MMBasic Structures User Manual

Introduction

Structures (also known as User-Defined Types) allow you to group related variables of different types together under a
single name. This is useful for organizing complex data such as coordinates, records, or any collection of related values.

Defining a Structure Type

Use the "TYPE...END TYPE" block to define a new structure type:
Type typenane
menber1l As type
menber2 As type

End Type

Supported Member Types

- "INTEGER" - 64-bit signed integer
- "FLOAT" - 64-bit floating point number
- "STRING" - String up to 255 characters (use "LENGTH n" to specify maximum length)

Examples

Simple structure:
Type Poi nt
x As | NTEGER
y As | NTEGER
End Type

Structure with mixed types:
Type Person
age As | NTEGER
hei ght As FLOAT
name As STRI NG
End Type

Structure with string length specified:
Type Record
id As | NTEGER
description As STRI NG LENGTH 100
End Type

Memory Layout and Alignment

Understanding how structures are packed in memory is important when working with binary file 1/0 or calculating
memory usage.

Member Storage Sizes

Type Storage Size
‘INTEGER® 8 bytes
"FLOAT® 8 bytes
"STRING® length + 1 bytes (1 byte for length prefix + specified/default leng...
"STRING LENGTH n° n + 1 bytes
Nested structure Size of the nested structure type

Alignment Rules

Page 1

MMBasic Structures User Manual

Members are placed sequentially in memory with the following alignment rules:

- **Strings**: No alignment requirement. Placed immediately after the previous member.

- *INTEGER, FLOAT, and nested structures**: Aligned to 8-byte boundaries. If the current offset is not divisible by 8,
padding bytes are inserted before the member.

Padding Example

When a numeric type follows a string whose total storage is not aligned to 8 bytes, padding is automatically inserted:
Type Exanpl el

nane As STRI NG LENGTH 10 ' Ofset 0, size 11 bytes (10 + 1 length byte)
val ue As | NTEGER ' Offset 16 (padded from 11l to align to 8)
End Type

Total size: 24 bytes (11 + 5 padding + 8)

Type Exanpl e2

nane As STRI NG LENGTH 15 ' Ofset 0, size 16 bytes (15 + 1 length byte)
val ue As | NTECER ' Ofset 16 (no paddi ng needed, already aligned)
End Type

Total size: 24 bytes (16 + 8)

Type Exanpl e3

a As | NTEGER ' Offset 0, size 8 bytes

nane As STRI NG LENGTH 5 ' Ofset 8, size 6 bytes (5 + 1 length byte)

b As | NTEGER ' Ofset 16 (padded from14 to align to 8)
End Type

Total size: 24 bytes (8 + 6 + 2 padding + 8)

Optimizing Structure Size

To minimize wasted space from padding, consider:

1. *Grouping humeric members together**: Place all INTEGER and FLOAT members consecutively.

2. **Using string lengths that result in 8-byte aligned totals**: String lengths of 7, 15, 23, 31, etc. (where length + 1 is
divisible by 8) avoid padding when followed by numeric types.
Note on structure end padding: Padding is always added to the end of a structure to ensure the total size is aligned
to 8 bytes. This is required so that arrays of structures maintain proper memory alignment for all elements. Without end

padding, the second element of an array would start at a misaligned address, potentially causing memory access errors.
Less efficient (has internal padding):
Type I nefficient

flag As | NTEGER ' 8 bytes

name As STRI NG LENGTH 10 ' 11 bytes

count As | NTEGER ' 8 bytes (but needs 5 bytes padding before it)
End Type

Total : 32 bytes

More efficient (no internal padding, but end padding still applies):
Type Efficient

flag As | NTEGER ' 8 bytes

count As | NTEGER ' 8 bytes

nane As STRI NG LENGTH 10 ' 11 bytes + 5 bytes end paddi ng
End Type

Total : 32 bytes (padded to 8-byte boundary)
Use "STRUCT(SIZEOF "typename")" to verify the actual size of your structures.

Declaring Structure Variables

Use "DIM" to declare variables of a structure type:
Di m vari abl enane As typenamne

Examples

Page 2

MMBasic Structures User Manual

Simple structure variable:
Type Poi nt
X As | NTEGER
y As | NTEGER
End Type

Dimp As Point
Dimorigin As Point

Multiple variables:
Dimpl As Point, p2 As Point, p3 As Point

Accessing Structure Members

Use the dot (".") notation to access individual members:
vari abl enane. menber nanme

Examples

Setting values:
Dimp As Point
p. X 100
p.y = 200

Reading values:
Print p.x, p.y
result = p.x + p.y
Using in expressions:
distance = Sqr(p.x * p.x + p.y * p.y)

Arrays of Structures

You can create arrays where each element is a structure:
Di m arraynane(si ze) As typenane

Examples

Declaring an array of structures:
Di m poi nts(10) As Poi nt

Accessing array elements:

points(0).x = 10
points(0).y = 20
points(1l).x = 30
points(1l).y = 40

Print points(0).x, points(0).y

Using variable indices:

For i =0 To 10
points(i).x =i * 10
points(i).y =i * 20

Next

Multi-dimensional arrays:
Dimgrid(10, 10) As Point
grid(5, 5).x = 100

Page 3

MMBasic Structures User Manual

grid(5, 5).y = 200

Initializing Structures

Structures can be initialized when declared using parentheses with comma-separated values:
Di m vari abl enane As typenane = (val uel, value2, ...)

Values must be provided in the order the members are defined in the TYPE block.

Examples

Simple structure initialization:
Type Poi nt
X As | NTEGER
y As | NTEGER
End Type

Dmp As Point = (100, 200)
p.x = 100, p.y = 200

Structure with string:
Type Person
age As | NTEGER
hei ght As FLOAT
name As STRI NG
End Type

Di m personl As Person = (25, 1.75, "Alice")

Array of structures initialization:
Di m points(2) As Point = (10, 20, 30, 40, 50, 60)

points(0).x = 10, points(0).y = 20
points(1l).x = 30, points(1l).y = 40
points(2).x = 50, points(2).y = 60

Values are assigned sequentially: all members of element 0, then all members of element 1, etc.

Copying Structures

Structures can be copied using direct assignment or the "STRUCT COPY" command.

Direct Assignment

The simplest way to copy a structure is using direct assignment:
destinati on = source
This works for:
- Single structure variables
- Individual array elements

Example - Single structures:
Dimsrc As Point, dst As Point

src.x = 100
src.y = 200
dst = src

' dst.x = 100, dst.y = 200
Example - Array elements:

Di m poi nt s(10) As Poi nt
points(0).x = 50 : points(0).y = 60

Page 4

MMBasic Structures User Manual

poi nts(5) = points(0) ' Copy element 0 to elenent 5
poi nts(5).x = 50, points(5).y = 60

Example - Cross-array copy:
Dimsrc(5) As Person
Di m dst (5) As Person
popul ate src ...

dst(2) = src(3) ' Copy element 3 fromsrc to elenment 2 of dst
Important: Both source and destination must be the same structure type. Attempting to assign structures of different
types will cause an error.

STRUCT COPY Command

The "STRUCT COPY" command provides the same functionality with explicit syntax:
Struct Copy source To destination

Both variables must be of the same structure type.

Example:
Dimsrc As Point, dst As Point
src.x = 100
src.y = 200

Struct Copy src To dst
dst.x = 100, dst.y = 200

Copying Entire Arrays

You can copy entire structure arrays using empty parentheses:
Struct Copy sourceArray() To destinationArray()

Requirements:
- Both arrays must be the same structure type
- The destination array must be at least as large as the source array
- Both must use the "()" syntax, or both must be single elements
- Only the source elements are copied (extra destination elements are preserved)

Example:
Dimsrc(2) As Point
src(0).x =10 : src(0).y = 11
src(l).x =20 : src(l).y = 21
src(2).x =30 : src(2).y = 31
Dimdst(4) As Point ' Larger destination is OK

Struct Copy src() To dst()
dst (0), dst(1l), dst(2) now contain copies fromsrc
' dst(3), dst(4) are unchanged

Example - Same size arrays:
Di m ori ginal (10) As Person
popul ate array ...
Di m backup(10) As Person
Struct Copy original () To backup()

Sorting Structure Arrays

Use the "STRUCT SORT" command to sort an array of structures in-place based on any member field:

Page 5

MMBasic Structures User Manual

Struct Sort array().nenbername [, flags]

Parameters

- "array().membername" - The structure array with the member to sort by. The array name must include empty
parentheses followed by a dot and the member name (e.g., "people().age")
- "flags" - Optional flags to modify sort behavior (can be combined by adding):

Value Description
0 Default: ascending sort, case-sensitive
1 Reverse sort (descending order)
2 Case-insensitive sort (strings only)
4 Empty strings sort to end of array (strings only)

Flags can be combined by adding values (e.g., 3 = descending + case-insensitive).

Examples

Sort by integer field (ascending):
Type Person
age As | NTEGER
name As STRI NG
End Type

Di m peopl e(3) As Person

peopl e(0).age = 35 : people(0).nanme = "Charlie"
peopl e(1l).age = 25 : people(l).name = "Alice"
peopl e(2).age = 45 : peopl e(2).nanme = "David"
peopl e(3).age = 30 : peopl e(3).nane = "Bob"

Struct Sort people().age
' Result: Alice(25), Bob(30), Charlie(35), David(45)

Sort by string field:

Struct Sort peopl e().nane
Result: Alice, Bob, Charlie, David

Reverse sort (descending):
Struct Sort people().age, 1
Resul t: David(45), Charlie(35), Bob(30), Alice(25)

Case-insensitive string sort:
Struct Sort people().nanme, 2

Combine flags (reverse + case-insensitive):
Struct Sort people().nane, 3
' 3 =1+ 2 (reverse + case insensitive)

Empty strings at end:
Struct Sort people().nanme, 4
Non-enpty strings sorted first, enpty strings at end

Notes

- The entire structure is moved during sorting, not just the sort key

- All other member values are preserved with their corresponding records
- The sort is performed in-place (no additional array is created)

- Array members within structures cannot be used as sort keys

Page 6

MMBasic Structures User Manual

- Supports INTEGER, FLOAT, and STRING member types

Extracting Structure Members to Arrays

Use the "STRUCT EXTRACT" command to copy a single member from each element of a structure array into a simple
contiguous array. This is essential when you need to use structure data with commands that expect arrays with fixed

8-byte stride (such as "LINE PLOT", "MATH SCALE", etc.).
Struct Extract structarray().menbernane, destarray()

Parameters

- "structarray().membername" - The source structure array with the member to extract. The array nhame must include
empty parentheses followed by a dot and the member name (e.g., "readings().temperature™)
- "destarray()" - The destination simple array (must include empty parentheses)

Requirements

- Source must be a **1-dimensional** structure array

- Member must be a simple type (INTEGER, FLOAT, or STRING) - not an array member or nested structure
- Destination must be a **1-dimensional** simple array (not a structure)

- **Both arrays must have the same cardinality** (humber of elements)

- *Both must have the same type** (INTEGER, FLOAT, or STRING)

- **For strings, both must have the same maximum length**

Why This Command is Needed

Some MMBasic commands that process arrays assume data is stored contiguously with a fixed stride of 8 bytes
between elements. When you have data in a structure array like:

Type Room
tenperature As FLOAT ' offset 0O
hum dity As FLOAT ' offset 8
End Type

Di m readi ngs(144) As Room

The "temperature" values are 16 bytes apart (the size of the structure), not 8 bytes. Commands that are not
structure-aware would read incorrect memory locations for elements after the first.

"STRUCT EXTRACT" solves this by copying the desired member values into a properly-formatted simple array for use
with commands that don't support structure member arrays directly.

*Note:** Many commands (like "LINE PLOT", "POLYGON", various "MATH" commands, and most drawing commands)
now support structure member arrays directly. See the "Using Structure Arrays with Drawing Commands" and "Using
Structure Arrays with MATH Commands" sections for details.

Examples

Extract temperatures for plotting:
Type Room
tenperature As FLOAT
hum dity As FLOAT
End Type

Di m readi ngs(144) As Room
Di m t enps(144)

popul ate readings() with sensor data ...

Extract tenperature values into a sinple array
Struct Extract readings().tenperature, tenps()

Page 7

MMBasic Structures User Manual

Now tenps() can be used with LI NE PLOT
LI NE PLOT tenps()

Extract integer values:
Type Dat aPoi nt
timestanp As | NTECER
val ue As | NTEGER
End Type

Di m sanpl es(100) As Dat aPoi nt
Di m val ues% 100)

popul at e sanpl es()

Extract just the values for processing
Struct Extract sanples().value, values%)

Now val ues%) can be used wi th MATH conmands
Mat h Scal e val ues%), 2, val ues%)

Extract string data:
Type Person
nanme As STRI NG LENGTH 20
age As | NTEGER
End Type

Di m peopl e(50) As Person
Di m nanes$(50) LENGTH 20

popul at e peopl e()
Extract all nanes
Struct Extract people().nane, nanmes$()
Notes

- The extraction is a one-time copy - changes to the destination array do not affect the source structures
- Use this command when you need to pass structure member data to array-processing functions
- For best performance, extract data once before processing rather than repeatedly in loops

Inserting Array Values into Structures

Use the "STRUCT INSERT" command to copy values from a simple array into a specific member of each element in a

structure array. This is the reverse of "STRUCT EXTRACT".
Struct Insert srcarray(), structarray().nenbernane

Parameters

- "srcarray()" - The source simple array (must include empty parentheses)
- "structarray().membername" - The destination structure array with the member to write to. The array name must
include empty parentheses followed by a dot and the member name (e.qg., "readings().temperature")

Requirements

- Source must be a **1-dimensional** simple array (not a structure)

- Destination must be a **1-dimensional** structure array

- Member must be a simple type (INTEGER, FLOAT, or STRING) - not an array member or nested structure
- **Both arrays must have the same cardinality** (humber of elements)

Page 8

MMBasic Structures User Manual

- *Both must have the same type** (INTEGER, FLOAT, or STRING)
- **For strings, both must have the same maximum length**

Examples

Insert processed values back into structures:

Type Room
tenperature As FLOAT
hum dity As FLOAT
End Type

Di m readi ngs(144) As Room
Di m t enps! (144)

Extract tenperatures
Struct Extract readings().tenperature, tenps!()

Process the data (e.g., apply calibration)
Math Scale tenps! (), 1.02, tenps!()
Math Add tenps! (), -0.5, tenps!()

Insert corrected values back into structures
Struct Insert tenps!(), readings().tenperature

Populate structure members from computed arrays:
Type Dat aPoi nt
x As | NTEGER
y As | NTEGER
End Type

Di m poi nts(100) As Dat aPoi nt
Di m xval s% 100), yval s% 100)

' Cenerate coordinate arrays
For i% = 0 To 100

xval s%{i % =i%* 10

yval s%i% = Sin(i%* 0.1) * 100
Next i %

Insert into structure array
Struct Insert xvals%), points().x
Struct Insert yvals%), points().y

Notes

- Only the specified member is modified; all other members retain their values
- The insertion is a one-time copy - subsequent changes to the source array do not affect the structures
- Useful for updating structure data after processing with array-based functions

Using Structure Arrays with Drawing Commands

Several MMBasic drawing commands accept arrays of coordinates to draw multiple shapes efficiently. These
commands now support **direct use of structure member arrays**, allowing you to pass structure data without first
extracting it to separate arrays.

Supported Drawing Commands

The following commands support structure member array syntax:

Command Array Parameters

"LINE PLOT® y-coordinates array

Page 9

MMBasic Structures User Manual

"LINE GRAPH® X(), y() coordinate arrays

"PIXEL® x(), y() coordinate arrays

"LINE" (array mode) x1(), y1(), x2(), y2() endpoint arrays
"POLYGON® x(), y() vertex arrays

"CIRCLE" x(), Y0, r() center and radius arrays

‘BOX® x(), Y0, w(), h() position and size arrays
"RBOX” x(), ¥(), w(), h() position and size arrays
"TRIANGLE® x10), y10), x2(), y2(), x3(), y3() vertex arrays
Syntax

Use the standard structure member array syntax with empty parentheses:

COWAND structarray(). menber,
The empty parentheses "()" after the array name indicate "all elements", and the ".member" specifies which member to
use from each structure element.

How It Works

When you pass a structure member array like "points().x", the drawing command automatically handles the
non-contiguous memory layout. Structure members are spaced by the structure's total size (stride), not the standard
8-byte spacing of simple arrays.

For example, with:

Type Poi nt
x As FLOAT ' offset O
y As FLOAT ' offset 8
End Type

Di m poi nt s(100) As Poi nt

The "X" values are 16 bytes apart (the size of Point), not 8 bytes. The drawing commands account for this stride
automatically.

Examples

Drawing pixels from a Point array:
Type Poi nt
x As FLOAT
y As FLOAT
End Type

Di m stars(50) As Point
Di m | NTEGER i

Initialize random star positions
For i =0 To 50
stars(i).x = Rnd * MM HRES
stars(i).y = Rnd * MM VRES
Next i

Draw all stars with a single command
Pl XEL stars().x, stars().y, RGB(WH TE)

Drawing circles from a CircleDef array:
Type Circl eDef
x As FLCAT
y As FLOAT
r As FLOAT
End Type

Page 10

MMBasic Structures User Manual

Dimcircles(10) As Circl eDef

Initialize circles
For i = 0 To 10

circles(i).x =50 +i * 50
circles(i).y = 100
circles(i).r =20 +i * 2

Next i

Draw all circles
CIRCLE circles().x, circles().y, circles().r,,, RGB(CYAN

Drawing connected lines (LINE PLOT) from Y values:
Type Dat aPoi nt
timestanp As | NTEGCER
val ue As FLOAT
End Type

Di m r eadi ngs(200) As Dat aPoi nt
popul ate readings with sensor data ...

' Plot the values as a connected |ine graph
LI NE PLOT readings().value, 1, RGB(GREEN)

Drawing boxes from a rectangle structure:
Type Rect Def
X As FLOAT
y As FLOAT
w As FLOAT
h As FLOAT
End Type

Di m boxes(5) As Rect Def

Initialize boxes

For i =0 To 5
boxes(i).x = 10 + i * 100
boxes(i).y = 50
boxes(i).w = 80
boxes(i).h = 60

Next i

Draw al | boxes
BOX boxes().x, boxes().y, boxes().w, boxes().h,, RGB(YELLOWN

Drawing triangles:
Type Tri Def
x1 As FLOAT : yl1 As FLOAT
x2 As FLOAT : y2 As FLOAT
x3 As FLOAT : y3 As FLOAT
End Type

Dimtriangles(4) As Tri Def

Initialize triangles
For i =0 To 4

triangles(i).x1 30 +i * 70
triangles(i).yl = 120

triangles(i).x2 =60 +i * 70
triangles(i).y2 = 80
triangles(i).x3 =90 +i * 70
triangles(i).y3 = 120

Page 11

MMBasic Structures User Manual

Next i

Draw al |l triangles
TRI ANGLE triangles().x1, triangles().yl, triangles().x2, triangles().y2, triangles().x3, triangles().y:

Drawing lines between two Point arrays:
Type Poi nt
x As FLOAT
y As FLOAT
End Type

DimlineStart(10) As Point
Dim|ineEnd(10) As Point

Initialize |ine endpoints

For i = 0 To 10
lineStart(i).x =0
lineStart(i).y =i * 20
lineEnd(i).x = MM HRES - 1
lineEnd(i).y =i * 20

Next i

' Draw all lines

LINE lineStart().x, lineStart().y, lineEnd().x, lineEnd().y,, RGB(BLUE)

Mixing Structure and Simple Arrays

You can mix structure member arrays with simple arrays or scalar values in the same command:
Type Poi nt
x As FLOAT
y As FLOAT
End Type

Di m centers(10) As Poi nt
Di m FLOAT radii (10)

Use structure for centers, sinple array for radii
For i = 0 To 10

centers(i).x =50 +i * 50

centers(i).y = 100

radii(i) =15 +i * 3
Next i

Cl RCLE centers().x, centers().y, radii(),,, RGB(MAGENTA)

When to Use STRUCT EXTRACT Instead

While direct structure member array syntax is convenient, there are cases where "STRUCT EXTRACT" is still preferred:
1. **Repeated use of the same data**: If you need to pass the same member data to multiple commands or in a loop,
extracting once is more efficient.
2. *Performance-critical code**: Direct pointer arithmetic on simple arrays is slightly faster than strided access.
Extract once, use nultiple tines
Di m FLOAT xval s(100), yval s(100)
Struct Extract points().x, xvals()
Struct Extract points().y, yvals()

Now use with any array conmmand
LI NE PLOT xval s()
MATH SCALE yval s(), 2, yvals()

Notes

Page 12

MMBasic Structures User Manual

- All coordinate arrays in a single command must have compatible dimensions
- The command uses the minimum array size if dimensions differ

- Integer and float structure members are both supported

- String members cannot be used with drawing commands

Using Structure Arrays with MATH Commands

Several MMBasic MATH commands now support **direct use of structure member arrays**, allowing you to perform
mathematical operations on structure data without first extracting it to separate arrays. This is particularly useful for
processing coordinate data, sensor readings, or any numerical data stored in structures.

Supported MATH Commands

The following MATH commands support structure member array syntax:

Element-wise Operations (3 arrays)

Command Operation Description
"MATH C_ADD® a() +b()=c() Element-wise addition
"MATH C_SUB® a()-b() =c(Element-wise subtraction
"MATH C_MUL® a() *b() =c() Element-wise multiplication
‘MATH C_MULT® a)*b()=c() Same as C_MUL
‘MATH C_DIV* a()/b() =c() Element-wise division

Scalar Transformations

Command Operation Description
"MATH SCALE® a()*k=hb() Multiply all elements by scalar
"MATH ADD" a() +k=hb() Add scalar to all elements
"MATH POWER" a()"k = b() Raise all elements to a power

Statistical Functions

Function Description

"MATH(MAX(a()))" Find maximum value
"MATH(MAX(a(), idx%))" Find maximum and its index
"MATH(MIN(a()))" Find minimum value
"MATH(MIN(a(), idx%))" Find minimum and its index
"MATH(MEAN(a()))" Calculate arithmetic mean
"MATH(SUM(a())) Calculate sum of all elements
Coordinate and Data Transformations

Command Description

"MATH V_ROTATE®

Rotate 2D coordinate arrays around a point

"MATH WINDOW"

Normalize array values to a specified range

Syntax

Use the standard structure member array syntax with empty parentheses:
MATH conmand structarray(). nenber,

result =

How It Works

MATH(function(structarray().nenber))

Page 13

MMBasic Structures User Manual

When you pass a structure member array like "points().x", the MATH command automatically handles the
non-contiguous memory layout. Structure members are spaced by the structure's total size (stride), not the standard
8-byte spacing of simple arrays.

For example, with:

Type Poi nt
x As FLOAT ' offset O
y As FLOAT ' offset 8
End Type

Di m poi nt s(100) As Poi nt

The "x" values are 16 bytes apart (the size of Point), not 8 bytes. The MATH commands account for this stride
automatically.

Examples
Element-wise Operations

Adding two structure member arrays:
Type Vector
x As FLOAT
y As FLOAT
z As FLOAT
End Type

Dima(10) As Vector
Di m b(10) As Vector
Dimresult(10) As Vector

Initialize vectors

For i = 0 To 10

a(i).x =i a(i).y =i *2: a(i).z =1 * 3
b(i).x =1 : b(i).y =2 b(i).z =3

Next i

Add x conponents

MATH C_ADD a().x, b().x, result().x
Add y conponents

MATH C ADD a().y, b().y, result().y
Add z conponents

MATH C_ADD a().z, b().z, result().z

Multiplying struct arrays element-wise:
Type Dat aPoi nt
val ue As FLOAT
wei ght As FLOAT
wei ghted As FLOAT
End Type

Di m dat a(100) As Dat aPoi nt
popul ate data().val ue and data().wei ght

Cal cul ate wei ghted val ues: wei ghted = val ue * wei ght
MATH C_MJL data().value, data().weight, data().weighted

Scalar Transformations

Scaling coordinates:
Type Poi nt
x As FLOAT
y As FLOAT
End Type

Page 14

MMBasic Structures User Manual

Di m pts(50) As Point
popul ate points ...

Doubl e all X coordi nates
MATH SCALE pts().x, 2.0, pts().x

Add offset to all Y coordi nates
MATH ADD pts().y, 100, pts().y

Calculating squares:
Type Dat aRec
val ue As FLOAT
squared As FLOAT
End Type

Di m nums(100) As Dat aRec
popul ate nums().val ue ...

Square all val ues
MATH POAER nums().val ue, 2, numns().squared

Statistical Functions

Finding extremes in structure data:
Type Sensor Readi ng
ti mestanp As | NTEGER
tenperature As FLCAT
hum dity As FLOAT
End Type

Di m readi ngs(144) As Sensor Readi ng
' ... populate with 24 hours of readings (every 10 mn)

Find tenperature statistics
Di m maxTenp!, m nTenp!, avgTenp!, sunilenp!
Di m max!l dx% m nl dx%

maxTenp! = MATH(MAX(readi ngs().tenperature, maxldx%)

m nTenp! = MATH(M N(readi ngs().tenperature, mnldx%)

avgTenp! = MATH(MEAN(readi ngs().tenperature))

sunfenp! = MATH(SUM r eadi ngs().tenperature))

Print "Max tenperature: "; maxTenp!; " at reading "; maxldx%
Print "Mn tenperature: "; mnTenp!; " at reading "; m nldx%
Print "Average tenperature: "; avgTenp!

Coordinate Rotation (V_ROTATE)

Rotating point coordinates around a center:

Type Poi nt
x As FLOAT
y As FLOAT
End Type

Di m shape(20) As Point
' define a shape's vertices ...

Rotate all points 45 degrees around point (100, 100)
MATH V_ROTATE 100, 100, 45, shape().x, shape().y, shape().x, shape().y

Draw the rotated shape

Page 15

MMBasic Structures User Manual

Pl XEL shape().x, shape().y
Rotating with separate output arrays:

Di m ori gi nal (20) As Point

Di mrotated(20) As Point

Preserve original, store rotated in new array

MATH V_ROTATE 0, 0, 90, original().x, original().y, rotated().x, rotated().y

Data Normalization (WINDOW)

Normalizing sensor data to screen coordinates:
Type Dat aPoi nt
raw_val ue As FLOAT
screen_y As FLOAT
End Type

Di m sanpl es(200) As Dat aPoi nt
popul ate sanpl es().raw value with sensor data ...

Normalize to screen Y range (0 to 480)
MATH W NDOW sanpl es().raw _val ue, 0, 480, sanples().screen_y

Now sanpl es().screen_y contains Y positions for plotting
LI NE PLOT sanpl es().screen_y

Getting min/max during normalization:
D m dat aM n!, dat aMax!
MATH W NDOW sanpl es().raw_val ue, 0, 100, sanples().screen_y, dataMn!,

Print "Data range: "; dataMn!; " to "; dataMax!

Mixing Structure and Simple Arrays

You can mix structure member arrays with simple arrays in the same MATH command:
Type Poi nt
x As FLOAT
y As FLOAT
End Type

Di m pts(50) As Point
Di m FLOAT of f set s(50)
Di m FLOAT resul t s(50)

Add structure nmenber to sinple array
MATH C _ADD pts().x, offsets(), results()

O output to structure menber from sinple arrays
MATH C_ADD of fsets(), offsets(), pts().x

Integer Structure Members

Integer structure members work with MATH commands that support integers:
Type IntData
a As | NTEGER
b As | NTEGER
result As | NTEGER
End Type

Di midata(100) As IntData

I nteger el ement-w se operations

Page 16

dat aax!

MMBasic Structures User Manual

MATH C_ADD idata().a, idata().b, idata().result
MATH C ML idata().a, idata().b, idata().result

I nteger statistics
Dim maxVal % m nVal % i dx%
maxVal % = MATH(MAX(idata().a, idx%)
m nVal % = MATH(M N(i data().b))

MATH Commands NOT Supporting Structures

The following MATH commands do **not** support structure member arrays because they operate on fixed-size arrays
that are conceptually structures themselves:

- **Quaternion operations**: Q_CREATE, Q_EULER, Q_INVERT, Q_MUL, Q_ROTATE, Q_VECTOR

- **Matrix operations**: M_INVERSE, M_MULT, M_TRANSPOSE, M_PRINT

- *FFT operations**: FFT, MAGNITUDE

- **QOther**; CRC, INTERPOLATE, INPUT_CODE, V_CROSS, V_MULT, V_NORMALISE, V_PRINT
For these commands, use "STRUCT EXTRACT" if you need to work with structure data.

Performance Considerations

1. **Direct use is convenient**: For simple operations, passing structure members directly is clean and readable.
2. **Extract for repeated use**: If you need to perform many operations on the same member data, extracting once

may be more efficient:
Di m FLOAT xval s(100)
Struct Extract points().x, xvals()
Now use xval s() for nultiple operations

3. *Memory efficiency**: Direct structure access avoids allocating temporary arrays.

Complete Example: Sensor Data Processing

Define structure for sensor readings
Type Sensor Dat a

timestanp As | NTEGER

raw val ue As FLOAT

calibrated As FLOAT

normal i zed As FLOAT

End Type

Di m r eadi ngs(200) As SensorDat a
Dimcalibration_factor! = 1.023
Dimcalibration offset! = -2.5

popul ate readings().tinmestanp and readings().raw_val ue from sensor

Apply calibration: calibrated = raw * factor + offset
MATH SCALE readi ngs().raw val ue, calibration_factor!, readings().calibrated
MATH ADD readi ngs().calibrated, calibration_offset!, readings().calibrated

Get statistics on calibrated data
Dim maxVal !, minVal!, avgval!, maxldx% mi nldx%

maxVal ! = MATH(MAX(readi ngs().calibrated, nmaxldx%)
m nVal! = MATH(M N(readi ngs().calibrated, m nldx%)
avgVal ! = MATH(MEAN(r eadi ngs().calibrated))

Print "Calibrated data statistics:"

Print " Max: "; maxVal!; " at sanple "; maxl dx%
Print * Mn: "; minVal!; " at sanple "; mnldx%
Print " Avg: "; avgVal!

Normalize to display range (0-200 pixels)
MATH W NDOW r eadi ngs().cali brated, 0, 200, readings().nornalized

Page 17

MMBasic Structures User Manual

Pl ot the nornalized data
CLS
LI NE PLOT readings().nornalized, 1, RGB(GREEN)

Using Structure Arrays with ARRAY Commands

In addition to MATH commands, several ARRAY commands also support structure member arrays directly.

Supported ARRAY Commands

Command Description
"ARRAY SET Set all elements of a member array to a single value
"ARRAY ADD® Add a scalar to all elements, storing in destination
Syntax

ARRAY SET val ue, structarray(). nmenber
ARRAY ADD structarray().menber, scalar, destarray().menber

Examples

Setting all members to a value:
Type Dat aPoi nt
timestanp As | NTEGER
val ue As FLOAT
status As | NTEGER
End Type

Di m r eadi ngs(100) As Dat aPoi nt

" Initialize all value nenbers to zero
ARRAY SET 0, readings().val ue

Set all status flags to 1
ARRAY SET 1, readings().status

Adding a constant to all elements:

Type Measurenent
raw As FLCAT
cal i brated As FLOAT
of fset As FLOAT
End Type

Di m dat a(50) As Measur enent

Apply offset: calibrated = raw + 5.5
ARRAY ADD data().raw, 5.5, data().calibrated

Copy array (add 0)
ARRAY ADD data().raw, O, data().calibrated

Mixing struct members with regular arrays:
Di m of f set s! (50)
popul ate offsets ...

You can use struct source with regular destination (or vice versa)
' as long as array sizes match

Page 18

MMBasic Structures User Manual

ARRAY Commands NOT Supporting Structures

The following ARRAY commands do **not** support structure member arrays because they operate on
multi-dimensional arrays:

- *ARRAY INSERT** - Requires 2D or higher dimensional arrays

- *ARRAY SLICE** - Requires 2D or higher dimensional arrays
Structure member arrays are inherently 1D (the array is of structures, not the member itself), so these commands
cannot be used with structure members.

Clearing Structures

Use the "STRUCT CLEAR" command to reset all members of a structure to their default values (0 for numbers, empty
string for strings):

Struct Clear variable

Struct Cear array()

Examples

Clear a single structure:
Dimp As Point
p. X 100
p.y 200

Struct Clear p
p.x =0, p.y =0

Clear an entire array of structures:
Di m peopl e(10) As Person
' popul ate array ...

Struct C ear people()
Al elenents reset to defaults

Swapping Structures

Use the "STRUCT SWAP" command to exchange the contents of two structure variables:
Struct Swap varl, var?2

Both variables must be of the same structure type. This is useful when implementing sorting algorithms or reordering
records.

Examples

Dima As Point, b As Point
a.x =10 : a.y = 20
b. x 30 : b.y = 40

Struct Swap a, b
Now. a.x = 30, a.y = 40, b.x = 10, b.y = 20

Swapping array elements:
Di m peopl e(5) As Person
popul ate array ...
Struct Swap peopl e(2), people(4)

' Elements 2 and 4 are exchanged

Printing Structures

Page 19

MMBasic Structures User Manual

Use the "STRUCT PRINT" command to display all members of a structure for debugging:

Struct Print variable
Struct Print array()
Struct Print array(index)

Forms

- "Struct Print variable" - Print a single structure variable
- "Struct Print array()" - Print all elements of a structure array
- "Struct Print array(n)" - Print a specific element of a structure array

Examples

Print a single structure:
Dimp As Person
p.name = "Alice"
p.age = 25
p. hei ght = 1. 65

Struct Print p

Output:
Per son:
.nanme = "Alice"
.age = 25
.height = 1.65

Print an array element:
Di m peopl e(10) As Person
popul ate array ...

Struct Print peopl e(0)

Print entire array:
Struct Print people()

Output:
Person array (11 el enments):
[0]:
.name = "Alice"
.age = 25
.height = 1.65
[1]:
. hame = "Bob"
.age = 30
.height = 1.80

Notes

- Array members are printed as comma-separated values
- Strings are displayed with surrounding quotes
- Useful for debugging and inspecting structure contents

Searching Structure Arrays

Use the "STRUCT(FIND ...)" function to search a structure array for an element with a matching member value:
index = Struct (FIND array().nmenbernane, value [, start])

Parameters

Page 20

MMBasic Structures User Manual

- "FIND" - The subfunction name
- "array().membername" - The structure array with the member to search. The array name must include empty
parentheses followed by a dot and the member name (e.g., "people().age")
- "value" - The value to search for (must match the member's type)
- "start" - Optional. The index to start searching from (default: first element)

Return Value

- Returns the index of the first matching element (starting from "start")
- Returns -1 if no match is found

Examples

Find by integer:
Type Person
age As | NTEGER
name As STRI NG
End Type

Di m peopl e(10) As Person
popul ate array ...

idx = Struct(FI ND peopl e().age, 35)
If idx >= 0 Then

Print "Found at index"; idx; ": "; people(idx).nane
El se

Print "Not found"
Endl f

Find by string:
idx = Struct(FI ND peopl e().nanme, "Alice")
If idx >= 0 Then
Print "Alice is at index"; idx
Endl f

Find by float:
idx = Struct (FI ND peopl e(). hei ght, 1.75)

Iterate through all matches using start parameter:
Find all people aged 30
idx = Struct(FI ND peopl e().age, 30)
Do Wiile idx >= 0

Print "Found at index"; idx; ": "; people(idx).nane
idx = Struct(FIND peopl e().age, 30, idx + 1)
Loop
Notes

- Search is performed linearly from the start position

- Only the first match (from the start position) is returned

- Use the start parameter to iterate through multiple matches
- For strings, comparison is case-sensitive and exact

- Array members within structures cannot be searched

Getting Array Bounds

Use the standard "BOUND()" function to get the upper bound of a structure array dimension:
upper Bound = Bound(array() [, dinmension])

Page 21

MMBasic Structures User Manual

Parameters

- "array()" - The structure array (must include empty parentheses)
- "dimension" - Optional. Which dimension to query (O returns OPTION BASE, 1+ for dimensions)

Return Value

- Returns the upper bound of the specified dimension

Examples

Basic usage (1D array):
Di m poi nts(9) As Point
bound = Bound(points()) ' Returns 9

Multi-dimensional array:
Dimgrid(4, 7) As Point
di mL Bound(grid(), 1) ' Returns 4
di n2 Bound(grid(), 2) ' Returns 7

Usein loops:
Di m peopl e(n) As Person
popul ate array ...

For i = 0 To Bound(people())
Print people(i).nane
Next i
Notes

- The standard "BOUND()" function works for both regular arrays and structure arrays
- Dimension numbering: O returns OPTION BASE, 1 = first dimension, 2 = second, etc.
- If dimension is omitted, returns the bound of the first dimension

Getting Member Offset

Use the "STRUCT(OFFSET ...)" function to get the byte offset of a member within a structure type:
of fset = Struct (OFFSET typename$, el ement$)

Parameters

- "OFFSET" - The subfunction name
- "typename$" - A string containing the structure type name
- "element$" - A string containing the member/element name

Return Value

- Returns the byte offset of the specified member from the start of the structure

Examples

Basic usage:
Type Poi nt

X As | NTECER

y As | NTEGER

End Type
of fset _x = Struct (OFFSET "Point", "x") Returns 0 (first nenber)
of fset _y = Struct (OFFSET "Point", "y") ' Returns 8 (after 8-byte integer)

Page 22

MMBasic Structures User Manual

Print "OFfset of x:"; offset_x
Print "OFfset of y:"; offset_y

Using with PEEK(VARADDR to access memory:
Type Person

age As | NTEGER ' offset O
hei ght As FLOAT ' offset 8
name As STRI NG ' offset 16

End Type

Dimp As Person

p.age = 25

p. height = 1.75

p.name = "Alice"

Get the base address of the structure variable
baseAddr = Peek(VARADDR p)

Cal cul ate address of specific nmenber
ageAddr = baseAddr + Struct(OFFSET "Person", "age")
hei ght Addr = baseAddr + Struct (COFFSET "Person", "height")

Print "Age value via PEEK:"; Peek(|NTEGER ageAddr)

Structure with arrays:

Type Data
header As | NTEGER
val ues(9) As FLOAT
End Type

Get offset of the values array start
arrOfset = Struct (OFFSET "Data", "val ues")
Print "Array starts at offset:"; arrOfset

Notes

- The offset is always in bytes from the start of the structure

- Useful for low-level memory access combined with "PEEK(VARADDR ...)"
- The type name and element name comparisons are case-insensitive

- Returns an error if the structure type or member is not found

- For nested structures, only top-level member offsets are returned

Getting Structure Size

Use the "STRUCT(SIZEOF ...)" function to get the size in bytes of a structure type:
byt eSi ze = Struct (Sl ZEOF t ypenane$)

Parameters

- "SIZEOF" - The subfunction name
- "typename$" - A string containing the structure type name

Return Value

- Returns the total size in bytes of the specified structure type
Examples

Basic usage:
Type Poi nt

Page 23

MMBasic Structures User Manual

x As | NTEGER
y As | NTEGER

End Type
size = Struct (SI ZECF "Point") ' Returns 16 (2 x 8-byte integers)
Print "Point size:"; size; "bytes"

Using with different types:
Type Person

age As | NTEGER ' 8 bytes

hei ght As FLOAT ' 8 bytes

nane As STRI NG ' 256 bytes (default string)
End Type
size = Struct (S| ZEOF "Person") ' Returns 272

Dynamic type name:
typenane$ = "Point"
size = Struct (S| ZEOF typenane$)

Use for memory calculations:
Di m data(99) As Record
total Bytes = 100 * Struct (Sl ZEOF "Record")
Print "Array uses"; total Bytes; "bytes"

Notes

- The type name comparison is case-insensitive
- Returns an error if the structure type is not defined
- Useful for calculating memory requirements or file sizes before STRUCT SAVE

Saving and Loading Structures

Structures can be saved to and loaded from files in binary format. This is useful for persisting data between program
runs or exchanging data.

STRUCT SAVE

Writes structure data to an already-open file:
Struct Save #fil enunber, vari abl e
Struct Save #fil enunber, array()
Struct Save #filenunber, array(index)

The file must be opened before using "STRUCT SAVE". You manage the file opening and closing.

Syntax options for arrays:
- "array()" - Saves the entire array
- "array(index)" - Saves only the element at the specified index

STRUCT LOAD

Reads structure data from an already-open file:
Struct Load #fil enunber, vari abl e
Struct Load #fil enunber, array()
Struct Load #fil enunber, array(index)

The file must be opened before using "STRUCT LOAD". The structure variable must already be declared.

Syntax options for arrays:
- "array()" - Loads the entire array
- "array(index)" - Loads only into the element at the specified index

Page 24

MMBasic Structures User Manual

Examples

Save and load a single structure:
Dimp As Point

p.x = 100
p.y = 200
' Save

Qpen "point.dat" For Qutput As #1
Struct Save #1, p
Cl ose #1

Load
Di m p2 As Poi nt
Open "point.dat" For Input As #1
Struct Load #1, p2
Cl ose #1

Print p2.x, p2.y ' Qutput: 100 200

Save and load an array of structures:
Di m peopl e(100) As Person
popul ate array ...
' Save to file
Open "peopl e.dat” For Qutput As #1
Struct Save #1, people()
Cl ose #1

Load fromfile
Di m | oadedPeopl e(100) As Person
Open "peopl e.dat” For |nput As #1
Struct Load #1, | oadedPeopl e()
Cl ose #1

Save and load individual array elements:
Di mrecords(99) As Record
' popul ate records ...

Save specific records to file
Open "sel ected. dat" For Qutput As #1

Struct Save #1, records(5) ' Save elenent 5
Struct Save #1, records(10) ' Append el erent 10
Struct Save #1, records(25) ' Append el enent 25
Cl ose #1

Load records back (to different positions or variabl es)
Dimtenp As Record
Open "sel ected.dat"” For Input As #1

Struct Load #1, tenp ' Load first saved record
Print temp.id
Struct Load #1, records(50) ' Load second saved record into el ement 50
Struct Load #1, records(51) ' Load third saved record into el ement 51
Cl ose #1

Notes

- Data is saved in binary format (not human-readable)

- The structure type must match when loading

- For whole array operations, array dimensions must match when loading
- Files should be opened in appropriate mode for the operation

Page 25

MMBasic Structures User Manual

- Multiple structures can be saved to the same file sequentially

- Error occurs if file is not open or is not a disk file

- **Array variables must use parentheses**: "array()" for whole array, "array(i)" for single element
- Using an array name without parentheses will cause an error

Structures in Subroutines and Functions

Passing Structures as Parameters

Structures are always passed **by reference**, meaning the subroutine or function can modify the original structure:
Sub subnane(par anet ernane As typenane)

End Sub

Example - Read-only access:
Sub PrintPoint(pt As Point)
Print "X:"; pt.x; " Y:"; pt.y
End Sub

Dimp As Point = (100, 200)
PrintPoint p

Example - Modifying the structure:
Sub Doubl ePoi nt (pt As Poi nt)
pt.x = pt.x * 2
pt.y =pt.y * 2
End Sub

Dmp As Point = (10, 20)
Doubl ePoi nt p
Print p.x, p.y ' Qutput: 20 40

Passing Array Elements

You can pass a single element of a structure array:
Di m poi nts(10) As Poi nt
points(5).x = 100
points(5).y = 200

Pri nt Poi nt poi nts(5)
Doubl ePoi nt poi nt s(5)

Passing Structure Arrays

Use empty parentheses to pass an entire array of structures:
Sub ProcessPoints(pts() As Point)
Access pts(0), pts(1l), etc.
End Sub

Di m nmyPoi nt s(10) As Poi nt
Pr ocessPoi nts nyPoi nts()

Example:

Sub SumAl | Poi nts(pts() As Point, count%
Local total _x%= 0, total _y% =0
Local i%

For i% =0 To count%- 1
total _x% = total _x% + pts(i%.x
total _y% = total _y% + pts(i%.y
Next i %

Page 26

MMBasic Structures User Manual

Print "Total X:"; total _x% " Total Y:"; total _y%
End Sub

Di m dat a(5) As Poi nt
' initialize data ...
SumAl | Poi nts data(), 6

Functions with Structure Parameters

Functi on Di stance(pt As Point) As FLOAT
Distance = Sqr(pt.x * pt.x + pt.y * pt.y)
End Functi on

Dmp As Point = (3, 4)
Print Distance(p) ' Qutput: 5

Functions Returning Structures

Functions can return structure values using "As typename" in the function declaration:
Functi on functionnanme(paraneters) As typenane
functi onname. menber1 = val uel
functi onname. menber 2 = val ue2
End Function

The function name acts as a local structure variable that is returned when the function exits.

Example - Creating a Point:
Function MakePoi nt (x% y% As Point
MakePoi nt. x = x%
MakePoint.y = y%
End Function

Dimp As Point
p = MakePoi nt (100, 200)
Print p.x, p.y ' Qutput: 100 200

Example - Structure with multiple types:
Functi on CreatePerson(n$, a% h!) As Person
Cr eat ePer son. nanme = n$
Creat ePerson. age = a%
Cr eat ePer son. hei ght = h!
End Function

Di m enpl oyee As Person
enpl oyee = CreatePerson("Alice", 30, 1.68)
Print enpl oyee.nane; " is"; enployee.age; " years old"

Example - Factory function:
Function Oigin() As Point
Oiginnx =0
Oiginy =0
End Function

Dim startPoint As Point
startPoint = Oigin()

Local Structures

Use "LOCAL" to declare structures that exist only within a subroutine or function:

Sub Exanpl e
Local pt As Point
pt.x = 100

Page 27

MMBasic Structures User Manual

pt.y = 200
pt is automatically freed when the sub exits
End Sub

Local Structure Arrays

Sub ProcessDat a
Local tenpPoints(10) As Poi nt
Use tenmpPoints. ..
End Sub

Local Structures with Initialization

Sub Exanpl e
Local pt As Point = (50, 75)
Print pt.x, pt.y

End Sub

Static Structures

Use "STATIC" to declare structures that persist between calls to a subroutine or function. Unlike LOCAL structures
which are destroyed when the subroutine exits, STATIC structures retain their values across multiple calls.

Basic Static Structure Usage

Sub Counter
Static data As Point
data.x = data.x + 1
data.y = data.y + 10

Print "Call count:"; data.x; " Total:"; data.y
End Sub

Each call increnents the val ues
Count er " Prints: Call count: 1 Total: 10
Count er " Prints: Call count: 2 Total: 20
Count er " Prints: Call count: 3 Total: 30

Static Structure Arrays

You can also create static arrays of structures:
Sub RecordReadi ng(tenp!, humdity!)
Static readi ngs(100) As Sensor Dat a
Static idx% =0

readi ngs(i dx% .tenperature = tenp!
readi ngs(idx%.humdity = humdity!
idx% = idx%+ 1

If idx%> 100 Then idx% =0 ' Wap around
End Sub

Static Structures with Initialization

Static structures can be initialized. The initialization only occurs on the first call:
Sub Get Config() As Config
Static cfg As Config = (100, 200, "defaul t")
Get Config = cfg
End Sub

Function Returning Static Structure

Page 28

MMBasic Structures User Manual

A common pattern is using a static structure to accumulate or track state across function calls:
Type Statistics
count As | NTEGER
sum As FLOAT
mn As FLOAT
max As FLOAT
End Type

Functi on UpdateStats(value!) As Statistics
Static stats As Statistics

stats.count = stats.count + 1
stats.sum = stats. sum + val ue!

If stats.count = 1 Then
stats.mn = val ue!
stats. max = val ue!
El se
If value! < stats.mn Then stats.mn val ue!
If value! > stats.nmax Then stats.max = val ue!
End |f

Updat eSt at s stats

End Function

Usage

Dms As Statistics
s = UpdateStats(10.5)
S
s

Updat eSt at s(5. 2)
= Updat eSt at s(15. 8)

Print "Count:"; s.count; " Sum"; s.sum " Mn:"; s.mn; " Max:"; s.nax
Prints: Count: 3 Sum 31.5 Mn: 5.2 WMdx: 15.8

How Static Structures Work

When you declare a STATIC structure inside a subroutine or function:

1. **First call**: MMBasic creates a persistent storage location for the structure in global memory. The structure is
initialized to zeros (or to the specified initialization values).

2. *Subsequent calls**: The same memory location is reused, preserving values from previous calls.

3. *Name scoping**: The static structure is only accessible by name within the declaring subroutine/function. It cannot
conflict with global variables or static variables in other subroutines with the same name.

Notes on Static Structures

- Static structures are allocated once and persist for the lifetime of the program

- Memory for static structures is not released until the program ends or is edited

- Static structures inside functions can be returned as function results

- Initialization values (if provided) are only applied on the first call

- Use "STRUCT CLEAR" inside the subroutine if you need to reset a static structure

Nested Structures

Structures can contain other structures as members. The nested structure type must be defined before it is used in
another structure.

Defining Nested Structures

Define inner structure first
Type Poi nt
X As | NTEGER

Page 29

MMBasic Structures User Manual

y As | NTEGER
End Type

Now defi ne structure that contains Point

Type Line
start As Point ' Nested structure nenber
finish As Poi nt ' Anot her nested nenber
col or As | NTEGER

End Type

Accessing Nested Members

Use chained dot notation to access nested members:
Di m nyLi ne As Line
nmyLi ne.start.x = 10
nmyLi ne.start.y = 20
nmyLi ne. finish.x = 100
myLi ne.finish.y = 200
nmyLi ne. col or = 255

Print nyLine.start.x " Prints 10
Print nyLine.finish.y ' Prints 200

Multiple Levels of Nesting

Structures can be nested to multiple levels:
Type Poi nt
X As | NTECER
y As | NTEGER
End Type

Type Box
topLeft As Point
bott onRi ght As Poi nt

End Type

Type Scene
boundary As Box ' Box contains Points - 3 levels
name As STRI NG LENGTH 20

End Type

Di m nyScene As Scene

nmyScene. boundary. t opLeft.x = 0
myScene. boundary. bott onRi ght. x = 640
myScene. nanme = " Mi nScene"

Print nyScene. boundary. toplLeft. x " Prints O

Arrays with Nested Structures

Arrays of structures containing nested structures work as expected:
Dimlines(10) As Line
lines(0).start.x =1
lines(0).start.y = 2
lines(5).finish.x = 100

Arrays of Nested Structure Members

Structure members can be arrays of nested structures:
Type Poi nt
X As | NTECER
y As | NTEGER

Page 30

MMBasic Structures User Manual

End Type

Type Pol ygon
vertices(9) As Point ' Array of 10 nested Point structures
col or As | NTEGER

End Type

Di m shape As Pol ygon

shape. vertices(0).x = 0
shape. vertices(0).y = 0
shape. vertices(1).x = 100
shape. vertices(1l).y = 50

shape. col or = 255

Complex Nesting Example

The most complex supported syntax combines all features:

Type I nnerType
val ues(9) As FLOAT ' Array of floats
End Type

Type QuterType
items(5) As InnerType ' Array of nested structs, each with array
End Type

Dimdata(3) As QuterType ' Array of outer structs

Access: array(i).array_nenber(j).array_nenber (k)
data(2).itens(1).val ues(4) = 3.14159
Print data(2).itens(1).val ues(4) " Prints 3.14159

This demonstrates:
- "data(2)" - Element 2 of the outer array
- ".items(1)" - Element 1 of the nested struct array member
- ".values(4)" - Element 4 of the innermost float array

LIST TYPE with Nested Structures

The "LIST TYPE" command shows nested structure types by name:
>LI ST TYPE Li ne
TYPE LI NE
START AS Point ' offset=0
FINISH AS Point ' offset=16
COLOR AS INTEGER ' offset=32
END TYPE ' size=40 bytes

Limitations

- The nested type must be defined BEFORE the containing type
- No self-referential structures (a type cannot contain itself)
- Maximum nesting depth: 8 levels (configurable via "MAX_STRUCT_NEST_DEPTH")

Multiple Structure Types

You can define multiple different structure types in your program:

Type Poi nt
x As | NTEGER
y As | NTEGER
End Type

Type Rectangl e

Page 31

MMBasic Structures User Manual

| eft As | NTEGER

top As | NTECGER

wi dth As | NTECER

hei ght As | NTEGER
End Type

Type Line

start As Poi nt ' Nested structure

finish As Poi nt
End Type

Dimp As Point

Dimr As Rectangle
DimlIn As Line

Best Practices

1. **Define types at the start of your program** - Place all TYPE definitions near the beginning, before any executable

code.

2. **Define nested types before containing types** - Inner structures must be defined first.
3. ®*Use meaningful names** - Choose descriptive names for both types and members:

Type Sensor Readi ng
ti mestanmp As | NTEGER
tenperature As FLOAT
hum dity As FLOAT
End Type

4. **|nitialize structures** - Always initialize structure members before use, either with the initialization syntax or by

assignment.

5. **Use LOCAL for temporary structures** - When a structure is only needed within a subroutine, declare it as LOCAL

to automatically free memory.

6. **Pass structures to subroutines** - Rather than passing many individual parameters, group related data into a

structure.

Limitations

- Maximum structure types: 32

- Maximum members per structure: 16

- Member names follow standard MMBasic variable naming rules
- Maximum nesting depth: 8 levels (configurable via "MAX_STRUCT_NEST_DEPTH")

Error Messages

Error

Cause

"Structure type not found"

The structure type name in DIM AS doesn't match any...

"Unknown structure member"

Accessing a member name that doesn't exist in the s...

"Structure type mismatch"

Trying to copy or pass structures of different type...

"Expected a structure variable"

A subroutine expected a structure but received some...

"Source must be a structure variab...

STRUCT COPY source is not a structure

"Destination must be a structure v...

STRUCT COPY destination is not a structure

"Not enough initialisation values"

Initialization list has fewer values than required

"Expected ‘(' for structure initia...

Missing opening parenthesis in initialization

"Expected a structure array"

STRUCT.FIND requires a structure array, not a singl...

"Member not found in structure"

STRUCT.FIND or STRUCT SORT member name doesn't exis...

"Cannot search array members"

STRUCT.FIND cannot search members that are arrays

"Type mismatch: expected numeric v...

STRUCT.FIND search value type doesn't match member ...

Page 32

MMBasic Structures User Manual

"Type mismatch: expected string va... STRUCT.FIND search value is not a string but member...
"Expected #filenumber" STRUCT SAVE/LOAD requires a file number starting wi...
"Invalid file number" File number is outside valid range

"File not open" STRUCT SAVE/LOAD file is not open

"Not a disk file" STRUCT SAVE/LOAD requires a disk file, not serial p...
"Cannot save/load a structure memb... STRUCT SAVE/LOAD requires whole structure, not memb...
"Array variable requires () or (in... STRUCT SAVE/LOAD array must use parentheses

Complete Example

' Define structure types
Type Poi nt

x As | NTEGER

y As | NTEGER
End Type

Type Line
name As STRI NG LENGTH 20
start X As | NTEGER
startY As | NTEGER
endX As | NTEGER
endY As | NTEGER

End Type

' Declare variabl es
Dimorigin As Point = (0, 0)
Di m cursor As Poi nt
Dimlines(10) As Line

" Initialize cursor
cursor.x = 100
cursor.y = 100

Create sone lines

lines(0).name = "Horizontal "
lines(0).startX = 0 : lines(0).startY = 50
lines(0).endX = 100 : lines(0).endY = 50
lines(1l).nane = "Vertical"

lines(l).startX = 50 : lines(1l).startY =0
lines(1l).endX = 50 : lines(1l).endY = 100

' Subroutine to calculate line length
Function LineLength(ln As Line) As FLOAT

Local dx% = In.endX - In.startX

Local dy% = In.endY - In.startY

Li neLength = Sqr(dx% * dx% + dy% * dy%
End Function

" Print line information
Sub PrintLine(ln As Line)

Print In.name; ": ("; In.startX; ","; In.startyY; ") to ("; In.endX ","; In.endY; ")"
Print " Length: "; LineLength(ln)

End Sub

' Display all Ilines

For i% =0 To 1
PrintLine lines(i%
Next i %

Output:

Page 33

MMBasic Structures User Manual

Hori zontal: (0,50) to (100, 50)

Lengt h: 100
Vertical: (50,0) to (50, 100)
Lengt h: 100

Quick Reference

Commands

Command

Description

‘Type...End Type®

Define a new structure type

"Dim var As typename’

Declare a structure variable

‘Dim arr(n) As typename®

Declare an array of structures

‘dst = src’

Copy structure using assignment

“arr(i) = arr(j)”

Copy array elements using assignment

“Struct Copy src To dst”

Copy structure contents

“Struct Copy src() To dst()

Copy entire structure array

“Struct Sort arr().member [,flags]’

Sort array by member field

“Struct Extract arr().member, dest()

Extract member values to simple array

“Struct Insert src(), arr().member

Insert array values into structure member

“Struct Clear var

Reset all members to defaults

“Struct Clear arr()°

Reset all array elements to defaults

“Struct Swap varl, var2®

Exchange contents of two structures

“Struct Print var®

Print structure contents for debugging

“Struct Print arr()

Print all array elements

“Struct Save #n, var

Save structure to open file

“Struct Save #n, arr()’

Save entire structure array to open file

“Struct Save #n, arr(i)’

Save single array element to open file

“Struct Load #n, var®

Load structure from open file

“Struct Load #n, arr()’

Load entire structure array from open file

“Struct Load #n, arr(i)’

Load single array element from open file

MATH Commands Supporting Structures

Command

Description

"MATH C_ADD a().m, b().m, c().m’

Element-wise addition

"MATH C_SUB a().m, b().m, ¢().m’

Element-wise subtraction

"MATH C_MUL a().m, b().m, c().m’

Element-wise multiplication

"MATH C_DIV a().m, b().m, ¢().m’

Element-wise division

"MATH SCALE a().m, k, b().m"

Multiply all elements by scalar k

"MATH ADD a().m, k, b().m’

Add scalar k to all elements

"MATH POWER a().m, k, b().m"

Raise all elements to power k

"MATH V_ROTATE cx,cy,ang,x().m,y().m,ox().m,oy().m"

Rotate coordinates

"MATH WINDOW a().m, lo, hi, b().m*

Normalize to range [lo, hi]

“MATH(MAX(a().m [,idx%))"

Maximum value (and optional index)

"MATH(MIN(a().m [idx%]))

Minimum value (and optional index)

"MATH(MEAN(a().m))

Arithmetic mean

"MATH(SUM(a().m))"

Sum of all elements

ARRAY Commands Supporting Structures

Page 34

MMBasic Structures User Manual

Command

Description

"ARRAY SET value, a().m’

Set all member elements to value

"ARRAY ADD a().m, k, b().m’

Add scalar k to all elements

Functions

Function

Description

“Struct(FIND arr().member, value [...

Find element with matching member value, returns in...

“Struct(OFFSET typename$, element$...

Get byte offset of member within structure type

“Struct(SIZEOF typename$)”

Get size in bytes of a structure type

“Bound(arr() [,dimension])’

Get upper bound of structure array dimension (stand...

Member Types

Type Size Alignment Description
‘INTEGER® 8 bytes 8-byte 64-bit signed integer
'FLOAT" 8 bytes 8-byte 64-bit floating point
"STRING® 256 bytes None Default string (255 char...
"STRING LENGTH n’ n+1 bytes None String with specified ma...
Nested struct Varies 8-byte Size of the nested struc...

This appendix provides technical details about how structures are implemented internally in MMBasic. This information
is primarily useful for developers working on MMBasic itself or advanced users who need to understand the low-level

behavior.

Overview

MMBasic structures (user-defined types) are implemented using a **single vartbl entry per structure variable**,
regardless of how many members the structure contains. Structure members do NOT create individual entries in
"g_vartbl". Instead, member metadata is stored in a separate **structure type definition table** ("g_structtbl"), and

member access is resolved at runtime by calculating byte offsets into a contiguous memory block.

Architecture

Data Structures

1. Structure Type Definition ("s_structdef’)

typedef struct s_structdef {
unsi gned char nane[MAXVARLEN] ;
i nt num nenbers;

/] Structure type nanme (e.g., "PONT")
/1 Number of nenbers in this type

struct s_structnmenber menbers[MAX_STRUCT_MEMBERS]; // Menber definitions

int total _size;
} structdef_val;

/1 Total size in bytes (with alignment)

2. Structure Member Definition ("s_structmember’)

typedef struct s_structnmenber {
unsi gned char nane[MAXVARLEN ;
unsi gned char type;
unsi gned char si ze;
int offset;
short di ns[MAXDI M ;

} structnenber_val;

/1
/11
/11
/1
/1

Menber nane (e.g., "X', "Y")

T_NBR, T_STR, T_INT, or T_STRUCT (nested)
String max length, or nested struct type index
Byte of fset within structure

Array dinensions (0 = not an array)

Page 35

MMBasic Structures User Manual

3. Variable Table Entry ("s_vartbl’)

Structure variables use the standard variable table entry:

typedef struct s_varthl {

unsi gned char nane[MAXVARLEN]; // Variable name (e.g., "PT", "PO NTS")
unsi gned char type; /1 T_STRUCT | T_I MPLIED (and possibly T _PTR)
unsi gned char | evel; /1 Scope level (0 = global, >0 = local)
unsi gned char si ze; /1 ** STRUCT TYPE | NDEX ** (not string size)
unsi gned char nanel en; /1 Flags (NAMELEN EXPLICI T, NAMELEN STATI C)
int/short dims[MAXDI M ; /1 Array dinensions (for struct arrays)
uni on u_val {
MVFLQAT f;
long long int i;
MVFLQAT *fa;
long long int *ia;
unsi gned char *s; /1 ** PO NTER TO STRUCT DATA BLOCK **
} val;
} vartbl _val;
Global Tables
Table Purpose Size
“g_structtbl[MAX_STRUC... Array of pointers to s... 32 pointers
‘g_structent” Count of defined struc... int

“g_vartbl[]’

Variable table (struct...

MAXVARS entries

Configuration Constants

- "MAX_STRUCT_TYPES" = 32 (maximum distinct TYPE definitions)
- "MAX_STRUCT_MEMBERS" = 16 (maximum members per structure)
- "MAX_STRUCT_NEST_DEPTH" = 8 (maximum nesting depth)

Memory Layout

Single Structure Variable

For a structure definition:
TYPE poi nt
x AS FLOAT
y AS FLOAT
END TYPE

DI M pt AS poi nt

Creates:

1. **One entry in "g_structtbl"** (type definition, allocated once)

2. **Qne entry in "g_vartbl"** for variable "pt"

3. **One contiguous memory block** (16 bytes) pointed to by "g_vartbl[idx].val.s

Memory layout for "pt":

O fset Content Si ze

0 x (FLOAT) 8 bytes
8 y (FLOAT) 8 bytes
Tot al 16 bytes

Structure Array
DI M poi nt s(100) AS poi nt

Creates:

Page 36

MMBasic Structures User Manual

1. **One entry in "g_vartbl™* for array "points"

2. **One contiguous memory block** (16 x 101 = 1616 bytes, accounting for OPTION BASE)

Memory layout for "points(0)" through "points(100)":

O f set

0 points(0).x, points(0).y (16 bytes)
16 points(1l).x, points(l).y (16 bytes)
32 points(2).x, points(2).y (16 bytes)
1600 poi nts(100). x, points(100).y (16 bytes)

How vartbl Fields Are Used for Structures

Field Usage for Structures
‘name[]’ Variable name (e.g., "PT", "POINTS")
“type’ "T_STRUCT\ T_IMP
“level’ Scope level (0 = global)
‘size’ **Structure type index** into “g_structtbl[]’
‘namelen’ Flags: "NAMELEN_STATIC for static variables
“dims[]’ Array dimensions (0 for simple struct, >0 for arrays)
‘val.s’ **Pointer to allocated struct data**

Key Insight: ‘size" Field Repurposing

For regular variables, "size" holds string length. For structures:
- "size" holds the **index into "g_structtbl"** that defines this struct's type

- Retrieved via: "int struct_type = (int)g_vartbl[idx].size;"
- Then access type definition: "g_structtbl[struct_type]"

Structure Member Access Resolution

When code accesses "pt.x" or "points(5).y":

Step 1: Parse Variable Name

- Detect dot in name
- Split into base name ("pt") and member path ("x")

Step 2: Find Base Variable

- Hash-based lookup in local then global variable space
- Verify "type & T_STRUCT"
- Return struct type index from "size" field

Step 3: Resolve Member Path

- Look up member in "g_structtbl[type_idx]->members]]
- Calculate byte offset from "member.offset"

- Handle nested structs recursively

- Handle array indexing for member arrays

Step 4: Return Pointer

- Final pointer = "base_ptr + total_offset + array_offset"
- Set "g_StructMemberType" for type checking

- Set "g_StructMemberOffset" and "g_StructMemberSize" for STRUCT operations

MMBasic Structures User Manual

STATIC Structure Variables

STATIC structures create TWO vartbl entries:
1. **Global entry** with mangled name (""funcname\xlevarname™)
- Holds actual struct data
- Persists across function calls
- The "x1e" (ASCIl Record Separator) character separates the function name from the variable name
2. **Local entry** with original name
- "val.s" points to global entry's data
- Destroyed when function exits
The "<RS>" character in the name prevents conflicts with structure member syntax (which uses ".").

Example Memory Trace

TYPE room

tenp AS FLOAT

name AS STRI NG LENGTH 20
END TYPE

FUNCTI ON t hi sreadi ng() AS room
STATI C n% ' Creates global "thisreadi ng<RS>n"
STATI C data AS room' Creates gl obal "thisreadi ng<RS>dat a"
n%=n%+1

data.tenmp = 22.5

data. name = "Kitchen"

thi sreadi ng = data
END FUNCTI ON

g_structtbl[0] (room type):

name = " ROOM'

num nmenbers = 2

menbers[0] = { nane="TEMP", type=T_NBR, offset=0, size=8 }
menbers[1] = { nanme="NAME", type=T_STR, offset=8, size=20 }
total _size = 32 (8 + 21, rounded up for alignment)

g_vartbl entries when function runs:

Index Name Type Size val.s
Gl "THISREADING\X1EN" T_INT 8 (integer value)
G2 "THISREADING\X1EDATA" T_STRUCT 0 -> 32-byte block
L1 "N" T_INT\ T_PTR 8 > G1"
L2 "DATA" T_STRUCT\ T_PTR 0 -> G2

Summary: Key Design Decisions

. **One vartbl entry per variable** - Members are NOT individual variables

. **Type definitions separate from instances** - "g_structtbl" holds metadata

. **Contiguous memory blocks** - Efficient for arrays and memory operations

. *Offset-based member access** - Calculated at runtime, no pointer chasing

. *Alignment enforced** - 8-byte boundary for numeric types

. *Nested structures supported** - Via recursive type references

. *STATIC uses mangled names** - With "\x1e" separator to avoid dot conflicts

~No o0, WON P

Page 38

