Dim shape As Polygon
 shape.vertices(0).x = 0
 shape.vertices(0).y = 0
 shape.vertices(1).x = 100
 shape.vertices(1).y = 50
 shape.color = 255

Complex Nesting Example

The most complex supported syntax combines all features:
 Type InnerType
 values(9) As FLOAT ' Array of floats
 End Type

 Type OuterType
 items(5) As InnerType ' Array of nested structs, each with array
 End Type

 Dim data(3) As OuterType ' Array of outer structs

 ' Access: array(i).array_member(j).array_member(k)
 data(2).items(1).values(4) = 3.14159
 Print data(2).items(1).values(4) ' Prints 3.14159

This demonstrates:
 - "data(2)" - Element 2 of the outer array
 - ".items(1)" - Element 1 of the nested struct array member
 - ".values(4)" - Element 4 of the innermost float array

LIST TYPE with Nested Structures

The "LIST TYPE" command shows nested structure types by name:
 >LIST TYPE Line
 TYPE LINE
 START AS Point ' offset=0
 FINISH AS Point ' offset=16
 COLOR AS INTEGER ' offset=32
 END TYPE ' size=40 bytes

Limitations

 - The nested type must be defined BEFORE the containing type
 - No self-referential structures (a type cannot contain itself)
 - Maximum nesting depth: 8 levels (configurable via "MAX_STRUCT_NEST_DEPTH")

Multiple Structure Types
You can define multiple different structure types in your program:
 Type Point
 x As INTEGER
 y As INTEGER

Page 19

MMBasic Structures User Manual

 End Type

 Type Rectangle
 left As INTEGER
 top As INTEGER
 width As INTEGER
 height As INTEGER
 End Type

 Type Line
 start As Point ' Nested structure
 finish As Point
 End Type

 Dim p As Point
 Dim r As Rectangle
 Dim ln As Line

Best Practices
 1. **Define types at the start of your program** - Place all TYPE definitions near the beginning, before any executable
code.
 2. **Define nested types before containing types** - Inner structures must be defined first.
 3. **Use meaningful names** - Choose descriptive names for both types and members:
 Type SensorReading
 timestamp As INTEGER
 temperature As FLOAT
 humidity As FLOAT
 End Type

 4. **Initialize structures** - Always initialize structure members before use, either with the initialization syntax or by
assignment.
 5. **Use LOCAL for temporary structures** - When a structure is only needed within a subroutine, declare it as LOCAL
to automatically free memory.
 6. **Pass structures to subroutines** - Rather than passing many individual parameters, group related data into a
structure.

Limitations
 - Maximum structure types: 32
 - Maximum members per structure: 16
 - Member names follow standard MMBasic variable naming rules
 - Maximum nesting depth: 8 levels (configurable via "MAX_STRUCT_NEST_DEPTH")

Error Messages

Error Cause

"Structure t... The structure type name in DIM AS doesn't match any defined TYPE

"Unknown str... Accessing a member name that doesn't exist in the structure

"Structure t... Trying to copy or pass structures of different types

"Expected a ... A subroutine expected a structure but received something else

"Source must... STRUCT COPY source is not a structure

"Destination... STRUCT COPY destination is not a structure

"Not enough ... Initialization list has fewer values than required

"Expected '(... Missing opening parenthesis in initialization

"Expected a ... STRUCT.FIND requires a structure array, not a single variable

Page 20

MMBasic Structures User Manual

"Member not ... STRUCT.FIND or STRUCT SORT member name doesn't exist

"Cannot sear... STRUCT.FIND cannot search members that are arrays

"Type mismat... STRUCT.FIND search value type doesn't match member type

"Type mismat... STRUCT.FIND search value is not a string but member is

"Expected #f... STRUCT SAVE/LOAD requires a file number starting with #

"Invalid fil... File number is outside valid range

"File not op... STRUCT SAVE/LOAD file is not open

"Not a disk ... STRUCT SAVE/LOAD requires a disk file, not serial port

"Cannot save... STRUCT SAVE/LOAD requires whole structure, not member

"Array varia... STRUCT SAVE/LOAD array must use parentheses

Complete Example
 ' Define structure types
 Type Point
 x As INTEGER
 y As INTEGER
 End Type

 Type Line
 name As STRING LENGTH 20
 startX As INTEGER
 startY As INTEGER
 endX As INTEGER
 endY As INTEGER
 End Type

 ' Declare variables
 Dim origin As Point = (0, 0)
 Dim cursor As Point
 Dim lines(10) As Line

 ' Initialize cursor
 cursor.x = 100
 cursor.y = 100

 ' Create some lines
 lines(0).name = "Horizontal"
 lines(0).startX = 0 : lines(0).startY = 50
 lines(0).endX = 100 : lines(0).endY = 50

 lines(1).name = "Vertical"
 lines(1).startX = 50 : lines(1).startY = 0
 lines(1).endX = 50 : lines(1).endY = 100

 ' Subroutine to calculate line length
 Function LineLength(ln As Line) As FLOAT
 Local dx% = ln.endX - ln.startX
 Local dy% = ln.endY - ln.startY
 LineLength = Sqr(dx% * dx% + dy% * dy%)
 End Function

 ' Print line information
 Sub PrintLine(ln As Line)
 Print ln.name; ": ("; ln.startX; ","; ln.startY; ") to ("; ln.endX; ","; ln.endY; ")"
 Print " Length: "; LineLength(ln)
 End Sub

 ' Display all lines
 For i% = 0 To 1

Page 21

MMBasic Structures User Manual

 PrintLine lines(i%)
 Next i%

Output:
 Horizontal: (0,50) to (100,50)
 Length: 100
 Vertical: (50,0) to (50,100)
 Length: 100

Quick Reference

Commands

Command Description

`Type...End ... Define a new structure type

`Dim var As ... Declare a structure variable

`Dim arr(n) ... Declare an array of structures

`dst = src` Copy structure using assignment

`arr(i) = ar... Copy array elements using assignment

`Struct Copy... Copy structure contents

`Struct Copy... Copy entire structure array

`Struct Sort... Sort array by member field

`Struct Clea... Reset all members to defaults

`Struct Clea... Reset all array elements to defaults

`Struct Swap... Exchange contents of two structures

`Struct Prin... Print structure contents for debugging

`Struct Prin... Print all array elements

`Struct Save... Save structure to open file

`Struct Save... Save entire structure array to open file

`Struct Save... Save single array element to open file

`Struct Load... Load structure from open file

`Struct Load... Load entire structure array from open file

`Struct Load... Load single array element from open file

Functions

Function Description

`Struct(FIND... Find element with matching member value, returns index or -1

`Struct(SIZE... Get upper bound of structure array dimension

`Struct(SIZE... Get size in bytes of a structure type

Member Types

Type Size Alignment Description

`INTEGER` 8 bytes 8-byte 64-bit signed integer

`FLOAT` 8 bytes 8-byte 64-bit floating point

`STRING` 256 bytes None Default string (255 cha...

`STRING LENGTH n` n+1 bytes None String with specified m...

Nested struct Varies 8-byte Size of the nested stru...

Page 22

