
MMBasic Structures User Manual

Introduction
Structures (also known as User-Defined Types) allow you to group related variables of different types together under a
single name. This is useful for organizing complex data such as coordinates, records, or any collection of related values.

Defining a Structure Type
Use the "TYPE...END TYPE" block to define a new structure type:
 Type typename
 member1 As type
 member2 As type
 ...
 End Type

Supported Member Types

 - "INTEGER" - 64-bit signed integer
 - "FLOAT" - 64-bit floating point number
 - "STRING" - String up to 255 characters (use "LENGTH n" to specify maximum length)

Examples

Simple structure:
 Type Point
 x As INTEGER
 y As INTEGER
 End Type

Structure with mixed types:
 Type Person
 age As INTEGER
 height As FLOAT
 name As STRING
 End Type

Structure with string length specified:
 Type Record
 id As INTEGER
 description As STRING LENGTH 100
 End Type

Memory Layout and Alignment

Understanding how structures are packed in memory is important when working with binary file I/O or calculating
memory usage.

Member Storage Sizes

Type Storage Size

`INTEGER` 8 bytes

`FLOAT` 8 bytes

`STRING` length + 1 bytes (1 byte for length prefix + specified/default leng...

`STRING LENGTH n` n + 1 bytes

Nested structure Size of the nested structure type

Alignment Rules

Page 1

MMBasic Structures User Manual

Members are placed sequentially in memory with the following alignment rules:
 - **Strings**: No alignment requirement. Placed immediately after the previous member.
 - **INTEGER, FLOAT, and nested structures**: Aligned to 8-byte boundaries. If the current offset is not divisible by 8,
padding bytes are inserted before the member.

Padding Example

When a numeric type follows a string whose total storage is not aligned to 8 bytes, padding is automatically inserted:
 Type Example1
 name As STRING LENGTH 10 ' Offset 0, size 11 bytes (10 + 1 length byte)
 value As INTEGER ' Offset 16 (padded from 11 to align to 8)
 End Type
 ' Total size: 24 bytes (11 + 5 padding + 8)

 Type Example2
 name As STRING LENGTH 15 ' Offset 0, size 16 bytes (15 + 1 length byte)
 value As INTEGER ' Offset 16 (no padding needed, already aligned)
 End Type
 ' Total size: 24 bytes (16 + 8)

 Type Example3
 a As INTEGER ' Offset 0, size 8 bytes
 name As STRING LENGTH 5 ' Offset 8, size 6 bytes (5 + 1 length byte)
 b As INTEGER ' Offset 16 (padded from 14 to align to 8)
 End Type
 ' Total size: 24 bytes (8 + 6 + 2 padding + 8)

Optimizing Structure Size

To minimize wasted space from padding, consider:
 1. **Grouping numeric members together**: Place all INTEGER and FLOAT members consecutively.
 2. **Using string lengths that result in 8-byte aligned totals**: String lengths of 7, 15, 23, 31, etc. (where length + 1 is
divisible by 8) avoid padding when followed by numeric types.
Note on structure end padding: Padding is always added to the end of a structure to ensure the total size is aligned
to 8 bytes. This is required so that arrays of structures maintain proper memory alignment for all elements. Without end
padding, the second element of an array would start at a misaligned address, potentially causing memory access errors.
 ' Less efficient (has internal padding):
 Type Inefficient
 flag As INTEGER ' 8 bytes
 name As STRING LENGTH 10 ' 11 bytes
 count As INTEGER ' 8 bytes (but needs 5 bytes padding before it)
 End Type
 ' Total: 32 bytes

 ' More efficient (no internal padding, but end padding still applies):
 Type Efficient
 flag As INTEGER ' 8 bytes
 count As INTEGER ' 8 bytes
 name As STRING LENGTH 10 ' 11 bytes + 5 bytes end padding
 End Type
 ' Total: 32 bytes (padded to 8-byte boundary)

Use "STRUCT(SIZEOF "typename")" to verify the actual size of your structures.

Declaring Structure Variables
Use "DIM" to declare variables of a structure type:
 Dim variablename As typename

Examples

Page 2

MMBasic Structures User Manual

Simple structure variable:
 Type Point
 x As INTEGER
 y As INTEGER
 End Type

 Dim p As Point
 Dim origin As Point

Multiple variables:
 Dim p1 As Point, p2 As Point, p3 As Point

Accessing Structure Members
Use the dot (".") notation to access individual members:
 variablename.membername

Examples

Setting values:
 Dim p As Point
 p.x = 100
 p.y = 200

Reading values:
 Print p.x, p.y
 result = p.x + p.y

Using in expressions:
 distance = Sqr(p.x * p.x + p.y * p.y)

Arrays of Structures
You can create arrays where each element is a structure:
 Dim arrayname(size) As typename

Examples

Declaring an array of structures:
 Dim points(10) As Point

Accessing array elements:
 points(0).x = 10
 points(0).y = 20
 points(1).x = 30
 points(1).y = 40

 Print points(0).x, points(0).y

Using variable indices:
 For i = 0 To 10
 points(i).x = i * 10
 points(i).y = i * 20
 Next i

Multi-dimensional arrays:
 Dim grid(10, 10) As Point
 grid(5, 5).x = 100

Page 3

MMBasic Structures User Manual

 grid(5, 5).y = 200

Initializing Structures
Structures can be initialized when declared using parentheses with comma-separated values:
 Dim variablename As typename = (value1, value2, ...)

Values must be provided in the order the members are defined in the TYPE block.

Examples

Simple structure initialization:
 Type Point
 x As INTEGER
 y As INTEGER
 End Type

 Dim p As Point = (100, 200)
 ' p.x = 100, p.y = 200

Structure with string:
 Type Person
 age As INTEGER
 height As FLOAT
 name As STRING
 End Type

 Dim person1 As Person = (25, 1.75, "Alice")

Array of structures initialization:
 Dim points(2) As Point = (10, 20, 30, 40, 50, 60)
 ' points(0).x = 10, points(0).y = 20
 ' points(1).x = 30, points(1).y = 40
 ' points(2).x = 50, points(2).y = 60

Values are assigned sequentially: all members of element 0, then all members of element 1, etc.

Copying Structures
Structures can be copied using direct assignment or the "STRUCT COPY" command.

Direct Assignment

The simplest way to copy a structure is using direct assignment:
 destination = source

This works for:
 - Single structure variables
 - Individual array elements

Example - Single structures:
 Dim src As Point, dst As Point
 src.x = 100
 src.y = 200

 dst = src
 ' dst.x = 100, dst.y = 200

Example - Array elements:
 Dim points(10) As Point
 points(0).x = 50 : points(0).y = 60

Page 4

MMBasic Structures User Manual

 points(5) = points(0) ' Copy element 0 to element 5
 ' points(5).x = 50, points(5).y = 60

Example - Cross-array copy:
 Dim src(5) As Person
 Dim dst(5) As Person
 ' ... populate src ...

 dst(2) = src(3) ' Copy element 3 from src to element 2 of dst

Important: Both source and destination must be the same structure type. Attempting to assign structures of different
types will cause an error.

STRUCT COPY Command

The "STRUCT COPY" command provides the same functionality with explicit syntax:
 Struct Copy source To destination

Both variables must be of the same structure type.

Example:
 Dim src As Point, dst As Point
 src.x = 100
 src.y = 200

 Struct Copy src To dst
 ' dst.x = 100, dst.y = 200

Copying Entire Arrays

You can copy entire structure arrays using empty parentheses:
 Struct Copy sourceArray() To destinationArray()

Requirements:
 - Both arrays must be the same structure type
 - The destination array must be at least as large as the source array
 - Both must use the "()" syntax, or both must be single elements
 - Only the source elements are copied (extra destination elements are preserved)

Example:
 Dim src(2) As Point
 src(0).x = 10 : src(0).y = 11
 src(1).x = 20 : src(1).y = 21
 src(2).x = 30 : src(2).y = 31

 Dim dst(4) As Point ' Larger destination is OK
 Struct Copy src() To dst()
 ' dst(0), dst(1), dst(2) now contain copies from src
 ' dst(3), dst(4) are unchanged

Example - Same size arrays:
 Dim original(10) As Person
 ' ... populate array ...

 Dim backup(10) As Person
 Struct Copy original() To backup()

Sorting Structure Arrays
Use the "STRUCT SORT" command to sort an array of structures in-place based on any member field:

Page 5

MMBasic Structures User Manual

 Struct Sort array().membername [, flags]

Parameters

 - "array().membername" - The structure array with the member to sort by. The array name must include empty
parentheses followed by a dot and the member name (e.g., "people().age")
 - "flags" - Optional flags to modify sort behavior (can be combined by adding):

Value Description

:-----: -------------

0 Default: ascending sort, case-sensitive

1 Reverse sort (descending order)

2 Case-insensitive sort (strings only)

4 Empty strings sort to end of array (strings only)

Flags can be combined by adding values (e.g., 3 = descending + case-insensitive).

Examples

Sort by integer field (ascending):
 Type Person
 age As INTEGER
 name As STRING
 End Type

 Dim people(3) As Person
 people(0).age = 35 : people(0).name = "Charlie"
 people(1).age = 25 : people(1).name = "Alice"
 people(2).age = 45 : people(2).name = "David"
 people(3).age = 30 : people(3).name = "Bob"

 Struct Sort people().age
 ' Result: Alice(25), Bob(30), Charlie(35), David(45)

Sort by string field:
 Struct Sort people().name
 ' Result: Alice, Bob, Charlie, David

Reverse sort (descending):
 Struct Sort people().age, 1
 ' Result: David(45), Charlie(35), Bob(30), Alice(25)

Case-insensitive string sort:
 Struct Sort people().name, 2

Combine flags (reverse + case-insensitive):
 Struct Sort people().name, 3
 ' 3 = 1 + 2 (reverse + case insensitive)

Empty strings at end:
 Struct Sort people().name, 4
 ' Non-empty strings sorted first, empty strings at end

Notes

 - The entire structure is moved during sorting, not just the sort key
 - All other member values are preserved with their corresponding records
 - The sort is performed in-place (no additional array is created)
 - Array members within structures cannot be used as sort keys

Page 6

MMBasic Structures User Manual

 - Supports INTEGER, FLOAT, and STRING member types

Extracting Structure Members to Arrays
Use the "STRUCT EXTRACT" command to copy a single member from each element of a structure array into a simple
contiguous array. This is essential when you need to use structure data with commands that expect arrays with fixed
8-byte stride (such as "LINE PLOT", "MATH SCALE", etc.).
 Struct Extract structarray().membername, destarray()

Parameters

 - "structarray().membername" - The source structure array with the member to extract. The array name must include
empty parentheses followed by a dot and the member name (e.g., "readings().temperature")
 - "destarray()" - The destination simple array (must include empty parentheses)

Requirements

 - Source must be a **1-dimensional** structure array
 - Member must be a simple type (INTEGER, FLOAT, or STRING) - not an array member or nested structure
 - Destination must be a **1-dimensional** simple array (not a structure)
 - **Both arrays must have the same cardinality** (number of elements)
 - **Both must have the same type** (INTEGER, FLOAT, or STRING)
 - **For strings, both must have the same maximum length**

Why This Command is Needed

Some MMBasic commands that process arrays assume data is stored contiguously with a fixed stride of 8 bytes
between elements. When you have data in a structure array like:
 Type Room
 temperature As FLOAT ' offset 0
 humidity As FLOAT ' offset 8
 End Type

 Dim readings(144) As Room

The "temperature" values are 16 bytes apart (the size of the structure), not 8 bytes. Commands that are not
structure-aware would read incorrect memory locations for elements after the first.
"STRUCT EXTRACT" solves this by copying the desired member values into a properly-formatted simple array for use
with commands that don't support structure member arrays directly.
Note: Many commands (like "LINE PLOT", "POLYGON", various "MATH" commands, and most drawing commands)
now support structure member arrays directly. See the "Using Structure Arrays with Drawing Commands" and "Using
Structure Arrays with MATH Commands" sections for details.

Examples

Extract temperatures for plotting:
 Type Room
 temperature As FLOAT
 humidity As FLOAT
 End Type

 Dim readings(144) As Room
 Dim temps(144)

 ' ... populate readings() with sensor data ...

 ' Extract temperature values into a simple array
 Struct Extract readings().temperature, temps()

Page 7

MMBasic Structures User Manual

 ' Now temps() can be used with LINE PLOT
 LINE PLOT temps()

Extract integer values:
 Type DataPoint
 timestamp As INTEGER
 value As INTEGER
 End Type

 Dim samples(100) As DataPoint
 Dim values%(100)

 ' ... populate samples() ...

 ' Extract just the values for processing
 Struct Extract samples().value, values%()

 ' Now values%() can be used with MATH commands
 Math Scale values%(), 2, values%()

Extract string data:
 Type Person
 name As STRING LENGTH 20
 age As INTEGER
 End Type

 Dim people(50) As Person
 Dim names$(50) LENGTH 20

 ' ... populate people() ...

 ' Extract all names
 Struct Extract people().name, names$()

Notes

 - The extraction is a one-time copy - changes to the destination array do not affect the source structures
 - Use this command when you need to pass structure member data to array-processing functions
 - For best performance, extract data once before processing rather than repeatedly in loops

Inserting Array Values into Structures
Use the "STRUCT INSERT" command to copy values from a simple array into a specific member of each element in a
structure array. This is the reverse of "STRUCT EXTRACT".
 Struct Insert srcarray(), structarray().membername

Parameters

 - "srcarray()" - The source simple array (must include empty parentheses)
 - "structarray().membername" - The destination structure array with the member to write to. The array name must
include empty parentheses followed by a dot and the member name (e.g., "readings().temperature")

Requirements

 - Source must be a **1-dimensional** simple array (not a structure)
 - Destination must be a **1-dimensional** structure array
 - Member must be a simple type (INTEGER, FLOAT, or STRING) - not an array member or nested structure
 - **Both arrays must have the same cardinality** (number of elements)

Page 8

MMBasic Structures User Manual

 - **Both must have the same type** (INTEGER, FLOAT, or STRING)
 - **For strings, both must have the same maximum length**

Examples

Insert processed values back into structures:
 Type Room
 temperature As FLOAT
 humidity As FLOAT
 End Type

 Dim readings(144) As Room
 Dim temps!(144)

 ' Extract temperatures
 Struct Extract readings().temperature, temps!()

 ' Process the data (e.g., apply calibration)
 Math Scale temps!(), 1.02, temps!()
 Math Add temps!(), -0.5, temps!()

 ' Insert corrected values back into structures
 Struct Insert temps!(), readings().temperature

Populate structure members from computed arrays:
 Type DataPoint
 x As INTEGER
 y As INTEGER
 End Type

 Dim points(100) As DataPoint
 Dim xvals%(100), yvals%(100)

 ' Generate coordinate arrays
 For i% = 0 To 100
 xvals%(i%) = i% * 10
 yvals%(i%) = Sin(i% * 0.1) * 100
 Next i%

 ' Insert into structure array
 Struct Insert xvals%(), points().x
 Struct Insert yvals%(), points().y

Notes

 - Only the specified member is modified; all other members retain their values
 - The insertion is a one-time copy - subsequent changes to the source array do not affect the structures
 - Useful for updating structure data after processing with array-based functions

Using Structure Arrays with Drawing Commands
Several MMBasic drawing commands accept arrays of coordinates to draw multiple shapes efficiently. These
commands now support **direct use of structure member arrays**, allowing you to pass structure data without first
extracting it to separate arrays.

Supported Drawing Commands

The following commands support structure member array syntax:

Command Array Parameters

`LINE PLOT` y-coordinates array

Page 9

MMBasic Structures User Manual

`LINE GRAPH` x(), y() coordinate arrays

`PIXEL` x(), y() coordinate arrays

`LINE` (array mode) x1(), y1(), x2(), y2() endpoint arrays

`POLYGON` x(), y() vertex arrays

`CIRCLE` x(), y(), r() center and radius arrays

`BOX` x(), y(), w(), h() position and size arrays

`RBOX` x(), y(), w(), h() position and size arrays

`TRIANGLE` x1(), y1(), x2(), y2(), x3(), y3() vertex arrays

Syntax

Use the standard structure member array syntax with empty parentheses:
 COMMAND structarray().member, ...

The empty parentheses "()" after the array name indicate "all elements", and the ".member" specifies which member to
use from each structure element.

How It Works

When you pass a structure member array like "points().x", the drawing command automatically handles the
non-contiguous memory layout. Structure members are spaced by the structure's total size (stride), not the standard
8-byte spacing of simple arrays.
For example, with:
 Type Point
 x As FLOAT ' offset 0
 y As FLOAT ' offset 8
 End Type
 Dim points(100) As Point

The "x" values are 16 bytes apart (the size of Point), not 8 bytes. The drawing commands account for this stride
automatically.

Examples

Drawing pixels from a Point array:
 Type Point
 x As FLOAT
 y As FLOAT
 End Type

 Dim stars(50) As Point
 Dim INTEGER i

 ' Initialize random star positions
 For i = 0 To 50
 stars(i).x = Rnd * MM.HRES
 stars(i).y = Rnd * MM.VRES
 Next i

 ' Draw all stars with a single command
 PIXEL stars().x, stars().y, RGB(WHITE)

Drawing circles from a CircleDef array:
 Type CircleDef
 x As FLOAT
 y As FLOAT
 r As FLOAT
 End Type

Page 10

MMBasic Structures User Manual

 Dim circles(10) As CircleDef

 ' Initialize circles
 For i = 0 To 10
 circles(i).x = 50 + i * 50
 circles(i).y = 100
 circles(i).r = 20 + i * 2
 Next i

 ' Draw all circles
 CIRCLE circles().x, circles().y, circles().r,,, RGB(CYAN)

Drawing connected lines (LINE PLOT) from Y values:
 Type DataPoint
 timestamp As INTEGER
 value As FLOAT
 End Type

 Dim readings(200) As DataPoint

 ' ... populate readings with sensor data ...

 ' Plot the values as a connected line graph
 LINE PLOT readings().value, 1, RGB(GREEN)

Drawing boxes from a rectangle structure:
 Type RectDef
 x As FLOAT
 y As FLOAT
 w As FLOAT
 h As FLOAT
 End Type

 Dim boxes(5) As RectDef

 ' Initialize boxes
 For i = 0 To 5
 boxes(i).x = 10 + i * 100
 boxes(i).y = 50
 boxes(i).w = 80
 boxes(i).h = 60
 Next i

 ' Draw all boxes
 BOX boxes().x, boxes().y, boxes().w, boxes().h,, RGB(YELLOW)

Drawing triangles:
 Type TriDef
 x1 As FLOAT : y1 As FLOAT
 x2 As FLOAT : y2 As FLOAT
 x3 As FLOAT : y3 As FLOAT
 End Type

 Dim triangles(4) As TriDef

 ' Initialize triangles
 For i = 0 To 4
 triangles(i).x1 = 30 + i * 70
 triangles(i).y1 = 120
 triangles(i).x2 = 60 + i * 70
 triangles(i).y2 = 80
 triangles(i).x3 = 90 + i * 70
 triangles(i).y3 = 120

Page 11

MMBasic Structures User Manual

 Next i

 ' Draw all triangles
 TRIANGLE triangles().x1, triangles().y1, triangles().x2, triangles().y2, triangles().x3, triangles().y3, RGB(RED)

Drawing lines between two Point arrays:
 Type Point
 x As FLOAT
 y As FLOAT
 End Type

 Dim lineStart(10) As Point
 Dim lineEnd(10) As Point

 ' Initialize line endpoints
 For i = 0 To 10
 lineStart(i).x = 0
 lineStart(i).y = i * 20
 lineEnd(i).x = MM.HRES - 1
 lineEnd(i).y = i * 20
 Next i

 ' Draw all lines
 LINE lineStart().x, lineStart().y, lineEnd().x, lineEnd().y,, RGB(BLUE)

Mixing Structure and Simple Arrays

You can mix structure member arrays with simple arrays or scalar values in the same command:
 Type Point
 x As FLOAT
 y As FLOAT
 End Type

 Dim centers(10) As Point
 Dim FLOAT radii(10)

 ' Use structure for centers, simple array for radii
 For i = 0 To 10
 centers(i).x = 50 + i * 50
 centers(i).y = 100
 radii(i) = 15 + i * 3
 Next i

 CIRCLE centers().x, centers().y, radii(),,, RGB(MAGENTA)

When to Use STRUCT EXTRACT Instead

While direct structure member array syntax is convenient, there are cases where "STRUCT EXTRACT" is still preferred:
 1. **Repeated use of the same data**: If you need to pass the same member data to multiple commands or in a loop,
extracting once is more efficient.
 2. **Performance-critical code**: Direct pointer arithmetic on simple arrays is slightly faster than strided access.
 ' Extract once, use multiple times
 Dim FLOAT xvals(100), yvals(100)
 Struct Extract points().x, xvals()
 Struct Extract points().y, yvals()

 ' Now use with any array command
 LINE PLOT xvals()
 MATH SCALE yvals(), 2, yvals()

Notes

Page 12

MMBasic Structures User Manual

 - All coordinate arrays in a single command must have compatible dimensions
 - The command uses the minimum array size if dimensions differ
 - Integer and float structure members are both supported
 - String members cannot be used with drawing commands

Using Structure Arrays with MATH Commands
Several MMBasic MATH commands now support **direct use of structure member arrays**, allowing you to perform
mathematical operations on structure data without first extracting it to separate arrays. This is particularly useful for
processing coordinate data, sensor readings, or any numerical data stored in structures.

Supported MATH Commands

The following MATH commands support structure member array syntax:

Element-wise Operations (3 arrays)

Command Operation Description

`MATH C_ADD` a() + b() = c() Element-wise addition

`MATH C_SUB` a() - b() = c() Element-wise subtraction

`MATH C_MUL` a() * b() = c() Element-wise multiplication

`MATH C_MULT` a() * b() = c() Same as C_MUL

`MATH C_DIV` a() / b() = c() Element-wise division

Scalar Transformations

Command Operation Description

`MATH SCALE` a() * k = b() Multiply all elements by scalar

`MATH ADD` a() + k = b() Add scalar to all elements

`MATH POWER` a()^k = b() Raise all elements to a power

Statistical Functions

Function Description

`MATH(MAX(a()))` Find maximum value

`MATH(MAX(a(), idx%))` Find maximum and its index

`MATH(MIN(a()))` Find minimum value

`MATH(MIN(a(), idx%))` Find minimum and its index

`MATH(MEAN(a()))` Calculate arithmetic mean

`MATH(SUM(a()))` Calculate sum of all elements

Coordinate and Data Transformations

Command Description

`MATH V_ROTATE` Rotate 2D coordinate arrays around a point

`MATH WINDOW` Normalize array values to a specified range

Syntax

Use the standard structure member array syntax with empty parentheses:
 MATH command structarray().member, ...
 result = MATH(function(structarray().member))

How It Works

Page 13

MMBasic Structures User Manual

When you pass a structure member array like "points().x", the MATH command automatically handles the
non-contiguous memory layout. Structure members are spaced by the structure's total size (stride), not the standard
8-byte spacing of simple arrays.
For example, with:
 Type Point
 x As FLOAT ' offset 0
 y As FLOAT ' offset 8
 End Type
 Dim points(100) As Point

The "x" values are 16 bytes apart (the size of Point), not 8 bytes. The MATH commands account for this stride
automatically.

Examples

Element-wise Operations

Adding two structure member arrays:
 Type Vector
 x As FLOAT
 y As FLOAT
 z As FLOAT
 End Type

 Dim a(10) As Vector
 Dim b(10) As Vector
 Dim result(10) As Vector

 ' Initialize vectors
 For i = 0 To 10
 a(i).x = i : a(i).y = i * 2 : a(i).z = i * 3
 b(i).x = 1 : b(i).y = 2 : b(i).z = 3
 Next i

 ' Add x components
 MATH C_ADD a().x, b().x, result().x
 ' Add y components
 MATH C_ADD a().y, b().y, result().y
 ' Add z components
 MATH C_ADD a().z, b().z, result().z

Multiplying struct arrays element-wise:
 Type DataPoint
 value As FLOAT
 weight As FLOAT
 weighted As FLOAT
 End Type

 Dim data(100) As DataPoint
 ' ... populate data().value and data().weight ...

 ' Calculate weighted values: weighted = value * weight
 MATH C_MUL data().value, data().weight, data().weighted

Scalar Transformations

Scaling coordinates:
 Type Point
 x As FLOAT
 y As FLOAT
 End Type

Page 14

MMBasic Structures User Manual

 Dim pts(50) As Point
 ' ... populate points ...

 ' Double all X coordinates
 MATH SCALE pts().x, 2.0, pts().x

 ' Add offset to all Y coordinates
 MATH ADD pts().y, 100, pts().y

Calculating squares:
 Type DataRec
 value As FLOAT
 squared As FLOAT
 End Type

 Dim nums(100) As DataRec
 ' ... populate nums().value ...

 ' Square all values
 MATH POWER nums().value, 2, nums().squared

Statistical Functions

Finding extremes in structure data:
 Type SensorReading
 timestamp As INTEGER
 temperature As FLOAT
 humidity As FLOAT
 End Type

 Dim readings(144) As SensorReading
 ' ... populate with 24 hours of readings (every 10 min) ...

 ' Find temperature statistics
 Dim maxTemp!, minTemp!, avgTemp!, sumTemp!
 Dim maxIdx%, minIdx%

 maxTemp! = MATH(MAX(readings().temperature, maxIdx%))
 minTemp! = MATH(MIN(readings().temperature, minIdx%))
 avgTemp! = MATH(MEAN(readings().temperature))
 sumTemp! = MATH(SUM(readings().temperature))

 Print "Max temperature: "; maxTemp!; " at reading "; maxIdx%
 Print "Min temperature: "; minTemp!; " at reading "; minIdx%
 Print "Average temperature: "; avgTemp!

Coordinate Rotation (V_ROTATE)

Rotating point coordinates around a center:
 Type Point
 x As FLOAT
 y As FLOAT
 End Type

 Dim shape(20) As Point
 ' ... define a shape's vertices ...

 ' Rotate all points 45 degrees around point (100, 100)
 MATH V_ROTATE 100, 100, 45, shape().x, shape().y, shape().x, shape().y

 ' Draw the rotated shape

Page 15

MMBasic Structures User Manual

 PIXEL shape().x, shape().y

Rotating with separate output arrays:
 Dim original(20) As Point
 Dim rotated(20) As Point

 ' Preserve original, store rotated in new array
 MATH V_ROTATE 0, 0, 90, original().x, original().y, rotated().x, rotated().y

Data Normalization (WINDOW)

Normalizing sensor data to screen coordinates:
 Type DataPoint
 raw_value As FLOAT
 screen_y As FLOAT
 End Type

 Dim samples(200) As DataPoint
 ' ... populate samples().raw_value with sensor data ...

 ' Normalize to screen Y range (0 to 480)
 MATH WINDOW samples().raw_value, 0, 480, samples().screen_y

 ' Now samples().screen_y contains Y positions for plotting
 LINE PLOT samples().screen_y

Getting min/max during normalization:
 Dim dataMin!, dataMax!
 MATH WINDOW samples().raw_value, 0, 100, samples().screen_y, dataMin!, dataMax!
 Print "Data range: "; dataMin!; " to "; dataMax!

Mixing Structure and Simple Arrays

You can mix structure member arrays with simple arrays in the same MATH command:
 Type Point
 x As FLOAT
 y As FLOAT
 End Type

 Dim pts(50) As Point
 Dim FLOAT offsets(50)
 Dim FLOAT results(50)

 ' Add structure member to simple array
 MATH C_ADD pts().x, offsets(), results()

 ' Or output to structure member from simple arrays
 MATH C_ADD offsets(), offsets(), pts().x

Integer Structure Members

Integer structure members work with MATH commands that support integers:
 Type IntData
 a As INTEGER
 b As INTEGER
 result As INTEGER
 End Type

 Dim idata(100) As IntData

 ' Integer element-wise operations

Page 16

MMBasic Structures User Manual

 MATH C_ADD idata().a, idata().b, idata().result
 MATH C_MUL idata().a, idata().b, idata().result

 ' Integer statistics
 Dim maxVal%, minVal%, idx%
 maxVal% = MATH(MAX(idata().a, idx%))
 minVal% = MATH(MIN(idata().b))

MATH Commands NOT Supporting Structures

The following MATH commands do **not** support structure member arrays because they operate on fixed-size arrays
that are conceptually structures themselves:
 - **Quaternion operations**: Q_CREATE, Q_EULER, Q_INVERT, Q_MUL, Q_ROTATE, Q_VECTOR
 - **Matrix operations**: M_INVERSE, M_MULT, M_TRANSPOSE, M_PRINT
 - **FFT operations**: FFT, MAGNITUDE
 - **Other**: CRC, INTERPOLATE, INPUT_CODE, V_CROSS, V_MULT, V_NORMALISE, V_PRINT
For these commands, use "STRUCT EXTRACT" if you need to work with structure data.

Performance Considerations

 1. **Direct use is convenient**: For simple operations, passing structure members directly is clean and readable.
 2. **Extract for repeated use**: If you need to perform many operations on the same member data, extracting once
may be more efficient:
 Dim FLOAT xvals(100)
 Struct Extract points().x, xvals()
 ' Now use xvals() for multiple operations

 3. **Memory efficiency**: Direct structure access avoids allocating temporary arrays.

Complete Example: Sensor Data Processing

 ' Define structure for sensor readings
 Type SensorData
 timestamp As INTEGER
 raw_value As FLOAT
 calibrated As FLOAT
 normalized As FLOAT
 End Type

 Dim readings(200) As SensorData
 Dim calibration_factor! = 1.023
 Dim calibration_offset! = -2.5

 ' ... populate readings().timestamp and readings().raw_value from sensor ...

 ' Apply calibration: calibrated = raw * factor + offset
 MATH SCALE readings().raw_value, calibration_factor!, readings().calibrated
 MATH ADD readings().calibrated, calibration_offset!, readings().calibrated

 ' Get statistics on calibrated data
 Dim maxVal!, minVal!, avgVal!, maxIdx%, minIdx%
 maxVal! = MATH(MAX(readings().calibrated, maxIdx%))
 minVal! = MATH(MIN(readings().calibrated, minIdx%))
 avgVal! = MATH(MEAN(readings().calibrated))

 Print "Calibrated data statistics:"
 Print " Max: "; maxVal!; " at sample "; maxIdx%
 Print " Min: "; minVal!; " at sample "; minIdx%
 Print " Avg: "; avgVal!

 ' Normalize to display range (0-200 pixels)
 MATH WINDOW readings().calibrated, 0, 200, readings().normalized

Page 17

MMBasic Structures User Manual

 ' Plot the normalized data
 CLS
 LINE PLOT readings().normalized, 1, RGB(GREEN)

Using Structure Arrays with ARRAY Commands
In addition to MATH commands, several ARRAY commands also support structure member arrays directly.

Supported ARRAY Commands

Command Description

`ARRAY SET` Set all elements of a member array to a single value

`ARRAY ADD` Add a scalar to all elements, storing in destination

Syntax

 ARRAY SET value, structarray().member
 ARRAY ADD structarray().member, scalar, destarray().member

Examples

Setting all members to a value:
 Type DataPoint
 timestamp As INTEGER
 value As FLOAT
 status As INTEGER
 End Type

 Dim readings(100) As DataPoint

 ' Initialize all value members to zero
 ARRAY SET 0, readings().value

 ' Set all status flags to 1
 ARRAY SET 1, readings().status

Adding a constant to all elements:
 Type Measurement
 raw As FLOAT
 calibrated As FLOAT
 offset As FLOAT
 End Type

 Dim data(50) As Measurement

 ' Apply offset: calibrated = raw + 5.5
 ARRAY ADD data().raw, 5.5, data().calibrated

 ' Copy array (add 0)
 ARRAY ADD data().raw, 0, data().calibrated

Mixing struct members with regular arrays:
 Dim offsets!(50)
 ' ... populate offsets ...

 ' You can use struct source with regular destination (or vice versa)
 ' as long as array sizes match

Page 18

MMBasic Structures User Manual

ARRAY Commands NOT Supporting Structures

The following ARRAY commands do **not** support structure member arrays because they operate on
multi-dimensional arrays:
 - **ARRAY INSERT** - Requires 2D or higher dimensional arrays
 - **ARRAY SLICE** - Requires 2D or higher dimensional arrays
Structure member arrays are inherently 1D (the array is of structures, not the member itself), so these commands
cannot be used with structure members.

Clearing Structures
Use the "STRUCT CLEAR" command to reset all members of a structure to their default values (0 for numbers, empty
string for strings):
 Struct Clear variable
 Struct Clear array()

Examples

Clear a single structure:
 Dim p As Point
 p.x = 100
 p.y = 200

 Struct Clear p
 ' p.x = 0, p.y = 0

Clear an entire array of structures:
 Dim people(10) As Person
 ' ... populate array ...

 Struct Clear people()
 ' All elements reset to defaults

Swapping Structures
Use the "STRUCT SWAP" command to exchange the contents of two structure variables:
 Struct Swap var1, var2

Both variables must be of the same structure type. This is useful when implementing sorting algorithms or reordering
records.

Examples

 Dim a As Point, b As Point
 a.x = 10 : a.y = 20
 b.x = 30 : b.y = 40

 Struct Swap a, b
 ' Now: a.x = 30, a.y = 40, b.x = 10, b.y = 20

Swapping array elements:
 Dim people(5) As Person
 ' ... populate array ...

 Struct Swap people(2), people(4)
 ' Elements 2 and 4 are exchanged

Printing Structures

Page 19

MMBasic Structures User Manual

Use the "STRUCT PRINT" command to display all members of a structure for debugging:
 Struct Print variable
 Struct Print array()
 Struct Print array(index)

Forms

 - "Struct Print variable" - Print a single structure variable
 - "Struct Print array()" - Print all elements of a structure array
 - "Struct Print array(n)" - Print a specific element of a structure array

Examples

Print a single structure:
 Dim p As Person
 p.name = "Alice"
 p.age = 25
 p.height = 1.65

 Struct Print p

Output:
 Person:
 .name = "Alice"
 .age = 25
 .height = 1.65

Print an array element:
 Dim people(10) As Person
 ' ... populate array ...

 Struct Print people(0)

Print entire array:
 Struct Print people()

Output:
 Person array (11 elements):
 [0]:
 .name = "Alice"
 .age = 25
 .height = 1.65
 [1]:
 .name = "Bob"
 .age = 30
 .height = 1.80
 ...

Notes

 - Array members are printed as comma-separated values
 - Strings are displayed with surrounding quotes
 - Useful for debugging and inspecting structure contents

Searching Structure Arrays
Use the "STRUCT(FIND ...)" function to search a structure array for an element with a matching member value:
 index = Struct(FIND array().membername, value [, start])

Parameters

Page 20

MMBasic Structures User Manual

 - "FIND" - The subfunction name
 - "array().membername" - The structure array with the member to search. The array name must include empty
parentheses followed by a dot and the member name (e.g., "people().age")
 - "value" - The value to search for (must match the member's type)
 - "start" - Optional. The index to start searching from (default: first element)

Return Value

 - Returns the index of the first matching element (starting from "start")
 - Returns -1 if no match is found

Examples

Find by integer:
 Type Person
 age As INTEGER
 name As STRING
 End Type

 Dim people(10) As Person
 ' ... populate array ...

 idx = Struct(FIND people().age, 35)
 If idx >= 0 Then
 Print "Found at index"; idx; ": "; people(idx).name
 Else
 Print "Not found"
 EndIf

Find by string:
 idx = Struct(FIND people().name, "Alice")
 If idx >= 0 Then
 Print "Alice is at index"; idx
 EndIf

Find by float:
 idx = Struct(FIND people().height, 1.75)

Iterate through all matches using start parameter:
 ' Find all people aged 30
 idx = Struct(FIND people().age, 30)
 Do While idx >= 0
 Print "Found at index"; idx; ": "; people(idx).name
 idx = Struct(FIND people().age, 30, idx + 1)
 Loop

Notes

 - Search is performed linearly from the start position
 - Only the first match (from the start position) is returned
 - Use the start parameter to iterate through multiple matches
 - For strings, comparison is case-sensitive and exact
 - Array members within structures cannot be searched

Getting Array Bounds
Use the standard "BOUND()" function to get the upper bound of a structure array dimension:
 upperBound = Bound(array() [, dimension])

Page 21

MMBasic Structures User Manual

Parameters

 - "array()" - The structure array (must include empty parentheses)
 - "dimension" - Optional. Which dimension to query (0 returns OPTION BASE, 1+ for dimensions)

Return Value

 - Returns the upper bound of the specified dimension

Examples

Basic usage (1D array):
 Dim points(9) As Point
 bound = Bound(points()) ' Returns 9

Multi-dimensional array:
 Dim grid(4, 7) As Point
 dim1 = Bound(grid(), 1) ' Returns 4
 dim2 = Bound(grid(), 2) ' Returns 7

Use in loops:
 Dim people(n) As Person
 ' ... populate array ...

 For i = 0 To Bound(people())
 Print people(i).name
 Next i

Notes

 - The standard "BOUND()" function works for both regular arrays and structure arrays
 - Dimension numbering: 0 returns OPTION BASE, 1 = first dimension, 2 = second, etc.
 - If dimension is omitted, returns the bound of the first dimension

Getting Member Offset
Use the "STRUCT(OFFSET ...)" function to get the byte offset of a member within a structure type:
 offset = Struct(OFFSET typename$, element$)

Parameters

 - "OFFSET" - The subfunction name
 - "typename$" - A string containing the structure type name
 - "element$" - A string containing the member/element name

Return Value

 - Returns the byte offset of the specified member from the start of the structure

Examples

Basic usage:
 Type Point
 x As INTEGER
 y As INTEGER
 End Type

 offset_x = Struct(OFFSET "Point", "x") ' Returns 0 (first member)
 offset_y = Struct(OFFSET "Point", "y") ' Returns 8 (after 8-byte integer)

Page 22

MMBasic Structures User Manual

 Print "Offset of x:"; offset_x
 Print "Offset of y:"; offset_y

Using with PEEK(VARADDR to access memory:
 Type Person
 age As INTEGER ' offset 0
 height As FLOAT ' offset 8
 name As STRING ' offset 16
 End Type

 Dim p As Person
 p.age = 25
 p.height = 1.75
 p.name = "Alice"

 ' Get the base address of the structure variable
 baseAddr = Peek(VARADDR p)

 ' Calculate address of specific member
 ageAddr = baseAddr + Struct(OFFSET "Person", "age")
 heightAddr = baseAddr + Struct(OFFSET "Person", "height")

 Print "Age value via PEEK:"; Peek(INTEGER ageAddr)

Structure with arrays:
 Type Data
 header As INTEGER
 values(9) As FLOAT
 End Type

 ' Get offset of the values array start
 arrOffset = Struct(OFFSET "Data", "values")
 Print "Array starts at offset:"; arrOffset

Notes

 - The offset is always in bytes from the start of the structure
 - Useful for low-level memory access combined with "PEEK(VARADDR ...)"
 - The type name and element name comparisons are case-insensitive
 - Returns an error if the structure type or member is not found
 - For nested structures, only top-level member offsets are returned

Getting Structure Size
Use the "STRUCT(SIZEOF ...)" function to get the size in bytes of a structure type:
 byteSize = Struct(SIZEOF typename$)

Parameters

 - "SIZEOF" - The subfunction name
 - "typename$" - A string containing the structure type name

Return Value

 - Returns the total size in bytes of the specified structure type

Examples

Basic usage:
 Type Point

Page 23

MMBasic Structures User Manual

 x As INTEGER
 y As INTEGER
 End Type

 size = Struct(SIZEOF "Point") ' Returns 16 (2 x 8-byte integers)
 Print "Point size:"; size; "bytes"

Using with different types:
 Type Person
 age As INTEGER ' 8 bytes
 height As FLOAT ' 8 bytes
 name As STRING ' 256 bytes (default string)
 End Type

 size = Struct(SIZEOF "Person") ' Returns 272

Dynamic type name:
 typename$ = "Point"
 size = Struct(SIZEOF typename$)

Use for memory calculations:
 Dim data(99) As Record
 totalBytes = 100 * Struct(SIZEOF "Record")
 Print "Array uses"; totalBytes; "bytes"

Notes

 - The type name comparison is case-insensitive
 - Returns an error if the structure type is not defined
 - Useful for calculating memory requirements or file sizes before STRUCT SAVE

Saving and Loading Structures
Structures can be saved to and loaded from files in binary format. This is useful for persisting data between program
runs or exchanging data.

STRUCT SAVE

Writes structure data to an already-open file:
 Struct Save #filenumber, variable
 Struct Save #filenumber, array()
 Struct Save #filenumber, array(index)

The file must be opened before using "STRUCT SAVE". You manage the file opening and closing.

Syntax options for arrays:
 - "array()" - Saves the entire array
 - "array(index)" - Saves only the element at the specified index

STRUCT LOAD

Reads structure data from an already-open file:
 Struct Load #filenumber, variable
 Struct Load #filenumber, array()
 Struct Load #filenumber, array(index)

The file must be opened before using "STRUCT LOAD". The structure variable must already be declared.

Syntax options for arrays:
 - "array()" - Loads the entire array
 - "array(index)" - Loads only into the element at the specified index

Page 24

MMBasic Structures User Manual

Examples

Save and load a single structure:
 Dim p As Point
 p.x = 100
 p.y = 200

 ' Save
 Open "point.dat" For Output As #1
 Struct Save #1, p
 Close #1

 ' Load
 Dim p2 As Point
 Open "point.dat" For Input As #1
 Struct Load #1, p2
 Close #1

 Print p2.x, p2.y ' Output: 100 200

Save and load an array of structures:
 Dim people(100) As Person
 ' ... populate array ...

 ' Save to file
 Open "people.dat" For Output As #1
 Struct Save #1, people()
 Close #1

 ' Load from file
 Dim loadedPeople(100) As Person
 Open "people.dat" For Input As #1
 Struct Load #1, loadedPeople()
 Close #1

Save and load individual array elements:
 Dim records(99) As Record
 ' ... populate records ...

 ' Save specific records to file
 Open "selected.dat" For Output As #1
 Struct Save #1, records(5) ' Save element 5
 Struct Save #1, records(10) ' Append element 10
 Struct Save #1, records(25) ' Append element 25
 Close #1

 ' Load records back (to different positions or variables)
 Dim temp As Record
 Open "selected.dat" For Input As #1
 Struct Load #1, temp ' Load first saved record
 Print temp.id
 Struct Load #1, records(50) ' Load second saved record into element 50
 Struct Load #1, records(51) ' Load third saved record into element 51
 Close #1

Notes

 - Data is saved in binary format (not human-readable)
 - The structure type must match when loading
 - For whole array operations, array dimensions must match when loading
 - Files should be opened in appropriate mode for the operation

Page 25

MMBasic Structures User Manual

 - Multiple structures can be saved to the same file sequentially
 - Error occurs if file is not open or is not a disk file
 - **Array variables must use parentheses**: "array()" for whole array, "array(i)" for single element
 - Using an array name without parentheses will cause an error

Structures in Subroutines and Functions

Passing Structures as Parameters

Structures are always passed **by reference**, meaning the subroutine or function can modify the original structure:
 Sub subname(parametername As typename)
 ...
 End Sub

Example - Read-only access:
 Sub PrintPoint(pt As Point)
 Print "X:"; pt.x; " Y:"; pt.y
 End Sub

 Dim p As Point = (100, 200)
 PrintPoint p

Example - Modifying the structure:
 Sub DoublePoint(pt As Point)
 pt.x = pt.x * 2
 pt.y = pt.y * 2
 End Sub

 Dim p As Point = (10, 20)
 DoublePoint p
 Print p.x, p.y ' Output: 20 40

Passing Array Elements

You can pass a single element of a structure array:
 Dim points(10) As Point
 points(5).x = 100
 points(5).y = 200

 PrintPoint points(5)
 DoublePoint points(5)

Passing Structure Arrays

Use empty parentheses to pass an entire array of structures:
 Sub ProcessPoints(pts() As Point)
 ' Access pts(0), pts(1), etc.
 End Sub

 Dim myPoints(10) As Point
 ProcessPoints myPoints()

Example:
 Sub SumAllPoints(pts() As Point, count%)
 Local total_x% = 0, total_y% = 0
 Local i%
 For i% = 0 To count% - 1
 total_x% = total_x% + pts(i%).x
 total_y% = total_y% + pts(i%).y
 Next i%

Page 26

MMBasic Structures User Manual

 Print "Total X:"; total_x%; " Total Y:"; total_y%
 End Sub

 Dim data(5) As Point
 ' ... initialize data ...
 SumAllPoints data(), 6

Functions with Structure Parameters

 Function Distance(pt As Point) As FLOAT
 Distance = Sqr(pt.x * pt.x + pt.y * pt.y)
 End Function

 Dim p As Point = (3, 4)
 Print Distance(p) ' Output: 5

Functions Returning Structures

Functions can return structure values using "As typename" in the function declaration:
 Function functionname(parameters) As typename
 functionname.member1 = value1
 functionname.member2 = value2
 End Function

The function name acts as a local structure variable that is returned when the function exits.

Example - Creating a Point:
 Function MakePoint(x%, y%) As Point
 MakePoint.x = x%
 MakePoint.y = y%
 End Function

 Dim p As Point
 p = MakePoint(100, 200)
 Print p.x, p.y ' Output: 100 200

Example - Structure with multiple types:
 Function CreatePerson(n$, a%, h!) As Person
 CreatePerson.name = n$
 CreatePerson.age = a%
 CreatePerson.height = h!
 End Function

 Dim employee As Person
 employee = CreatePerson("Alice", 30, 1.68)
 Print employee.name; " is"; employee.age; " years old"

Example - Factory function:
 Function Origin() As Point
 Origin.x = 0
 Origin.y = 0
 End Function

 Dim startPoint As Point
 startPoint = Origin()

Local Structures
Use "LOCAL" to declare structures that exist only within a subroutine or function:
 Sub Example
 Local pt As Point
 pt.x = 100

Page 27

MMBasic Structures User Manual

 pt.y = 200
 ' pt is automatically freed when the sub exits
 End Sub

Local Structure Arrays

 Sub ProcessData
 Local tempPoints(10) As Point
 ' Use tempPoints...
 End Sub

Local Structures with Initialization

 Sub Example
 Local pt As Point = (50, 75)
 Print pt.x, pt.y
 End Sub

Static Structures
Use "STATIC" to declare structures that persist between calls to a subroutine or function. Unlike LOCAL structures
which are destroyed when the subroutine exits, STATIC structures retain their values across multiple calls.

Basic Static Structure Usage

 Sub Counter
 Static data As Point
 data.x = data.x + 1
 data.y = data.y + 10
 Print "Call count:"; data.x; " Total:"; data.y
 End Sub

 ' Each call increments the values
 Counter ' Prints: Call count: 1 Total: 10
 Counter ' Prints: Call count: 2 Total: 20
 Counter ' Prints: Call count: 3 Total: 30

Static Structure Arrays

You can also create static arrays of structures:
 Sub RecordReading(temp!, humidity!)
 Static readings(100) As SensorData
 Static idx% = 0

 readings(idx%).temperature = temp!
 readings(idx%).humidity = humidity!
 idx% = idx% + 1

 If idx% > 100 Then idx% = 0 ' Wrap around
 End Sub

Static Structures with Initialization

Static structures can be initialized. The initialization only occurs on the first call:
 Sub GetConfig() As Config
 Static cfg As Config = (100, 200, "default")
 GetConfig = cfg
 End Sub

Function Returning Static Structure

Page 28

MMBasic Structures User Manual

A common pattern is using a static structure to accumulate or track state across function calls:
 Type Statistics
 count As INTEGER
 sum As FLOAT
 min As FLOAT
 max As FLOAT
 End Type

 Function UpdateStats(value!) As Statistics
 Static stats As Statistics

 stats.count = stats.count + 1
 stats.sum = stats.sum + value!

 If stats.count = 1 Then
 stats.min = value!
 stats.max = value!
 Else
 If value! < stats.min Then stats.min = value!
 If value! > stats.max Then stats.max = value!
 End If

 UpdateStats = stats
 End Function

 ' Usage
 Dim s As Statistics
 s = UpdateStats(10.5)
 s = UpdateStats(5.2)
 s = UpdateStats(15.8)
 Print "Count:"; s.count; " Sum:"; s.sum; " Min:"; s.min; " Max:"; s.max
 ' Prints: Count: 3 Sum: 31.5 Min: 5.2 Max: 15.8

How Static Structures Work

When you declare a STATIC structure inside a subroutine or function:
 1. **First call**: MMBasic creates a persistent storage location for the structure in global memory. The structure is
initialized to zeros (or to the specified initialization values).
 2. **Subsequent calls**: The same memory location is reused, preserving values from previous calls.
 3. **Name scoping**: The static structure is only accessible by name within the declaring subroutine/function. It cannot
conflict with global variables or static variables in other subroutines with the same name.

Notes on Static Structures

 - Static structures are allocated once and persist for the lifetime of the program
 - Memory for static structures is not released until the program ends or is edited
 - Static structures inside functions can be returned as function results
 - Initialization values (if provided) are only applied on the first call
 - Use "STRUCT CLEAR" inside the subroutine if you need to reset a static structure

Nested Structures
Structures can contain other structures as members. The nested structure type must be defined before it is used in
another structure.

Defining Nested Structures

 ' Define inner structure first
 Type Point
 x As INTEGER

Page 29

MMBasic Structures User Manual

 y As INTEGER
 End Type

 ' Now define structure that contains Point
 Type Line
 start As Point ' Nested structure member
 finish As Point ' Another nested member
 color As INTEGER
 End Type

Accessing Nested Members

Use chained dot notation to access nested members:
 Dim myLine As Line
 myLine.start.x = 10
 myLine.start.y = 20
 myLine.finish.x = 100
 myLine.finish.y = 200
 myLine.color = 255

 Print myLine.start.x ' Prints 10
 Print myLine.finish.y ' Prints 200

Multiple Levels of Nesting

Structures can be nested to multiple levels:
 Type Point
 x As INTEGER
 y As INTEGER
 End Type

 Type Box
 topLeft As Point
 bottomRight As Point
 End Type

 Type Scene
 boundary As Box ' Box contains Points - 3 levels
 name As STRING LENGTH 20
 End Type

 Dim myScene As Scene
 myScene.boundary.topLeft.x = 0
 myScene.boundary.bottomRight.x = 640
 myScene.name = "MainScene"

 Print myScene.boundary.topLeft.x ' Prints 0

Arrays with Nested Structures

Arrays of structures containing nested structures work as expected:
 Dim lines(10) As Line
 lines(0).start.x = 1
 lines(0).start.y = 2
 lines(5).finish.x = 100

Arrays of Nested Structure Members

Structure members can be arrays of nested structures:
 Type Point
 x As INTEGER
 y As INTEGER

Page 30

MMBasic Structures User Manual

 End Type

 Type Polygon
 vertices(9) As Point ' Array of 10 nested Point structures
 color As INTEGER
 End Type

 Dim shape As Polygon
 shape.vertices(0).x = 0
 shape.vertices(0).y = 0
 shape.vertices(1).x = 100
 shape.vertices(1).y = 50
 shape.color = 255

Complex Nesting Example

The most complex supported syntax combines all features:
 Type InnerType
 values(9) As FLOAT ' Array of floats
 End Type

 Type OuterType
 items(5) As InnerType ' Array of nested structs, each with array
 End Type

 Dim data(3) As OuterType ' Array of outer structs

 ' Access: array(i).array_member(j).array_member(k)
 data(2).items(1).values(4) = 3.14159
 Print data(2).items(1).values(4) ' Prints 3.14159

This demonstrates:
 - "data(2)" - Element 2 of the outer array
 - ".items(1)" - Element 1 of the nested struct array member
 - ".values(4)" - Element 4 of the innermost float array

LIST TYPE with Nested Structures

The "LIST TYPE" command shows nested structure types by name:
 >LIST TYPE Line
 TYPE LINE
 START AS Point ' offset=0
 FINISH AS Point ' offset=16
 COLOR AS INTEGER ' offset=32
 END TYPE ' size=40 bytes

Limitations

 - The nested type must be defined BEFORE the containing type
 - No self-referential structures (a type cannot contain itself)
 - Maximum nesting depth: 8 levels (configurable via "MAX_STRUCT_NEST_DEPTH")

Multiple Structure Types
You can define multiple different structure types in your program:
 Type Point
 x As INTEGER
 y As INTEGER
 End Type

 Type Rectangle

Page 31

MMBasic Structures User Manual

 left As INTEGER
 top As INTEGER
 width As INTEGER
 height As INTEGER
 End Type

 Type Line
 start As Point ' Nested structure
 finish As Point
 End Type

 Dim p As Point
 Dim r As Rectangle
 Dim ln As Line

Best Practices
 1. **Define types at the start of your program** - Place all TYPE definitions near the beginning, before any executable
code.
 2. **Define nested types before containing types** - Inner structures must be defined first.
 3. **Use meaningful names** - Choose descriptive names for both types and members:
 Type SensorReading
 timestamp As INTEGER
 temperature As FLOAT
 humidity As FLOAT
 End Type

 4. **Initialize structures** - Always initialize structure members before use, either with the initialization syntax or by
assignment.
 5. **Use LOCAL for temporary structures** - When a structure is only needed within a subroutine, declare it as LOCAL
to automatically free memory.
 6. **Pass structures to subroutines** - Rather than passing many individual parameters, group related data into a
structure.

Limitations
 - Maximum structure types: 32
 - Maximum members per structure: 16
 - Member names follow standard MMBasic variable naming rules
 - Maximum nesting depth: 8 levels (configurable via "MAX_STRUCT_NEST_DEPTH")

Error Messages

Error Cause

"Structure type not found" The structure type name in DIM AS doesn't match any...

"Unknown structure member" Accessing a member name that doesn't exist in the s...

"Structure type mismatch" Trying to copy or pass structures of different type...

"Expected a structure variable" A subroutine expected a structure but received some...

"Source must be a structure variab... STRUCT COPY source is not a structure

"Destination must be a structure v... STRUCT COPY destination is not a structure

"Not enough initialisation values" Initialization list has fewer values than required

"Expected '(' for structure initia... Missing opening parenthesis in initialization

"Expected a structure array" STRUCT.FIND requires a structure array, not a singl...

"Member not found in structure" STRUCT.FIND or STRUCT SORT member name doesn't exis...

"Cannot search array members" STRUCT.FIND cannot search members that are arrays

"Type mismatch: expected numeric v... STRUCT.FIND search value type doesn't match member ...

Page 32

MMBasic Structures User Manual

"Type mismatch: expected string va... STRUCT.FIND search value is not a string but member...

"Expected #filenumber" STRUCT SAVE/LOAD requires a file number starting wi...

"Invalid file number" File number is outside valid range

"File not open" STRUCT SAVE/LOAD file is not open

"Not a disk file" STRUCT SAVE/LOAD requires a disk file, not serial p...

"Cannot save/load a structure memb... STRUCT SAVE/LOAD requires whole structure, not memb...

"Array variable requires () or (in... STRUCT SAVE/LOAD array must use parentheses

Complete Example
 ' Define structure types
 Type Point
 x As INTEGER
 y As INTEGER
 End Type

 Type Line
 name As STRING LENGTH 20
 startX As INTEGER
 startY As INTEGER
 endX As INTEGER
 endY As INTEGER
 End Type

 ' Declare variables
 Dim origin As Point = (0, 0)
 Dim cursor As Point
 Dim lines(10) As Line

 ' Initialize cursor
 cursor.x = 100
 cursor.y = 100

 ' Create some lines
 lines(0).name = "Horizontal"
 lines(0).startX = 0 : lines(0).startY = 50
 lines(0).endX = 100 : lines(0).endY = 50

 lines(1).name = "Vertical"
 lines(1).startX = 50 : lines(1).startY = 0
 lines(1).endX = 50 : lines(1).endY = 100

 ' Subroutine to calculate line length
 Function LineLength(ln As Line) As FLOAT
 Local dx% = ln.endX - ln.startX
 Local dy% = ln.endY - ln.startY
 LineLength = Sqr(dx% * dx% + dy% * dy%)
 End Function

 ' Print line information
 Sub PrintLine(ln As Line)
 Print ln.name; ": ("; ln.startX; ","; ln.startY; ") to ("; ln.endX; ","; ln.endY; ")"
 Print " Length: "; LineLength(ln)
 End Sub

 ' Display all lines
 For i% = 0 To 1
 PrintLine lines(i%)
 Next i%

Output:

Page 33

MMBasic Structures User Manual

 Horizontal: (0,50) to (100,50)
 Length: 100
 Vertical: (50,0) to (50,100)
 Length: 100

Quick Reference

Commands

Command Description

`Type...End Type` Define a new structure type

`Dim var As typename` Declare a structure variable

`Dim arr(n) As typename` Declare an array of structures

`dst = src` Copy structure using assignment

`arr(i) = arr(j)` Copy array elements using assignment

`Struct Copy src To dst` Copy structure contents

`Struct Copy src() To dst()` Copy entire structure array

`Struct Sort arr().member [,flags]` Sort array by member field

`Struct Extract arr().member, dest()` Extract member values to simple array

`Struct Insert src(), arr().member` Insert array values into structure member

`Struct Clear var` Reset all members to defaults

`Struct Clear arr()` Reset all array elements to defaults

`Struct Swap var1, var2` Exchange contents of two structures

`Struct Print var` Print structure contents for debugging

`Struct Print arr()` Print all array elements

`Struct Save #n, var` Save structure to open file

`Struct Save #n, arr()` Save entire structure array to open file

`Struct Save #n, arr(i)` Save single array element to open file

`Struct Load #n, var` Load structure from open file

`Struct Load #n, arr()` Load entire structure array from open file

`Struct Load #n, arr(i)` Load single array element from open file

MATH Commands Supporting Structures

Command Description

`MATH C_ADD a().m, b().m, c().m` Element-wise addition

`MATH C_SUB a().m, b().m, c().m` Element-wise subtraction

`MATH C_MUL a().m, b().m, c().m` Element-wise multiplication

`MATH C_DIV a().m, b().m, c().m` Element-wise division

`MATH SCALE a().m, k, b().m` Multiply all elements by scalar k

`MATH ADD a().m, k, b().m` Add scalar k to all elements

`MATH POWER a().m, k, b().m` Raise all elements to power k

`MATH V_ROTATE cx,cy,ang,x().m,y().m,ox().m,oy().m` Rotate coordinates

`MATH WINDOW a().m, lo, hi, b().m` Normalize to range [lo, hi]

`MATH(MAX(a().m [,idx%]))` Maximum value (and optional index)

`MATH(MIN(a().m [,idx%]))` Minimum value (and optional index)

`MATH(MEAN(a().m))` Arithmetic mean

`MATH(SUM(a().m))` Sum of all elements

ARRAY Commands Supporting Structures

Page 34

MMBasic Structures User Manual

Command Description

`ARRAY SET value, a().m` Set all member elements to value

`ARRAY ADD a().m, k, b().m` Add scalar k to all elements

Functions

Function Description

`Struct(FIND arr().member, value [... Find element with matching member value, returns in...

`Struct(OFFSET typename$, element$... Get byte offset of member within structure type

`Struct(SIZEOF typename$)` Get size in bytes of a structure type

`Bound(arr() [,dimension])` Get upper bound of structure array dimension (stand...

Member Types

Type Size Alignment Description

`INTEGER` 8 bytes 8-byte 64-bit signed integer

`FLOAT` 8 bytes 8-byte 64-bit floating point

`STRING` 256 bytes None Default string (255 char...

`STRING LENGTH n` n+1 bytes None String with specified ma...

Nested struct Varies 8-byte Size of the nested struc...

This appendix provides technical details about how structures are implemented internally in MMBasic. This information
is primarily useful for developers working on MMBasic itself or advanced users who need to understand the low-level
behavior.

Overview
MMBasic structures (user-defined types) are implemented using a **single vartbl entry per structure variable**,
regardless of how many members the structure contains. Structure members do NOT create individual entries in
"g_vartbl". Instead, member metadata is stored in a separate **structure type definition table** ("g_structtbl"), and
member access is resolved at runtime by calculating byte offsets into a contiguous memory block.

Architecture

Data Structures

1. Structure Type Definition (`s_structdef`)

 typedef struct s_structdef {
 unsigned char name[MAXVARLEN]; // Structure type name (e.g., "POINT")
 int num_members; // Number of members in this type
 struct s_structmember members[MAX_STRUCT_MEMBERS]; // Member definitions
 int total_size; // Total size in bytes (with alignment)
 } structdef_val;

2. Structure Member Definition (`s_structmember`)

 typedef struct s_structmember {
 unsigned char name[MAXVARLEN]; // Member name (e.g., "X", "Y")
 unsigned char type; // T_NBR, T_STR, T_INT, or T_STRUCT (nested)
 unsigned char size; // String max length, or nested struct type index
 int offset; // Byte offset within structure
 short dims[MAXDIM]; // Array dimensions (0 = not an array)
 } structmember_val;

Page 35

MMBasic Structures User Manual

3. Variable Table Entry (`s_vartbl`)

Structure variables use the standard variable table entry:
 typedef struct s_vartbl {
 unsigned char name[MAXVARLEN]; // Variable name (e.g., "PT", "POINTS")
 unsigned char type; // T_STRUCT | T_IMPLIED (and possibly T_PTR)
 unsigned char level; // Scope level (0 = global, >0 = local)
 unsigned char size; // ** STRUCT TYPE INDEX ** (not string size)
 unsigned char namelen; // Flags (NAMELEN_EXPLICIT, NAMELEN_STATIC)
 int/short dims[MAXDIM]; // Array dimensions (for struct arrays)
 union u_val {
 MMFLOAT f;
 long long int i;
 MMFLOAT *fa;
 long long int *ia;
 unsigned char *s; // ** POINTER TO STRUCT DATA BLOCK **
 } val;
 } vartbl_val;

Global Tables

Table Purpose Size

`g_structtbl[MAX_STRUC... Array of pointers to s... 32 pointers

`g_structcnt` Count of defined struc... int

`g_vartbl[]` Variable table (struct... MAXVARS entries

Configuration Constants

 - "MAX_STRUCT_TYPES" = 32 (maximum distinct TYPE definitions)
 - "MAX_STRUCT_MEMBERS" = 16 (maximum members per structure)
 - "MAX_STRUCT_NEST_DEPTH" = 8 (maximum nesting depth)

Memory Layout

Single Structure Variable

For a structure definition:
 TYPE point
 x AS FLOAT
 y AS FLOAT
 END TYPE

 DIM pt AS point

Creates:
 1. **One entry in "g_structtbl"** (type definition, allocated once)
 2. **One entry in "g_vartbl"** for variable "pt"
 3. **One contiguous memory block** (16 bytes) pointed to by "g_vartbl[idx].val.s"
Memory layout for "pt":
 Offset Content Size
 0 x (FLOAT) 8 bytes
 8 y (FLOAT) 8 bytes
 --- Total 16 bytes

Structure Array

 DIM points(100) AS point

Creates:

Page 36

MMBasic Structures User Manual

 1. **One entry in "g_vartbl"** for array "points"
 2. **One contiguous memory block** (16 × 101 = 1616 bytes, accounting for OPTION BASE)
Memory layout for "points(0)" through "points(100)":
 Offset Content
 0 points(0).x, points(0).y (16 bytes)
 16 points(1).x, points(1).y (16 bytes)
 32 points(2).x, points(2).y (16 bytes)
 ...
 1600 points(100).x, points(100).y (16 bytes)

How vartbl Fields Are Used for Structures

Field Usage for Structures

`name[]` Variable name (e.g., "PT", "POINTS")

`type` `T_STRUCT \ T_IMPLIED` (may in...

`level` Scope level (0 = global)

`size` **Structure type index** into `g_structtbl[]`

`namelen` Flags: `NAMELEN_STATIC` for static variables

`dims[]` Array dimensions (0 for simple struct, >0 for arrays)

`val.s` **Pointer to allocated struct data**

Key Insight: `size` Field Repurposing

For regular variables, "size" holds string length. For structures:
 - "size" holds the **index into "g_structtbl"** that defines this struct's type
 - Retrieved via: "int struct_type = (int)g_vartbl[idx].size;"
 - Then access type definition: "g_structtbl[struct_type]"

Structure Member Access Resolution
When code accesses "pt.x" or "points(5).y":

Step 1: Parse Variable Name

 - Detect dot in name
 - Split into base name ("pt") and member path ("x")

Step 2: Find Base Variable

 - Hash-based lookup in local then global variable space
 - Verify "type & T_STRUCT"
 - Return struct type index from "size" field

Step 3: Resolve Member Path

 - Look up member in "g_structtbl[type_idx]->members[]"
 - Calculate byte offset from "member.offset"
 - Handle nested structs recursively
 - Handle array indexing for member arrays

Step 4: Return Pointer

 - Final pointer = "base_ptr + total_offset + array_offset"
 - Set "g_StructMemberType" for type checking
 - Set "g_StructMemberOffset" and "g_StructMemberSize" for STRUCT operations

Page 37

MMBasic Structures User Manual

STATIC Structure Variables
STATIC structures create TWO vartbl entries:
 1. **Global entry** with mangled name (""funcname\x1evarname"")
 - Holds actual struct data
 - Persists across function calls
 - The "\x1e" (ASCII Record Separator) character separates the function name from the variable name
 2. **Local entry** with original name
 - "val.s" points to global entry's data
 - Destroyed when function exits
The "<RS>" character in the name prevents conflicts with structure member syntax (which uses ".").

Example Memory Trace

 TYPE room
 temp AS FLOAT
 name AS STRING LENGTH 20
 END TYPE

 FUNCTION thisreading() AS room
 STATIC n% ' Creates global "thisreading<RS>n"
 STATIC data AS room ' Creates global "thisreading<RS>data"
 n% = n% + 1
 data.temp = 22.5
 data.name = "Kitchen"
 thisreading = data
 END FUNCTION

g_structtbl[0] (room type):

 name = "ROOM"
 num_members = 2
 members[0] = { name="TEMP", type=T_NBR, offset=0, size=8 }
 members[1] = { name="NAME", type=T_STR, offset=8, size=20 }
 total_size = 32 (8 + 21, rounded up for alignment)

g_vartbl entries when function runs:

Index Name Type Size val.s

G1 "THISREADING\x1EN" T_INT 8 (integer value)

G2 "THISREADING\x1EDATA" T_STRUCT 0 -> 32-byte block

L1 "N" T_INT\ T_PTR 8 -> G1's value

L2 "DATA" T_STRUCT\ T_PTR 0 -> G2's data block

Summary: Key Design Decisions
 1. **One vartbl entry per variable** - Members are NOT individual variables
 2. **Type definitions separate from instances** - "g_structtbl" holds metadata
 3. **Contiguous memory blocks** - Efficient for arrays and memory operations
 4. **Offset-based member access** - Calculated at runtime, no pointer chasing
 5. **Alignment enforced** - 8-byte boundary for numeric types
 6. **Nested structures supported** - Via recursive type references
 7. **STATIC uses mangled names** - With "\x1e" separator to avoid dot conflicts

Page 38

